// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface LinkTokenInterface {
function allowance(address owner, address spender) external view returns (uint256 remaining);
function approve(address spender, uint256 value) external returns (bool success);
function balanceOf(address owner) external view returns (uint256 balance);
function decimals() external view returns (uint8 decimalPlaces);
function decreaseApproval(address spender, uint256 addedValue) external returns (bool success);
function increaseApproval(address spender, uint256 subtractedValue) external;
function name() external view returns (string memory tokenName);
function symbol() external view returns (string memory tokenSymbol);
function totalSupply() external view returns (uint256 totalTokensIssued);
function transfer(address to, uint256 value) external returns (bool success);
function transferAndCall(
address to,
uint256 value,
bytes calldata data
) external returns (bool success);
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool success);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.12;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@chainlink/contracts/src/v0.8/interfaces/LinkTokenInterface.sol";
import "@chainlink/contracts/src/v0.8/interfaces/VRFCoordinatorV2Interface.sol";
import "@chainlink/contracts/src/v0.8/VRFConsumerBaseV2.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
contract RafldexPVP_V1 is Ownable, ReentrancyGuard, VRFConsumerBaseV2 {
VRFCoordinatorV2Interface COORDINATOR;
LinkTokenInterface LINKTOKEN;
address constant vrfCoordinator =
0x271682DEB8C4E0901D1a1550aD2e64D568E69909;
address constant link_token_contract =
0x514910771AF9Ca656af840dff83E8264EcF986CA;
bytes32 private keyHash =
0x8af398995b04c28e9951adb9721ef74c74f93e6a478f39e7e0777be13527e7ef;
uint16 private requestConfirmations = 3;
uint32 private callbackGasLimit = 2500000;
uint32 private numWords = 1;
uint64 private subscriptionId = 810;
struct RandomResult {
uint256 randomNumber;
uint256 nomalizedRandomNumber;
}
struct RaffleInfo {
uint256 id;
uint256 size;
}
mapping(uint256 => RandomResult) public requests;
mapping(uint256 => RaffleInfo) public chainlinkRaffleInfo;
event TokenAdded(address _address);
event RequestFulfilled(
uint256 requestId,
uint256 randomNumber,
uint256 indexed raffleId
);
event RequestSent(uint256 requestId, uint32 numWords);
event RaffleCreated(
uint256 indexed raffleId,
address coinAddress,
uint256 amount
);
event RaffleDrawn(
uint256 indexed raffleId,
address indexed winner,
uint256 amountRaised,
uint256 randomNumber
);
event EntryBought(
uint256 indexed raffleId,
address indexed buyer,
uint256 currentSize,
uint256 numberEntries
);
event RaffleCancelled(uint256 indexed raffleId, uint256 amountRaised);
event SetWinnerTriggered(uint256 indexed raffleId, uint256 amountRaised);
struct EntriesBought {
address player;
uint256 currentEntriesLength;
uint256 entries;
}
mapping(uint256 => EntriesBought[]) public entriesList;
enum STATUS {
CREATED,
PENDING_DRAW,
DRAWING,
DRAWN,
CANCELLED
}
struct RaffleStruct {
STATUS status;
address collateralAddress;
uint256 collateralAmount;
address tokenPayment;
uint256 entriesSupply;
uint256 pricePerEntry;
address winner;
uint256 randomNumber;
