// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {PackLib} from "../libraries/PackLib.sol";
import {IArgPacker} from "./IArgPacker.sol";
/**
* @notice View functions that pack and unpack addLiquidity parameters.
*/
abstract contract ArgPacker is IArgPacker {
/// @inheritdoc IArgPacker
function unpackAddLiquidityArgs(
bytes memory argsPacked
) public pure returns (IMaverickV2Pool.AddLiquidityParams memory args) {
return PackLib.unpackAddLiquidityArgs(argsPacked);
}
/// @inheritdoc IArgPacker
function packAddLiquidityArgs(
IMaverickV2Pool.AddLiquidityParams memory args
) public pure returns (bytes memory argsPacked) {
return PackLib.packAddLiquidityArgs(args);
}
/// @inheritdoc IArgPacker
function packAddLiquidityArgsArray(
IMaverickV2Pool.AddLiquidityParams[] memory args
) public pure returns (bytes[] memory argsPacked) {
return PackLib.packAddLiquidityArgsArray(args);
}
/// @inheritdoc IArgPacker
function unpackUint88Array(bytes memory packedArray) public pure returns (uint88[] memory fullArray) {
fullArray = PackLib.unpackUint88Array(packedArray);
}
/// @inheritdoc IArgPacker
function packUint88Array(uint88[] memory fullArray) public pure returns (bytes memory packedArray) {
packedArray = PackLib.packArray(fullArray);
}
}
// SPDX-License-Identifier: Unlicense
pragma solidity ^0.8.25;
// Adapted from https://github.com/GNSPS/solidity-bytes-utils/blob/1dff13ef21304eb3634cb9e7f86c119cf280bd35/contracts/BytesLib.sol
library BytesLib {
error BytesLibToBoolOutOfBounds();
error BytesLibToAddressOutOfBounds();
error BytesLibSliceOverflow();
error BytesLibSliceOutOfBounds();
error BytesLibInvalidLength(uint256 inputLength, uint256 expectedLength);
function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
// 31 is added to _length in assembly; need to check here that that
// operation will not overflow
if (_length > type(uint256).max - 31) revert BytesLibSliceOverflow();
if (_bytes.length < _start + _length) revert BytesLibSliceOutOfBounds();
bytes memory tempBytes;
assembly ("memory-safe") {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address addr) {
unchecked {
if (_bytes.length < _start + 20) revert BytesLibToAddressOutOfBounds();
assembly ("memory-safe") {
addr := and(0xffffffffffffffffffffffffffffffffffffffff, mload(add(add(_bytes, 20), _start)))
}
}
}
function toBool(bytes memory _bytes, uint256 _start) internal pure returns (bool) {
unchecked {
if (_bytes.length < _start + 1) revert BytesLibToBoolOutOfBounds();
uint8 tempUint;
assembly ("memory-safe") {
tempUint := mload(add(add(_bytes, 1), _start))
}
return tempUint == 1;
}
}
function toAddressAddressBoolUint128Uint128(
bytes memory _bytes
) internal pure returns (address addr1, address addr2, bool bool_, uint128 amount1, uint128 amount2) {
if (_bytes.length != 73) revert BytesLibInvalidLength(_bytes.length, 73);
uint8 temp;
assembly ("memory-safe") {
addr1 := and(0xffffffffffffffffffffffffffffffffffffffff, mload(add(_bytes, 20)))
addr2 := and(0xffffffffffffffffffffffffffffffffffffffff, mload(add(_bytes, 40)))
temp := mload(add(_bytes, 41))
amount1 := and(0xffffffffffffffffffffffffffffffff, mload(add(_bytes, 57)))
amount2 := and(0xffffffffffffffffffffffffffffffff, mload(add(_bytes, 73)))
}
bool_ = temp == 1;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IChecks} from "./IChecks.sol";
import {PoolInspection} from "../libraries/PoolInspection.sol";
abstract contract Checks is IChecks {
/// @inheritdoc IChecks
function checkSqrtPrice(IMaverickV2Pool pool, uint256 minSqrtPrice, uint256 maxSqrtPrice) public payable {
uint256 sqrtPrice = PoolInspection.poolSqrtPrice(pool);
if (sqrtPrice < minSqrtPrice || sqrtPrice > maxSqrtPrice)
revert PositionExceededPriceBounds(sqrtPrice, minSqrtPrice, maxSqrtPrice);
}
/// @inheritdoc IChecks
function checkDeadline(uint256 deadline) public payable {
if (block.timestamp > deadline) revert PositionDeadlinePassed(deadline, block.timestamp);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
// factory contraints on pools
uint8 constant MAX_PROTOCOL_FEE_RATIO_D3 = 0.25e3; // 25%
uint256 constant MAX_PROTOCOL_LENDING_FEE_RATE_D18 = 0.02e18; // 2%
uint64 constant MAX_POOL_FEE_D18 = 0.9e18; // 90%
uint64 constant MIN_LOOKBACK = 1 seconds;
uint64 constant MAX_TICK_SPACING = 10_000;
// pool constraints
uint8 constant NUMBER_OF_KINDS = 4;
int32 constant NUMBER_OF_KINDS_32 = int32(int8(NUMBER_OF_KINDS));
uint256 constant MAX_TICK = 322_378; // max price 1e14 in D18 scale
int32 constant MAX_TICK_32 = int32(int256(MAX_TICK));
int32 constant MIN_TICK_32 = int32(-int256(MAX_TICK));
uint256 constant MAX_BINS_TO_MERGE = 3;
uint128 constant MINIMUM_LIQUIDITY = 1e8;
// accessor named constants
uint8 constant ALL_KINDS_MASK = 0xF; // 0b1111
uint8 constant PERMISSIONED_LIQUIDITY_MASK = 0x10; // 0b010000
uint8 constant PERMISSIONED_SWAP_MASK = 0x20; // 0b100000
uint8 constant OPTIONS_MASK = ALL_KINDS_MASK | PERMISSIONED_LIQUIDITY_MASK | PERMISSIONED_SWAP_MASK; // 0b111111
// named values
address constant MERGED_LP_BALANCE_ADDRESS = address(0);
uint256 constant MERGED_LP_BALANCE_SUBACCOUNT = 0;
uint128 constant ONE = 1e18;
uint128 constant ONE_SQUARED = 1e36;
int256 constant INT256_ONE = 1e18;
uint256 constant ONE_D8 = 1e8;
uint256 constant ONE_D3 = 1e3;
int40 constant INT_ONE_D8 = 1e8;
int40 constant HALF_TICK_D8 = 0.5e8;
uint8 constant DEFAULT_DECIMALS = 18;
uint256 constant DEFAULT_SCALE = 1;
bytes constant EMPTY_PRICE_BREAKS = hex"010000000000000000000000";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
* ```
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {Payment} from "../paymentbase/Payment.sol";
import {IExactOutputSlim} from "./IExactOutputSlim.sol";
import {Swap} from "./Swap.sol";
abstract contract ExactOutputSlim is Payment, Swap, IExactOutputSlim {
/**
* @dev Callback function called by Maverick V2 pools when swapping tokens.
* @param tokenIn The input token.
* @param amountToPay The amount to pay.
* @param data Additional data.
*/
function maverickV2SwapCallback(
IERC20 tokenIn,
uint256 amountToPay,
uint256,
bytes calldata data
) external virtual {
if (!factory().isFactoryPool(IMaverickV2Pool(msg.sender))) revert RouterNotFactoryPool();
address payer = abi.decode(data, (address));
if (amountToPay != 0) pay(tokenIn, payer, msg.sender, amountToPay);
}
/**
* @dev Perform a swap with an exact output amount.
* @param recipient The recipient of the swapped tokens.
* @param pool The MaverickV2 pool to use for the swap.
* @param tokenAIn Whether token A is the input token.
* @param amountOut The exact output amount.
* @param tickLimit The tick limit for the swap.
* @return amountIn The input amount required to achieve the exact output.
* @return amountOut_ The actual output amount received from the swap.
*/
function exactOutputSingleMinimal(
address recipient,
IMaverickV2Pool pool,
bool tokenAIn,
uint256 amountOut,
int32 tickLimit
) public payable returns (uint256 amountIn, uint256 amountOut_) {
(amountIn, amountOut_) = _exactOutputSingleWithTickCheck(pool, recipient, amountOut, tokenAIn, tickLimit);
}
/**
* @dev Perform an exact output single swap with tick limit validation.
* @param pool The MaverickV2 pool to use for the swap.
* @param recipient The recipient of the swapped tokens.
* @param amountOut The exact output amount.
* @param tokenAIn Whether token A is the input token.
* @param tickLimit The tick limit for the swap.
* @return amountIn The input amount required to achieve the exact output.
* @return _amountOut The actual output amount received from the swap.
*/
function _exactOutputSingleWithTickCheck(
IMaverickV2Pool pool,
address recipient,
uint256 amountOut,
bool tokenAIn,
int32 tickLimit
) internal returns (uint256 amountIn, uint256 _amountOut) {
IMaverickV2Pool.SwapParams memory swapParams = IMaverickV2Pool.SwapParams({
amount: amountOut,
tokenAIn: tokenAIn,
exactOutput: true,
tickLimit: tickLimit
});
(amountIn, _amountOut) = _swap(
pool,
(recipient == address(0)) ? address(this) : recipient,
swapParams,
abi.encode(msg.sender)
);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
interface IArgPacker {
/**
* @notice Packs addLiquidity paramters into a bytes object. The packing
* is [kind, ticksArray, amountsArray] where the arrays are packed like
* this: [length, array[0], array[1],..., array[length-1]]. length is 1
* byte (256 total possible elements).
*/
function packAddLiquidityArgs(
IMaverickV2Pool.AddLiquidityParams memory args
) external pure returns (bytes memory argsPacked);
/**
* @notice Unpacks packed addLiquidity parameters.
*/
function unpackAddLiquidityArgs(
bytes memory argsPacked
) external pure returns (IMaverickV2Pool.AddLiquidityParams memory args);
/**
* @notice Packs addLiquidity paramters array element-wise.
*/
function packAddLiquidityArgsArray(
IMaverickV2Pool.AddLiquidityParams[] memory args
) external pure returns (bytes[] memory argsPacked);
/**
* @notice Packs sqrtPrice breaks array with this format: [length,
* array[0], array[1],..., array[length-1]] where length is 1 byte.
*/
function packUint88Array(uint88[] memory fullArray) external pure returns (bytes memory packedArray);
/**
* @notice Unpacks sqrtPrice breaks bytes object into array.
*/
function unpackUint88Array(bytes memory packedArray) external pure returns (uint88[] memory fullArray);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IMulticall} from "@maverick/v2-common/contracts/base/IMulticall.sol";
import {IChecks} from "../base/IChecks.sol";
interface IBoostedPositionBase is IERC20Metadata, IChecks, IMulticall {
/**
* @notice BP Pool.
*/
function pool() external view returns (IMaverickV2Pool pool_);
/**
* @notice BP Bin kind (static, right, left, both).
*/
function kind() external view returns (uint8 kind_);
/**
* @notice Number of bins in the BP.
*/
function binCount() external view returns (uint8 binCount_);
/**
* @notice Liquidity balance in BP bins since last mint/burn operation.
*/
function getBinBalances() external view returns (uint128[] memory binBalances_);
/**
* @notice Liquidity balance in given BP bin since last mint/burn
* operation.
*/
function binBalances(uint256 index) external view returns (uint128 binBalance);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
interface IChecks {
error PositionExceededPriceBounds(uint256 sqrtPrice, uint256 minSqrtPrice, uint256 maxSqrtPrice);
error PositionDeadlinePassed(uint256 deadline, uint256 blockTimestamp);
/**
* @notice Function to check if the price of a pool is within specified bounds.
* @param pool The MaverickV2Pool contract to check.
* @param minSqrtPrice The minimum acceptable square root price.