uint256 maxEntriesUser;
address creator;
uint256 platformPercentage;
uint256 entriesSold;
}
RaffleStruct[] public raffles;
bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR");
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
address payable private platformWallet =
payable(0x2300Ae69d7D1Ea0457aD79e822422888e3Ee3e87);
uint256 public COMMISSION = 1000; //10%
mapping(address => bool) public TokenAddresses; //token addresses that can be in raffle
mapping(address => uint256) public minimumAmountToken; //minimum amount depending in token
bool public createEnabled = true;
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
constructor() VRFConsumerBaseV2(vrfCoordinator) {
COORDINATOR = VRFCoordinatorV2Interface(vrfCoordinator);
LINKTOKEN = LinkTokenInterface(link_token_contract);
_setupRole(OPERATOR_ROLE, msg.sender);
_setupRole(DEFAULT_ADMIN_ROLE, msg.sender);
minimumAmountToken[address(0)] = 30000000000000000; //0.03 eth ~ 50$
}
modifier onlyRole(bytes32 role, address account) {
_checkRole(role, account);
_;
}
function createRaffle(address _collateralAddress, uint256 _collateralAmount)
external
payable
nonReentrant
returns (uint256)
{
require(createEnabled, "Create raffle not enabled.");
uint256 totalEth;
require(
_collateralAmount > 0 &&
_collateralAmount >= minimumAmountToken[_collateralAddress],
"Amount can't be null / minimum amount"
);
if (_collateralAddress == address(0)) {
totalEth += _collateralAmount;
} else {
require(
TokenAddresses[_collateralAddress],
"Token Address not added "
);
safeTransferFrom(
msg.sender,
address(this),
_collateralAddress,
_collateralAmount
);
}
require(msg.value >= totalEth, "Total mismatched");
uint256 _commissionInBasicPoints;
if (hasRole(OPERATOR_ROLE, msg.sender)) {
_commissionInBasicPoints = 0;
} else {
_commissionInBasicPoints = COMMISSION;
}
uint256 _numberEntries = 1;
RaffleStruct memory raffle = RaffleStruct({
status: STATUS.CREATED,
collateralAddress: _collateralAddress,
collateralAmount: _collateralAmount,
tokenPayment: _collateralAddress,
pricePerEntry: _collateralAmount,
entriesSupply: 2,
maxEntriesUser: 1,
winner: address(0),
randomNumber: 0,
creator: msg.sender,
platformPercentage: _commissionInBasicPoints,
entriesSold: _numberEntries
});
raffles.push(raffle);
uint256 idRaffle = raffles.length - 1;
emit RaffleCreated(idRaffle, _collateralAddress, _collateralAmount);
EntriesBought memory entryBought = EntriesBought({
player: address(0),
currentEntriesLength: 0,
entries: 0
});
entriesList[idRaffle].push(entryBought);
delete entriesList[idRaffle][0];
EntriesBought memory entryBoughtCreator = EntriesBought({
player: msg.sender,
currentEntriesLength: _numberEntries,
entries: _numberEntries
});
entriesList[idRaffle].push(entryBoughtCreator);
emit EntryBought(idRaffle, msg.sender, _numberEntries, _numberEntries);
return idRaffle;
}
function buyEntry(uint256 _raffleId) external nonReentrant payable {
uint256 _numberEntries = 1;
RaffleStruct storage raffle = raffles[_raffleId];
require(raffle.status == STATUS.CREATED, "Raffle is not in CREATED");
require(msg.sender != raffle.creator, "Buyer can't be raffle creator.");
require(
raffle.entriesSold + _numberEntries <=
raffles[_raffleId].entriesSupply,
"Raffle has reached max entries"
);
if (raffle.tokenPayment == address(0)) {
require(
msg.value == raffle.pricePerEntry * _numberEntries,
"msg.value must be equal to the price"
);
} else {
IERC20(raffle.tokenPayment).transferFrom(
msg.sender,
address(this),
raffle.pricePerEntry * _numberEntries
);
}
EntriesBought memory entryBought = EntriesBought({
player: msg.sender,
currentEntriesLength: uint256(raffle.entriesSold + _numberEntries),
entries: _numberEntries
});
entriesList[_raffleId].push(entryBought);
raffle.entriesSold += _numberEntries;
emit EntryBought(
_raffleId,
msg.sender,
raffle.entriesSold,
_numberEntries
);
}
function addorRemoveTokens(address[] memory _addresses, bool _isAdded)
external
onlyRole(OPERATOR_ROLE, msg.sender)
{
for (uint256 i = 0; i < _addresses.length; i++) {
TokenAddresses[_addresses[i]] = _isAdded;
if (_isAdded == true) {
emit TokenAdded(_addresses[i]);
}
}
}
function ChangeSubscriptionId(uint64 _id)
external
onlyRole(OPERATOR_ROLE, msg.sender)
{
subscriptionId = _id;
}
function ChangecallbackGasLimit(uint32 _number)
external
onlyRole(OPERATOR_ROLE, msg.sender)
{
callbackGasLimit = _number;
}
function ChangeKeyHash(bytes32 _hash)
external
onlyRole(OPERATOR_ROLE, msg.sender)
{
keyHash = _hash;
}
function changePlatformWalletAddress(address payable _address)
external
onlyOwner
{
platformWallet = _address;
}
function getEntriesBought(uint256 _raffleId)
public
view
returns (EntriesBought[] memory)
{
return entriesList[_raffleId];
}
function toggleCreateRaffles()
external
onlyRole(OPERATOR_ROLE, msg.sender)
{
createEnabled = !createEnabled;
}
function setMinimumAmountTokenRaffle(address _token, uint256 _amount)
external
onlyRole(OPERATOR_ROLE, msg.sender)
{
minimumAmountToken[_token] = _amount;
}
function getWinnerAddressFromRandom(
uint256 _raffleId,
uint256 _normalizedRandomNumber
) public view returns (address) {
address winner;
EntriesBought[] storage entries = entriesList[_raffleId];
for (uint256 i = 0; i < entries.length; i++) {
uint256 entriesIndex = entries[i].currentEntriesLength;
if (entriesIndex >= _normalizedRandomNumber) {
winner = entries[i].player;
break;
}
}
require(winner != address(0), "Winner not found");
return winner;
}
function requestRandomWords(uint256 _id, uint256 _entriesSold)
internal
returns (uint256 requestId)
{
requestId = COORDINATOR.requestRandomWords(
keyHash,
subscriptionId,
requestConfirmations,
callbackGasLimit,
numWords
);
chainlinkRaffleInfo[requestId] = RaffleInfo({
id: _id,
size: _entriesSold
});
RaffleStruct storage raffle = raffles[_id];
raffle.status = STATUS.DRAWING;
emit RequestSent(requestId, numWords);
return requestId;
}
function requestRandomWordsRetry(uint256 _id)
external
onlyRole(OPERATOR_ROLE, msg.sender)
returns (uint256 requestId)
{
RaffleStruct storage raffle = raffles[_id];
requestId = COORDINATOR.requestRandomWords(
keyHash,
subscriptionId,
requestConfirmations,
callbackGasLimit,
numWords
);
chainlinkRaffleInfo[requestId] = RaffleInfo({
id: _id,
size: raffle.entriesSold
});
raffle.status = STATUS.DRAWING;
emit RequestSent(requestId, numWords);
return requestId;
}
function transferNFTsAndFunds(
uint256 _raffleId,
uint256 _normalizedRandomNumber
) internal nonReentrant {
RaffleStruct storage raffle = raffles[_raffleId];
raffle.randomNumber = _normalizedRandomNumber;