* @param maxSqrtPrice The maximum acceptable square root price.
*/
function checkSqrtPrice(IMaverickV2Pool pool, uint256 minSqrtPrice, uint256 maxSqrtPrice) external payable;
/**
* @notice Function to check if a given deadline has passed.
* @param deadline The timestamp representing the deadline.
*/
function checkDeadline(uint256 deadline) external payable;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC6372.sol)
pragma solidity ^0.8.20;
interface IERC6372 {
/**
* @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting).
*/
function clock() external view returns (uint48);
/**
* @dev Description of the clock
*/
// solhint-disable-next-line func-name-mixedcase
function CLOCK_MODE() external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IRouterErrors} from "./IRouterErrors.sol";
interface IExactOutputSlim is IRouterErrors {
function exactOutputSingleMinimal(
address recipient,
IMaverickV2Pool pool,
bool tokenAIn,
uint256 amountOut,
int32 tickLimit
) external payable returns (uint256 amountIn, uint256 amountOut_);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
interface IHistoricalBalance {
/**
* @notice This function retrieves the historical balance of an account at
* a specific point in time.
* @param account The address of the account for which to retrieve the
* historical balance.
* @param timepoint The timepoint (block number or timestamp depending on
* implementation) at which to query the balance (uint256).
* @return balance The balance of the account at the specified timepoint.
*/
function getPastBalanceOf(address account, uint256 timepoint) external view returns (uint256 balance);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IBoostedPositionBase} from "../boostedpositionbase/IBoostedPositionBase.sol";
interface IMaverickV2BoostedPosition is IBoostedPositionBase {
event BoostedPositionMigrateBinLiquidity(uint32 currentBinId, uint32 newBinId, uint128 newBinBalance);
error BoostedPositionTooLittleLiquidityAdded(uint256 binIdIndex, uint32 binId, uint128 required, uint128 available);
error BoostedPositionMovementBinNotMigrated();
/**
* @notice Mints BP LP position to recipient. User has to add liquidity to
* BP contract before making this call as this mint function simply assigns
* any new liquidity that this BP possesses in the pool to the recipient.
* Accordingly, this function should only be called in the same transaction
* where liquidity has been added to a pool as part of a multicall or
* through a router/manager contract.
*/
function mint(address recipient) external returns (uint256 deltaSupply);
/**
* @notice Burns BP LP positions and redeems the underlying A/B token to the recipient.
*/
function burn(address recipient, uint256 amount) external returns (uint256 tokenAOut, uint256 tokenBOut);
/**
* @notice Migrates all underlying movement-mode liquidity from a merged
* bin to the active parent of the merged bin. For Static BPs, this
* function is a no-op and never needs to be called.
*/
function migrateBinLiquidityToRoot() external;
/**
* @notice Array of ticks where the underlying BP liquidity exists.
*/
function getTicks() external view returns (int32[] memory ticks);
/**
* @notice Array of relative pool bin LP balance of the bins in the BP.
*/
function getRatios() external view returns (uint128[] memory ratios_);
/**
* @notice Array of BP binIds. Will revert if the BP is a movement mode
* and the underlying bin is merged.
*/
function getBinIds() external view returns (uint32[] memory binIds_);
/**
* @notice Array of BP binIds. Will not revert if the BP is a movement mode
* and the underlying bin is merged. For statis BPs, this returns the same
* value as `getBinIds`.
*/
function getRawBinIds() external view returns (uint32[] memory);
/**
* @notice Removes excess liquidity from the binId[0] bin and sends to
* recipient. Skimming is desirable if there is more than one bin in the BP
* and the skimmable amount is non-zero.
* Skimming amount is only applicable if the number of bins is more than
* one. For single-bin BPs, a user can effectively "skim" by minting BP
* tokens to themselves.
*/
function skim(address recipient) external returns (uint256 tokenAOut, uint256 tokenBOut);
/**
* @notice Returns the amount of binIds[0] LP balance that is skimmable in
* the BP. If this number is non-zero, it is desirable to skim before
* minting to ensure that the ratio solvency checks pass. Checking the
* skimmable amount is only applicable if the number of bins is more than
* one. For single-bin BPs, a user can effectively "skim" by minting BP
* tokens to themselves.
*/
function skimmableAmount() external view returns (uint128 amount);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Factory} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Factory.sol";
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IMaverickV2BoostedPosition} from "./IMaverickV2BoostedPosition.sol";
interface IMaverickV2BoostedPositionFactory {
error BoostedPositionFactoryNotFactoryPool();
error BoostedPositionPermissionedLiquidityPool();
error BoostedPositionFactoryKindNotSupportedByPool(uint8 poolKinds, uint8 kind);
error BoostedPositionFactoryInvalidRatioZero(uint128 ratioZero);
error BoostedPositionFactoryInvalidLengths(uint256 ratioLength, uint256 binIdsLength);
error BoostedPositionFactoryInvalidLengthForKind(uint8 kind, uint256 ratiosLength);
error BoostedPositionFactoryBinIdsNotSorted(uint256 index, uint32 lastBinId, uint32 thisBinId);
error BoostedPositionFactoryInvalidBinKind(uint8 inputKind, uint8 binKind, uint32 binId);
event CreateBoostedPosition(
IMaverickV2Pool pool,
uint32[] binIds,
uint128[] ratios,
uint8 kind,
IMaverickV2BoostedPosition boostedPosition
);
/**
* @notice Creates BP from the specified input parameters. Requirements:
*
* - Pool must be from pool factory
* - BP kind must be supported by the pool
* - BinIds have to be sorted in ascending order
* - ratios[0] must be 1e18; ratios are specified in D18 scale
* - ratio and binId arrays have to be the same length
* - movement-mode BPs can only have one binId
* - static-mode BPs can have at most 24 binIds
*/
function createBoostedPosition(
IMaverickV2Pool pool,
uint32[] memory binIds,
uint128[] memory ratios,
uint8 kind
) external returns (IMaverickV2BoostedPosition boostedPosition);
/**
* @notice Look up BPs by range of indexes.