raffle.winner = getWinnerAddressFromRandom(
_raffleId,
_normalizedRandomNumber
);
uint256 amountBet = raffle.collateralAmount;
uint256 amountForPlatform = ((amountBet * 2) *
raffle.platformPercentage) / 10000;
uint256 amountForWinner = (amountBet * 2) - amountForPlatform;
if (raffle.tokenPayment == address(0)) {
(bool sent, ) = raffle.winner.call{value: amountForWinner}("");
require(sent, "Failed to send Eth");
(bool sent2, ) = platformWallet.call{value: amountForPlatform}("");
require(sent2, "Failed send Eth to Platform");
} else {
IERC20(raffle.tokenPayment).approve(address(this), amountBet * 2);
bool sent = IERC20(raffle.tokenPayment).transferFrom(
address(this),
raffle.winner,
amountForWinner
);
require(sent, "Failed to send ERC20 Token");
bool sent2 = IERC20(raffle.tokenPayment).transferFrom(
address(this),
platformWallet,
amountForPlatform
);
require(sent2, "Failed to send ERC20 Token to platform");
}
raffle.status = STATUS.DRAWN;
emit RaffleDrawn(
_raffleId,
raffle.winner,
amountBet * 2,
raffle.randomNumber
);
}
function fulfillRandomWords(
uint256 _requestId,
uint256[] memory _randomWords
) internal override {
uint256 normalizedRandomNumber = (_randomWords[0] %
chainlinkRaffleInfo[_requestId].size) + 1;
RaffleStruct storage raffle = raffles[
chainlinkRaffleInfo[_requestId].id
];
raffle.randomNumber = normalizedRandomNumber;
RandomResult memory result = RandomResult({
randomNumber: _randomWords[0],
nomalizedRandomNumber: normalizedRandomNumber
});
requests[chainlinkRaffleInfo[_requestId].id] = result;
emit RequestFulfilled(
_requestId,
normalizedRandomNumber,
chainlinkRaffleInfo[_requestId].id
);
transferNFTsAndFunds(
chainlinkRaffleInfo[_requestId].id,
normalizedRandomNumber
);
}
function setWinnerRaffle(uint256 _raffleId)
external
onlyRole(OPERATOR_ROLE, msg.sender)
nonReentrant
{
RaffleStruct storage raffle = raffles[_raffleId];
require(raffle.status == STATUS.CREATED, "Raffle in wrong status");
require(
raffle.entriesSold == raffle.entriesSupply,
"Raffle still not sold out"
);
raffle.status = STATUS.PENDING_DRAW;
uint256 entriesSold = raffle.entriesSold;
uint256 amountRaised = raffle.collateralAmount * 2;
requestRandomWords(_raffleId, entriesSold);
emit SetWinnerTriggered(_raffleId, amountRaised);
}
function setWinnerRaffleEmergency(uint256 _raffleId)
external
onlyRole(OPERATOR_ROLE, msg.sender)
{
//function in case that chainlink vrf2 doesnt work
RaffleStruct storage raffle = raffles[_raffleId];
require(
raffle.entriesSold == raffle.entriesSupply,
"Raffle still opened or not sold out"
);
uint256 entriesSold = raffle.entriesSold;
bytes32 baseHash = keccak256(
abi.encodePacked(
block.number,
block.timestamp,
block.gaslimit,
block.coinbase
)
);
uint256 normalizedRandomNumber = (uint256(baseHash) % entriesSold) + 1;
raffle.randomNumber = normalizedRandomNumber;
transferNFTsAndFunds(_raffleId, normalizedRandomNumber);
uint256 amountRaised = raffle.collateralAmount * 2;
emit SetWinnerTriggered(_raffleId, amountRaised);
}
function cancelRaffle(uint256 _raffleId) external payable nonReentrant {
RaffleStruct storage raffle = raffles[_raffleId];
require(
raffle.creator == msg.sender || hasRole(OPERATOR_ROLE, msg.sender),
"Not raffle creator or Operator."