*/
function lookup(uint256 startIndex, uint256 endIndex) external view returns (IMaverickV2BoostedPosition[] memory);
/**
* @notice Returns count of all BPs deployed by the factory.
*/
function boostedPositionsCount() external view returns (uint256 count);
/**
* @notice Look up BPs by range of indexes for a given pool.
*/
function lookup(
IMaverickV2Pool pool,
uint256 startIndex,
uint256 endIndex
) external view returns (IMaverickV2BoostedPosition[] memory);
/**
* @notice Returns count of all BPs deployed by the factory for a given
* pool.
*/
function boostedPositionsByPoolCount(IMaverickV2Pool pool) external view returns (uint256 count);
/**
* @notice Returns whether or not input BP was created by this factory.
*/
function isFactoryBoostedPosition(IMaverickV2BoostedPosition) external returns (bool);
/**
* @notice Pool factory that all BPs pool must be deployed from.
*/
function poolFactory() external returns (IMaverickV2Factory);
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IMaverickV2Pool} from "./IMaverickV2Pool.sol";
interface IMaverickV2Factory {
error FactoryInvalidProtocolFeeRatio(uint8 protocolFeeRatioD3);
error FactoryInvalidLendingFeeRate(uint256 protocolLendingFeeRateD18);
error FactoryProtocolFeeOnRenounce(uint8 protocolFeeRatioD3);
error FactorAlreadyInitialized();
error FactorNotInitialized();
error FactoryInvalidTokenOrder(IERC20 _tokenA, IERC20 _tokenB);
error FactoryInvalidFee();
error FactoryInvalidKinds(uint8 kinds);
error FactoryInvalidTickSpacing(uint256 tickSpacing);
error FactoryInvalidLookback(uint256 lookback);
error FactoryInvalidTokenDecimals(uint8 decimalsA, uint8 decimalsB);
error FactoryPoolAlreadyExists(
uint256 feeAIn,
uint256 feeBIn,
uint256 tickSpacing,
uint256 lookback,
IERC20 tokenA,
IERC20 tokenB,
uint8 kinds,
address accessor
);
error FactoryAccessorMustBeNonZero();
event PoolCreated(
IMaverickV2Pool poolAddress,
uint8 protocolFeeRatio,
uint256 feeAIn,
uint256 feeBIn,
uint256 tickSpacing,
uint256 lookback,
int32 activeTick,
IERC20 tokenA,
IERC20 tokenB,
uint8 kinds,
address accessor
);
event SetFactoryProtocolFeeRatio(uint8 protocolFeeRatioD3);
event SetFactoryProtocolLendingFeeRate(uint256 lendingFeeRateD18);
event SetFactoryProtocolFeeReceiver(address receiver);
struct DeployParameters {
uint64 feeAIn;
uint64 feeBIn;
uint32 lookback;
int32 activeTick;
uint64 tokenAScale;
uint64 tokenBScale;
// slot
IERC20 tokenA;
// slot
IERC20 tokenB;
// slot
uint16 tickSpacing;
uint8 options;
address accessor;
}
/**
* @notice Called by deployer library to initialize a pool.
*/
function deployParameters()
external
view
returns (
uint64 feeAIn,
uint64 feeBIn,
uint32 lookback,
int32 activeTick,
uint64 tokenAScale,
uint64 tokenBScale,
// slot
IERC20 tokenA,
// slot
IERC20 tokenB,
// slot
uint16 tickSpacing,
uint8 options,
address accessor
);
/**
* @notice Create a new MaverickV2Pool with symmetric swap fees.
* @param fee Fraction of the pool swap amount that is retained as an LP in
* D18 scale.
* @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
* bin width.
* @param lookback Pool lookback in seconds.
* @param tokenA Address of tokenA.
* @param tokenB Address of tokenB.
* @param activeTick Tick position that contains the active bins.
* @param kinds 1-15 number to represent the active kinds
* 0b0001 = static;
* 0b0010 = right;
* 0b0100 = left;
* 0b1000 = both.
* E.g. a pool with all 4 modes will have kinds = b1111 = 15
*/
function create(
uint64 fee,
uint16 tickSpacing,
uint32 lookback,
IERC20 tokenA,
IERC20 tokenB,
int32 activeTick,
uint8 kinds
) external returns (IMaverickV2Pool);
/**
* @notice Create a new MaverickV2Pool.
* @param feeAIn Fraction of the pool swap amount for tokenA-input swaps
* that is retained as an LP in D18 scale.
* @param feeBIn Fraction of the pool swap amount for tokenB-input swaps
* that is retained as an LP in D18 scale.
* @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
* bin width.
* @param lookback Pool lookback in seconds.
* @param tokenA Address of tokenA.
* @param tokenB Address of tokenB.
* @param activeTick Tick position that contains the active bins.
* @param kinds 1-15 number to represent the active kinds
* 0b0001 = static;
* 0b0010 = right;
* 0b0100 = left;
* 0b1000 = both.
* e.g. a pool with all 4 modes will have kinds = b1111 = 15
*/
function create(
uint64 feeAIn,
uint64 feeBIn,
uint16 tickSpacing,
uint32 lookback,
IERC20 tokenA,
IERC20 tokenB,
int32 activeTick,
uint8 kinds
) external returns (IMaverickV2Pool);
/**
* @notice Create a new MaverickV2PoolPermissioned with symmetric swap fees
* with all functions permissioned. Set fee to zero to make the pool fee settable by the accessor.
* @param fee Fraction of the pool swap amount that is retained as an LP in
* D18 scale.
* @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
* bin width.
* @param lookback Pool lookback in seconds.
* @param tokenA Address of tokenA.
* @param tokenB Address of tokenB.
* @param activeTick Tick position that contains the active bins.
* @param kinds 1-15 number to represent the active kinds
* 0b0001 = static;
* 0b0010 = right;
* 0b0100 = left;
* 0b1000 = both.
* E.g. a pool with all 4 modes will have kinds = b1111 = 15
* @param accessor Only address that can access the pool's public write functions.