);
require(raffle.status == STATUS.CREATED, "Wrong status");
require(
raffle.entriesSold < raffle.entriesSupply,
"Raffle has sold out"
);
uint256 amountBet = raffle.collateralAmount;
uint256 txLength = entriesList[_raffleId].length;
if (raffle.tokenPayment == address(0)) {
for (uint256 i = 0; i < txLength; i++) {
address user = entriesList[_raffleId][i].player;
if (user != address(0)) {
payable(user).transfer(amountBet);
}
}
} else {
IERC20(raffle.tokenPayment).approve(address(this), amountBet * 2);
for (uint256 i = 0; i < txLength; i++) {
address user = entriesList[_raffleId][i].player;
if (user != address(0)) {
IERC20(raffle.tokenPayment).transferFrom(
address(this),
user,
amountBet
);
}
}
}
raffle.status = STATUS.CANCELLED;
emit RaffleCancelled(_raffleId, amountBet);
}
function ChangeCommissionPlatform(uint256 _fee)
external
onlyRole(OPERATOR_ROLE, msg.sender)
{
COMMISSION = _fee;
}
function cancelRaffleEmergency(uint256 _raffleId)
external
onlyRole(OPERATOR_ROLE, msg.sender)
{
RaffleStruct storage raffle = raffles[_raffleId];
uint256 amountBet = raffle.collateralAmount;
uint256 txLength = entriesList[_raffleId].length;
if (raffle.tokenPayment == address(0)) {
for (uint256 i = 0; i < txLength; i++) {
address user = entriesList[_raffleId][i].player;
if (user != address(0)) {
payable(user).transfer(amountBet);
}
}
} else {
IERC20(raffle.tokenPayment).approve(address(this), amountBet * 2);
for (uint256 i = 0; i < txLength; i++) {
address user = entriesList[_raffleId][i].player;
if (user != address(0)) {
IERC20(raffle.tokenPayment).transferFrom(
address(this),
user,
amountBet
);
}
}
}
raffle.status = STATUS.CANCELLED;
emit RaffleCancelled(_raffleId, amountBet);
}
function safeTransferFrom(
address from,
address to,
address tokenAddress,
uint256 tokenAmount
) internal virtual {
if (tokenAddress == address(0)) {
payable(to).transfer(tokenAmount);
} else {
if (from == address(this)) {
IERC20(tokenAddress).approve(address(this), tokenAmount);
}
IERC20(tokenAddress).transferFrom(from, to, tokenAmount);
}
}
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
function hasRole(bytes32 role, address account)
public
view
virtual
returns (bool)
{
return _roles[role].members[account];
}
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
function grantRole(bytes32 role, address account)
public
virtual
onlyRole(OPERATOR_ROLE, msg.sender)
{
_grantRole(role, account);
}
function revokeRole(bytes32 role, address account)
public
virtual
onlyRole(OPERATOR_ROLE, msg.sender)
{
_revokeRole(role, account);
}
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
}
}
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/** ****************************************************************************
* @notice Interface for contracts using VRF randomness
* *****************************************************************************
* @dev PURPOSE
*
* @dev Reggie the Random Oracle (not his real job) wants to provide randomness
* @dev to Vera the verifier in such a way that Vera can be sure he's not
* @dev making his output up to suit himself. Reggie provides Vera a public key
* @dev to which he knows the secret key. Each time Vera provides a seed to
* @dev Reggie, he gives back a value which is computed completely
* @dev deterministically from the seed and the secret key.
*
* @dev Reggie provides a proof by which Vera can verify that the output was
* @dev correctly computed once Reggie tells it to her, but without that proof,
* @dev the output is indistinguishable to her from a uniform random sample
* @dev from the output space.
*
* @dev The purpose of this contract is to make it easy for unrelated contracts
* @dev to talk to Vera the verifier about the work Reggie is doing, to provide
* @dev simple access to a verifiable source of randomness. It ensures 2 things:
* @dev 1. The fulfillment came from the VRFCoordinator
* @dev 2. The consumer contract implements fulfillRandomWords.
* *****************************************************************************
* @dev USAGE
*
* @dev Calling contracts must inherit from VRFConsumerBase, and can
* @dev initialize VRFConsumerBase's attributes in their constructor as
* @dev shown:
*
* @dev contract VRFConsumer {
* @dev constructor(<other arguments>, address _vrfCoordinator, address _link)
* @dev VRFConsumerBase(_vrfCoordinator) public {
* @dev <initialization with other arguments goes here>
* @dev }
* @dev }
*
* @dev The oracle will have given you an ID for the VRF keypair they have
* @dev committed to (let's call it keyHash). Create subscription, fund it
* @dev and your consumer contract as a consumer of it (see VRFCoordinatorInterface
* @dev subscription management functions).
* @dev Call requestRandomWords(keyHash, subId, minimumRequestConfirmations,
* @dev callbackGasLimit, numWords),
* @dev see (VRFCoordinatorInterface for a description of the arguments).