*/
function createPermissioned(
uint64 fee,
uint16 tickSpacing,
uint32 lookback,
IERC20 tokenA,
IERC20 tokenB,
int32 activeTick,
uint8 kinds,
address accessor
) external returns (IMaverickV2Pool);
/**
* @notice Create a new MaverickV2PoolPermissioned with all functions
* permissioned. Set fees to zero to make the pool fee settable by the
* accessor.
* @param feeAIn Fraction of the pool swap amount for tokenA-input swaps
* that is retained as an LP in D18 scale.
* @param feeBIn Fraction of the pool swap amount for tokenB-input swaps
* that is retained as an LP in D18 scale.
* @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
* bin width.
* @param lookback Pool lookback in seconds.
* @param tokenA Address of tokenA.
* @param tokenB Address of tokenB.
* @param activeTick Tick position that contains the active bins.
* @param kinds 1-15 number to represent the active kinds
* 0b0001 = static;
* 0b0010 = right;
* 0b0100 = left;
* 0b1000 = both.
* E.g. a pool with all 4 modes will have kinds = b1111 = 15
* @param accessor only address that can access the pool's public write functions.
*/
function createPermissioned(
uint64 feeAIn,
uint64 feeBIn,
uint16 tickSpacing,
uint32 lookback,
IERC20 tokenA,
IERC20 tokenB,
int32 activeTick,
uint8 kinds,
address accessor
) external returns (IMaverickV2Pool);
/**
* @notice Create a new MaverickV2PoolPermissioned with the option to make
* a subset of function permissionless. Set fee to zero to make the pool
* fee settable by the accessor.
* @param feeAIn Fraction of the pool swap amount for tokenA-input swaps
* that is retained as an LP in D18 scale.
* @param feeBIn Fraction of the pool swap amount for tokenB-input swaps
* that is retained as an LP in D18 scale.
* @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
* bin width.
* @param lookback Pool lookback in seconds.
* @param tokenA Address of tokenA.
* @param tokenB Address of tokenB.
* @param activeTick Tick position that contains the active bins.
* @param kinds 1-15 number to represent the active kinds
* 0b0001 = static;
* 0b0010 = right;
* 0b0100 = left;
* 0b1000 = both.
* E.g. a pool with all 4 modes will have kinds = b1111 = 15
* @param accessor only address that can access the pool's public permissioned write functions.
* @param permissionedLiquidity If true, then only accessor can call
* pool's liquidity management functions: `flashLoan`,
* `migrateBinsUpstack`, `addLiquidity`, `removeLiquidity`.
* @param permissionedSwap If true, then only accessor can call
* pool's swap function.
*/
function createPermissioned(
uint64 feeAIn,
uint64 feeBIn,
uint16 tickSpacing,
uint32 lookback,
IERC20 tokenA,
IERC20 tokenB,
int32 activeTick,
uint8 kinds,
address accessor,
bool permissionedLiquidity,
bool permissionedSwap
) external returns (IMaverickV2Pool pool);
/**
* @notice Update the protocol fee ratio for a pool. Can be called
* permissionlessly allowing any user to sync the pool protocol fee value
* with the factory protocol fee value.
* @param pool The pool for which to update.
*/
function updateProtocolFeeRatioForPool(IMaverickV2Pool pool) external;
/**
* @notice Update the protocol lending fee rate for a pool. Can be called
* permissionlessly allowing any user to sync the pool protocol lending fee
* rate value with the factory value.
* @param pool The pool for which to update.
*/
function updateProtocolLendingFeeRateForPool(IMaverickV2Pool pool) external;
/**
* @notice Claim protocol fee for a pool and transfer it to the protocolFeeReceiver.
* @param pool The pool from which to claim the protocol fee.
* @param isTokenA A boolean indicating whether tokenA (true) or tokenB
* (false) is being collected.
*/
function claimProtocolFeeForPool(IMaverickV2Pool pool, bool isTokenA) external;
/**
* @notice Claim protocol fee for a pool and transfer it to the protocolFeeReceiver.
* @param pool The pool from which to claim the protocol fee.
*/
function claimProtocolFeeForPool(IMaverickV2Pool pool) external;
/**
* @notice Bool indicating whether the pool was deployed from this factory.
*/
function isFactoryPool(IMaverickV2Pool pool) external view returns (bool);
/**
* @notice Address that receives the protocol fee when users call
* `claimProtocolFeeForPool`.
*/
function protocolFeeReceiver() external view returns (address);
/**
* @notice Lookup a pool for given parameters.
*
* @dev options bit map of kinds and function permissions
* 0b000001 = static;
* 0b000010 = right;
* 0b000100 = left;
* 0b001000 = both;
* 0b010000 = liquidity functions are permissioned
* 0b100000 = swap function is permissioned
*/
function lookupPermissioned(
uint256 feeAIn,
uint256 feeBIn,
uint256 tickSpacing,
uint256 lookback,
IERC20 tokenA,
IERC20 tokenB,
uint8 options,
address accessor
) external view returns (IMaverickV2Pool);
/**
* @notice Lookup a pool for given parameters.
*/
function lookupPermissioned(
IERC20 _tokenA,
IERC20 _tokenB,
address accessor,
uint256 startIndex,
uint256 endIndex
) external view returns (IMaverickV2Pool[] memory pools);
/**
* @notice Lookup a pool for given parameters.
*/
function lookupPermissioned(
uint256 startIndex,
uint256 endIndex
) external view returns (IMaverickV2Pool[] memory pools);
/**
* @notice Lookup a pool for given parameters.
*/
function lookup(
uint256 feeAIn,
uint256 feeBIn,
uint256 tickSpacing,
uint256 lookback,
IERC20 tokenA,
IERC20 tokenB,
uint8 kinds
) external view returns (IMaverickV2Pool);
/**
* @notice Lookup a pool for given parameters.