*
* @dev Once the VRFCoordinator has received and validated the oracle's response
* @dev to your request, it will call your contract's fulfillRandomWords method.
*
* @dev The randomness argument to fulfillRandomWords is a set of random words
* @dev generated from your requestId and the blockHash of the request.
*
* @dev If your contract could have concurrent requests open, you can use the
* @dev requestId returned from requestRandomWords to track which response is associated
* @dev with which randomness request.
* @dev See "SECURITY CONSIDERATIONS" for principles to keep in mind,
* @dev if your contract could have multiple requests in flight simultaneously.
*
* @dev Colliding `requestId`s are cryptographically impossible as long as seeds
* @dev differ.
*
* *****************************************************************************
* @dev SECURITY CONSIDERATIONS
*
* @dev A method with the ability to call your fulfillRandomness method directly
* @dev could spoof a VRF response with any random value, so it's critical that
* @dev it cannot be directly called by anything other than this base contract
* @dev (specifically, by the VRFConsumerBase.rawFulfillRandomness method).
*
* @dev For your users to trust that your contract's random behavior is free
* @dev from malicious interference, it's best if you can write it so that all
* @dev behaviors implied by a VRF response are executed *during* your
* @dev fulfillRandomness method. If your contract must store the response (or
* @dev anything derived from it) and use it later, you must ensure that any
* @dev user-significant behavior which depends on that stored value cannot be
* @dev manipulated by a subsequent VRF request.
*
* @dev Similarly, both miners and the VRF oracle itself have some influence
* @dev over the order in which VRF responses appear on the blockchain, so if
* @dev your contract could have multiple VRF requests in flight simultaneously,
* @dev you must ensure that the order in which the VRF responses arrive cannot
* @dev be used to manipulate your contract's user-significant behavior.
*
* @dev Since the block hash of the block which contains the requestRandomness
* @dev call is mixed into the input to the VRF *last*, a sufficiently powerful
* @dev miner could, in principle, fork the blockchain to evict the block
* @dev containing the request, forcing the request to be included in a
* @dev different block with a different hash, and therefore a different input
* @dev to the VRF. However, such an attack would incur a substantial economic
* @dev cost. This cost scales with the number of blocks the VRF oracle waits
* @dev until it calls responds to a request. It is for this reason that
* @dev that you can signal to an oracle you'd like them to wait longer before
* @dev responding to the request (however this is not enforced in the contract
* @dev and so remains effective only in the case of unmodified oracle software).
*/
abstract contract VRFConsumerBaseV2 {
error OnlyCoordinatorCanFulfill(address have, address want);
address private immutable vrfCoordinator;
/**
* @param _vrfCoordinator address of VRFCoordinator contract
*/
constructor(address _vrfCoordinator) {
vrfCoordinator = _vrfCoordinator;
}
/**
* @notice fulfillRandomness handles the VRF response. Your contract must
* @notice implement it. See "SECURITY CONSIDERATIONS" above for important
* @notice principles to keep in mind when implementing your fulfillRandomness
* @notice method.
*
* @dev VRFConsumerBaseV2 expects its subcontracts to have a method with this
* @dev signature, and will call it once it has verified the proof
* @dev associated with the randomness. (It is triggered via a call to
* @dev rawFulfillRandomness, below.)
*
* @param requestId The Id initially returned by requestRandomness
* @param randomWords the VRF output expanded to the requested number of words
*/
function fulfillRandomWords(uint256 requestId, uint256[] memory randomWords) internal virtual;
// rawFulfillRandomness is called by VRFCoordinator when it receives a valid VRF
// proof. rawFulfillRandomness then calls fulfillRandomness, after validating
// the origin of the call
function rawFulfillRandomWords(uint256 requestId, uint256[] memory randomWords) external {
if (msg.sender != vrfCoordinator) {
revert OnlyCoordinatorCanFulfill(msg.sender, vrfCoordinator);
}
fulfillRandomWords(requestId, randomWords);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface VRFCoordinatorV2Interface {
/**
* @notice Get configuration relevant for making requests
* @return minimumRequestConfirmations global min for request confirmations
* @return maxGasLimit global max for request gas limit
* @return s_provingKeyHashes list of registered key hashes
*/
function getRequestConfig()
external
view
returns (
uint16,
uint32,
bytes32[] memory
);
/**
* @notice Request a set of random words.
* @param keyHash - Corresponds to a particular oracle job which uses
* that key for generating the VRF proof. Different keyHash's have different gas price
* ceilings, so you can select a specific one to bound your maximum per request cost.
* @param subId - The ID of the VRF subscription. Must be funded
* with the minimum subscription balance required for the selected keyHash.
* @param minimumRequestConfirmations - How many blocks you'd like the
* oracle to wait before responding to the request. See SECURITY CONSIDERATIONS
* for why you may want to request more. The acceptable range is
* [minimumRequestBlockConfirmations, 200].
* @param callbackGasLimit - How much gas you'd like to receive in your
* fulfillRandomWords callback. Note that gasleft() inside fulfillRandomWords
* may be slightly less than this amount because of gas used calling the function
* (argument decoding etc.), so you may need to request slightly more than you expect
* to have inside fulfillRandomWords. The acceptable range is
* [0, maxGasLimit]
* @param numWords - The number of uint256 random values you'd like to receive
* in your fulfillRandomWords callback. Note these numbers are expanded in a
* secure way by the VRFCoordinator from a single random value supplied by the oracle.
* @return requestId - A unique identifier of the request. Can be used to match
* a request to a response in fulfillRandomWords.
*/
function requestRandomWords(
bytes32 keyHash,
uint64 subId,
uint16 minimumRequestConfirmations,
uint32 callbackGasLimit,
uint32 numWords
) external returns (uint256 requestId);
/**
* @notice Create a VRF subscription.
* @return subId - A unique subscription id.
* @dev You can manage the consumer set dynamically with addConsumer/removeConsumer.
* @dev Note to fund the subscription, use transferAndCall. For example
* @dev LINKTOKEN.transferAndCall(
* @dev address(COORDINATOR),
* @dev amount,
* @dev abi.encode(subId));
*/
function createSubscription() external returns (uint64 subId);
/**
* @notice Get a VRF subscription.
* @param subId - ID of the subscription
* @return balance - LINK balance of the subscription in juels.
* @return reqCount - number of requests for this subscription, determines fee tier.
* @return owner - owner of the subscription.
* @return consumers - list of consumer address which are able to use this subscription.
*/
function getSubscription(uint64 subId)
external
view
returns (
uint96 balance,
uint64 reqCount,
address owner,
address[] memory consumers
);
/**
* @notice Request subscription owner transfer.
* @param subId - ID of the subscription
* @param newOwner - proposed new owner of the subscription
*/
function requestSubscriptionOwnerTransfer(uint64 subId, address newOwner) external;
/**
* @notice Request subscription owner transfer.
* @param subId - ID of the subscription
* @dev will revert if original owner of subId has
* not requested that msg.sender become the new owner.
*/
function acceptSubscriptionOwnerTransfer(uint64 subId) external;
/**
* @notice Add a consumer to a VRF subscription.
* @param subId - ID of the subscription
* @param consumer - New consumer which can use the subscription
*/
function addConsumer(uint64 subId, address consumer) external;
/**
* @notice Remove a consumer from a VRF subscription.
* @param subId - ID of the subscription
* @param consumer - Consumer to remove from the subscription
*/
function removeConsumer(uint64 subId, address consumer) external;
/**
* @notice Cancel a subscription
* @param subId - ID of the subscription
* @param to - Where to send the remaining LINK to
*/
function cancelSubscription(uint64 subId, address to) external;
/*
* @notice Check to see if there exists a request commitment consumers
* for all consumers and keyhashes for a given sub.
* @param subId - ID of the subscription
* @return true if there exists at least one unfulfilled request for the subscription, false
* otherwise.