*/
function lookup(
IERC20 _tokenA,
IERC20 _tokenB,
uint256 startIndex,
uint256 endIndex
) external view returns (IMaverickV2Pool[] memory pools);
/**
* @notice Lookup a pool for given parameters.
*/
function lookup(uint256 startIndex, uint256 endIndex) external view returns (IMaverickV2Pool[] memory pools);
/**
* @notice Count of permissionless pools.
*/
function poolCount() external view returns (uint256 _poolCount);
/**
* @notice Count of permissioned pools.
*/
function poolPermissionedCount() external view returns (uint256 _poolCount);
/**
* @notice Count of pools for a given accessor and token pair. For
* permissionless pools, pass `accessor = address(0)`.
*/
function poolByTokenCount(
IERC20 _tokenA,
IERC20 _tokenB,
address accessor
) external view returns (uint256 _poolCount);
/**
* @notice Get the current factory owner.
*/
function owner() external view returns (address);
/**
* @notice Proportion of protocol fee to collect on each swap. Value is in
* 3-decimal format with a maximum value of 0.25e3.
*/
function protocolFeeRatioD3() external view returns (uint8);
/**
* @notice Fee rate charged by the protocol for flashloans. Value is in
* 18-decimal format with a maximum value of 0.02e18.
*/
function protocolLendingFeeRateD18() external view returns (uint256);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IMaverickV2Position} from "./IMaverickV2Position.sol";
import {IMaverickV2BoostedPosition} from "./IMaverickV2BoostedPosition.sol";
import {IMaverickV2PoolLens} from "./IMaverickV2PoolLens.sol";
import {IMaverickV2BoostedPositionFactory} from "./IMaverickV2BoostedPositionFactory.sol";
import {IArgPacker} from "../liquiditybase/IArgPacker.sol";
import {IExactOutputSlim} from "../routerbase/IExactOutputSlim.sol";
import {IPayment} from "../paymentbase/IPayment.sol";
import {IChecks} from "../base/IChecks.sol";
import {IMigrateBins} from "../base/IMigrateBins.sol";
interface IMaverickV2LiquidityManager is IPayment, IChecks, IExactOutputSlim, IArgPacker, IMigrateBins {
error LiquidityManagerNotFactoryPool();
error LiquidityManagerNotTokenIdOwner();
/**
* @notice Maverick V2 NFT position contract that tracks NFT-based
* liquditiy positions.
*/
function position() external view returns (IMaverickV2Position);
/**
* @notice Maverick V2 BP factory contract.
*/
function boostedPositionFactory() external view returns (IMaverickV2BoostedPositionFactory);
/**
* @notice Create Maverick V2 pool. Function is a pass through to the pool
* factory and is provided here so that is can be assembled as part of a
* multicall transaction.
*/
function createPool(
uint64 fee,
uint16 tickSpacing,
uint32 lookback,
IERC20 tokenA,
IERC20 tokenB,
int32 activeTick,
uint8 kinds
) external payable returns (IMaverickV2Pool pool);
/**
* @notice Create Maverick V2 pool with two-way fees. Function is a pass
* through to the pool factory and is provided here so that is can be
* assembled as part of a multicall transaction.
*/
function createPool(
uint64 feeAIn,
uint64 feeBIn,
uint16 tickSpacing,
uint32 lookback,
IERC20 tokenA,
IERC20 tokenB,
int32 activeTick,
uint8 kinds
) external payable returns (IMaverickV2Pool pool);
/**
* @notice Add Liquidity to a Maverick V2 pool. Function is a pass through
* to the pool and is provided here so that is can be assembled as part of a
* multicall transaction. Users can add liquidity to the Position NFT
* contract or a BP as part of a multicall in order to mint NFT/BP
* positions.
* @dev Liquidity is specified as bytes that represent a lookup table of
* add parameters. This allows an adder to specify what liquidity amounts
* they wish to add conditional on the price of the pool when their
* transaction is executed. With this, users have fine-grain control of how
* price slippage affects the amount of liquidity they add. The
* MaverickV2PoolLens contract has helper view functions that can be used
* to easily create a combination of price breaks and packed arguments.
*/
function addLiquidity(
IMaverickV2Pool pool,
address recipient,
uint256 subaccount,
bytes calldata packedSqrtPriceBreaks,
bytes[] calldata packedArgs
) external payable returns (uint256 tokenAAmount, uint256 tokenBAmount, uint32[] memory binIds);
/**
* @notice Add Liquidity position NFT for msg.sender by specifying
* msg.sender's token index.
* @dev Token index is different from tokenId.
* On the Position NFT contract a user can own multiple NFT tokenIds and
* these are indexes by an enumeration index which is the `index` input
* here.
*
* See addLiquidity for a description of the add params.
*/
function addPositionLiquidityToSenderByTokenIndex(
IMaverickV2Pool pool,
uint256 index,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs
) external payable returns (uint256 tokenAAmount, uint256 tokenBAmount, uint32[] memory binIds);
/**
* @notice Add Liquidity position NFT for msg.sender by specifying
* recipient's token index.
* @dev Token index is different from tokenId.
* On the Position NFT contract a user can own multiple NFT tokenIds and
* these are indexes by an enumeration index which is the `index` input
* here.
*
* See addLiquidity for a description of the add params.
*/
function addPositionLiquidityToRecipientByTokenIndex(
IMaverickV2Pool pool,
address recipient,
uint256 index,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs
) external payable returns (uint256 tokenAAmount, uint256 tokenBAmount, uint32[] memory binIds);
/**
* @notice Pass through function to the BP bin migration.
*/
function migrateBoostedPosition(IMaverickV2BoostedPosition boostedPosition) external payable;
/**
* @notice Mint new tokenId in the Position NFT contract. Both mints an NFT
* and adds liquidity to the pool that is held by the NFT.
* @dev Caller must approve this LiquidityManager contract to spend the
* caller's token A/B in order to fund the liquidity position.
*
* See addLiquidity for a description of the add params.