*/
function pendingRequestExists(uint64 subId) external view returns (bool);
}
{
"compilationTarget": {
"contracts/RafldexPVP_V1.sol": "RafldexPVP_V1"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"have","type":"address"},{"internalType":"address","name":"want","type":"address"}],"name":"OnlyCoordinatorCanFulfill","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":false,"internalType":"uint256","name":"currentSize","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"numberEntries","type":"uint256"}],"name":"EntryBought","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountRaised","type":"uint256"}],"name":"RaffleCancelled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"address","name":"coinAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"RaffleCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":true,"internalType":"address","name":"winner","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountRaised","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"randomNumber","type":"uint256"}],"name":"RaffleDrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"requestId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"randomNumber","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"}],"name":"RequestFulfilled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"requestId","type":"uint256"},{"indexed":false,"internalType":"uint32","name":"numWords","type":"uint32"}],"name":"RequestSent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"raffleId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountRaised","type":"uint256"}],"name":"SetWinnerTriggered","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_address","type":"address"}],"name":"TokenAdded","type":"event"},{"inputs":[],"name":"COMMISSION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"ChangeCommissionPlatform","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_hash","type":"bytes32"}],"name":"ChangeKeyHash","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"_id","type":"uint64"}],"name":"ChangeSubscriptionId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"_number","type":"uint32"}],"name":"ChangecallbackGasLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPERATOR_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"TokenAddresses","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"_addresses","type":"address[]"},{"internalType":"bool","name":"_isAdded","type":"bool"}],"name":"addorRemoveTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"buyEntry","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"cancelRaffle","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"cancelRaffleEmergency","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"chainlinkRaffleInfo","outputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"size","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address payable","name":"_address","type":"address"}],"name":"changePlatformWalletAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"createEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_collateralAddress","type":"address"},{"internalType":"uint256","name":"_collateralAmount","type":"uint256"}],"name":"createRaffle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"entriesList","outputs":[{"internalType":"address","name":"player","type":"address"},{"internalType":"uint256","name":"currentEntriesLength","type":"uint256"},{"internalType":"uint256","name":"entries","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"getEntriesBought","outputs":[{"components":[{"internalType":"address","name":"player","type":"address"},{"internalType":"uint256","name":"currentEntriesLength","type":"uint256"},{"internalType":"uint256","name":"entries","type":"uint256"}],"internalType":"struct RafldexPVP_V1.EntriesBought[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"},{"internalType":"uint256","name":"_normalizedRandomNumber","type":"uint256"}],"name":"getWinnerAddressFromRandom","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"minimumAmountToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"raffles","outputs":[{"internalType":"enum RafldexPVP_V1.STATUS","name":"status","type":"uint8"},{"internalType":"address","name":"collateralAddress","type":"address"},{"internalType":"uint256","name":"collateralAmount","type":"uint256"},{"internalType":"address","name":"tokenPayment","type":"address"},{"internalType":"uint256","name":"entriesSupply","type":"uint256"},{"internalType":"uint256","name":"pricePerEntry","type":"uint256"},{"internalType":"address","name":"winner","type":"address"},{"internalType":"uint256","name":"randomNumber","type":"uint256"},{"internalType":"uint256","name":"maxEntriesUser","type":"uint256"},{"internalType":"address","name":"creator","type":"address"},{"internalType":"uint256","name":"platformPercentage","type":"uint256"},{"internalType":"uint256","name":"entriesSold","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"requestId","type":"uint256"},{"internalType":"uint256[]","name":"randomWords","type":"uint256[]"}],"name":"rawFulfillRandomWords","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_id","type":"uint256"}],"name":"requestRandomWordsRetry","outputs":[{"internalType":"uint256","name":"requestId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"requests","outputs":[{"internalType":"uint256","name":"randomNumber","type":"uint256"},{"internalType":"uint256","name":"nomalizedRandomNumber","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"setMinimumAmountTokenRaffle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"setWinnerRaffle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_raffleId","type":"uint256"}],"name":"setWinnerRaffleEmergency","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"toggleCreateRaffles","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]