*/
function mintPositionNft(
IMaverickV2Pool pool,
address recipient,
bytes calldata packedSqrtPriceBreaks,
bytes[] calldata packedArgs
) external payable returns (uint256 tokenAAmount, uint256 tokenBAmount, uint32[] memory binIds, uint256 tokenId);
/**
* @notice Mint new tokenId in the Position NFt contract to msg.sender.
* Both mints an NFT and adds liquidity to the pool that is held by the
* NFT.
*/
function mintPositionNftToSender(
IMaverickV2Pool pool,
bytes calldata packedSqrtPriceBreaks,
bytes[] calldata packedArgs
) external payable returns (uint256 tokenAAmount, uint256 tokenBAmount, uint32[] memory binIds, uint256 tokenId);
/**
* @notice Mint BP LP tokens to recipient. This function does not add
* liquidity to the BP and is only useful in conjuction with addLiquidity
* as part of a multcall.
*/
function mintBoostedPosition(
IMaverickV2BoostedPosition boostedPosition,
address recipient
) external payable returns (uint256 mintedLpAmount);
/**
* @notice Donates liqudity to a pool that is held by the position contract
* and will never be retrievable. Can be used to start a pool and ensure
* there will always be a base level of liquditiy in the pool.
*/
function donateLiquidity(IMaverickV2Pool pool, IMaverickV2Pool.AddLiquidityParams memory args) external payable;
/**
* @notice Creates a pool at a specified price and mints a Position NFT
* with liquidity to the recipient.
* @dev A Maverick V2 pool has no native was to specify a starting price,
* only a starting `activeTick`. The initial pool price will be the left
* edge of the initial activeTick. In order to create a pool at a fixed
* price, this function dontes a small amount of liquidity to the pool, does
* a swap to the specified price, and then adds liquidity for the user.
*/
function createPoolAtPriceAndAddLiquidity(
address recipient,
IMaverickV2PoolLens.CreateAndAddParamsInputs memory params
)
external
payable
returns (
IMaverickV2Pool pool,
uint256 tokenAAmount,
uint256 tokenBAmount,
uint32[] memory binIds,
uint256 tokenId
);
/**
* @notice Creates a pool at a specified price and mints a Position NFT
* with liquidity to msg.sender.
*/
function createPoolAtPriceAndAddLiquidityToSender(
IMaverickV2PoolLens.CreateAndAddParamsInputs memory params
)
external
payable
returns (
IMaverickV2Pool pool,
uint256 tokenAAmount,
uint256 tokenBAmount,
uint32[] memory binIds,
uint256 tokenId
);
/**
* @notice Executes the multi-step process of minting BP LP positions by
* adding liqudiity to a pool in the BP liquidity distribution and then
* minting the BP to recipient.
* @dev Caller will need to approve this LiquidityManager contract to spend
* their token A/B in order to execute this function.
*/
function addLiquidityAndMintBoostedPosition(
address recipient,
IMaverickV2BoostedPosition boostedPosition,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs
) external payable returns (uint256 mintedLpAmount, uint256 tokenAAmount, uint256 tokenBAmount);
/**
* @notice Executes the multi-step process of minting BP LP positions by
* adding liquidity to a pool in the BP liquidity distribution and then
* minting the BP to msg.sender.
* @dev Caller will need to approve this LiquidityManager contract to spend
* their token A/B in order to execute this function.
*/
function addLiquidityAndMintBoostedPositionToSender(
IMaverickV2BoostedPosition boostedPosition,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs
) external payable returns (uint256 mintedLpAmount, uint256 tokenAAmount, uint256 tokenBAmount);
/**
* @notice Deploy new BP contract from the BP factory and mint BP LP tokens
* to the recipient.
* @dev Caller will need to approve this LiquidityManager contract to spend
* their token A/B in order to execute this function.
*/
function createBoostedPositionAndAddLiquidity(
address recipient,
IMaverickV2PoolLens.CreateBoostedPositionInputs memory params
)
external
payable
returns (
IMaverickV2BoostedPosition boostedPosition,
uint256 mintedLpAmount,
uint256 tokenAAmount,
uint256 tokenBAmount
);
/**
* @notice Deploy new BP contract from the BP factory and mint BP LP tokens
* to msg.sender.
* @dev Caller will need to approve this LiquidityManager contract to spend
* their token A/B in order to execute this function.
*/
function createBoostedPositionAndAddLiquidityToSender(
IMaverickV2PoolLens.CreateBoostedPositionInputs memory params
)
external
payable
returns (
IMaverickV2BoostedPosition boostedPosition,
uint256 mintedLpAmount,
uint256 tokenAAmount,
uint256 tokenBAmount
);
/**
* @notice Skims excess liquidity in a BP to the recipient.
*/
function skimBoostedPosition(
IMaverickV2BoostedPosition boostedPosition,
address recipient
) external payable returns (uint256 tokenAAmount, uint256 tokenBAmount);
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IMaverickV2Factory} from "./IMaverickV2Factory.sol";
interface IMaverickV2Pool {
error PoolZeroLiquidityAdded();
error PoolMinimumLiquidityNotMet();
error PoolLocked();
error PoolInvalidFee();
error PoolTicksNotSorted(uint256 index, int256 previousTick, int256 tick);
error PoolTicksAmountsLengthMismatch(uint256 ticksLength, uint256 amountsLength);
error PoolBinIdsAmountsLengthMismatch(uint256 binIdsLength, uint256 amountsLength);
error PoolKindNotSupported(uint256 kinds, uint256 kind);
error PoolInsufficientBalance(uint256 deltaLpAmount, uint256 accountBalance);
error PoolReservesExceedMaximum(uint256 amount);
error PoolValueExceedsBits(uint256 amount, uint256 bits);
error PoolTickMaxExceeded(uint256 tick);
error PoolMigrateBinFirst();
error PoolCurrentTickBeyondSwapLimit(int32 startingTick);
error PoolSenderNotAccessor(address sender_, address accessor);
error PoolSenderNotFactory(address sender_, address accessor);
error PoolFunctionNotImplemented();
error PoolTokenNotSolvent(uint256 internalReserve, uint256 tokenBalance, IERC20 token);
event PoolSwap(address sender, address recipient, SwapParams params, uint256 amountIn, uint256 amountOut);
event PoolAddLiquidity(
address sender,
address recipient,
uint256 subaccount,
AddLiquidityParams params,
uint256 tokenAAmount,
uint256 tokenBAmount,
uint32[] binIds
);
event PoolMigrateBinsUpStack(address sender, uint32 binId, uint32 maxRecursion);
event PoolRemoveLiquidity(
address sender,
address recipient,
uint256 subaccount,
RemoveLiquidityParams params,
uint256 tokenAOut,
uint256 tokenBOut
);
event PoolSetVariableFee(uint256 newFeeAIn, uint256 newFeeBIn);
/**
* @notice Tick state parameters.
*/
struct TickState {
uint128 reserveA;
uint128 reserveB;
uint128 totalSupply;
uint32[4] binIdsByTick;
}
/**
* @notice Tick data parameters.
* @param currentReserveA Current reserve of token A.
* @param currentReserveB Current reserve of token B.
* @param currentLiquidity Current liquidity amount.
*/
struct TickData {
uint256 currentReserveA;
uint256 currentReserveB;
uint256 currentLiquidity;
}
/**
* @notice Bin state parameters.
* @param mergeBinBalance LP token balance that this bin possesses of the merge bin.
* @param mergeId Bin ID of the bin that this bin has merged into.
* @param totalSupply Total amount of LP tokens in this bin.
* @param kind One of the 4 kinds (0=static, 1=right, 2=left, 3=both).
* @param tick The lower price tick of the bin in its current state.
* @param tickBalance Balance of the tick.
*/
struct BinState {
uint128 mergeBinBalance;
uint128 tickBalance;
uint128 totalSupply;
uint8 kind;
int32 tick;
uint32 mergeId;
}
/**
* @notice Parameters for swap.
* @param amount Amount of the token that is either the input if exactOutput is false
* or the output if exactOutput is true.
* @param tokenAIn Boolean indicating whether tokenA is the input.
* @param exactOutput Boolean indicating whether the amount specified is
* the exact output amount (true).
* @param tickLimit The furthest tick a swap will execute in. If no limit
* is desired, value should be set to type(int32).max for a tokenAIn swap
* and type(int32).min for a swap where tokenB is the input.
*/
struct SwapParams {
uint256 amount;
bool tokenAIn;
bool exactOutput;
int32 tickLimit;
}
/**
* @notice Parameters associated with adding liquidity.
* @param kind One of the 4 kinds (0=static, 1=right, 2=left, 3=both).
* @param ticks Array of ticks to add liquidity to.
* @param amounts Array of bin LP amounts to add.
*/
struct AddLiquidityParams {
uint8 kind;
int32[] ticks;
uint128[] amounts;
}
/**
* @notice Parameters for each bin that will have liquidity removed.
* @param binIds Index array of the bins losing liquidity.
* @param amounts Array of bin LP amounts to remove.
*/
struct RemoveLiquidityParams {
uint32[] binIds;
uint128[] amounts;
}
/**
* @notice State of the pool.
* @param reserveA Pool tokenA balanceOf at end of last operation
* @param reserveB Pool tokenB balanceOf at end of last operation
* @param lastTwaD8 Value of log time weighted average price at last block.
* Value is 8-decimal scale and is in the fractional tick domain. E.g. a
* value of 12.3e8 indicates the TWAP was 3/10ths of the way into the 12th
* tick.
* @param lastLogPriceD8 Value of log price at last block. Value is
* 8-decimal scale and is in the fractional tick domain. E.g. a value of
* 12.3e8 indicates the price was 3/10ths of the way into the 12th tick.
* @param lastTimestamp Last block.timestamp value in seconds for latest
* swap transaction.
* @param activeTick Current tick position that contains the active bins.
* @param isLocked Pool isLocked, E.g., locked or unlocked; isLocked values
* defined in Pool.sol.
* @param binCounter Index of the last bin created.
* @param protocolFeeRatioD3 Ratio of the swap fee that is kept for the
* protocol.
*/
struct State {
uint128 reserveA;
uint128 reserveB;
int64 lastTwaD8;
int64 lastLogPriceD8;
uint40 lastTimestamp;
int32 activeTick;
bool isLocked;
uint32 binCounter;
uint8 protocolFeeRatioD3;
}
/**
* @notice Internal data used for data passing between Pool and Bin code.
*/
struct BinDelta {
uint128 deltaA;
uint128 deltaB;
}
/**
* @notice 1-15 number to represent the active kinds.
* @notice 0b0001 = static;
* @notice 0b0010 = right;
* @notice 0b0100 = left;
* @notice 0b1000 = both;
*
* E.g. a pool with all 4 modes will have kinds = b1111 = 15
*/
function kinds() external view returns (uint8 _kinds);
/**
* @notice Returns whether a pool has permissioned functions. If true, the
* `accessor()` of the pool can set the pool fees. Other functions in the
* pool may also be permissioned; whether or not they are can be determined
* through calls to `permissionedLiquidity()` and `permissionedSwap()`.
*/
function permissionedPool() external view returns (bool _permissionedPool);
/**
* @notice Returns whether a pool has permissioned liquidity management
* functions. If true, the pool is incompatible with permissioned pool
* liquidity management infrastructure.
*/
function permissionedLiquidity() external view returns (bool _permissionedLiquidity);
/**
* @notice Returns whether a pool has a permissioned swap functions. If
* true, the pool is incompatible with permissioned pool swap router
* infrastructure.
*/
function permissionedSwap() external view returns (bool _permissionedSwap);
/**
* @notice Pool swap fee for the given direction (A-in or B-in swap) in
* 18-decimal format. E.g. 0.01e18 is a 1% swap fee.
*/
function fee(bool tokenAIn) external view returns (uint256);
/**
* @notice TickSpacing of pool where 1.0001^tickSpacing is the bin width.
*/
function tickSpacing() external view returns (uint256);
/**
* @notice Lookback period of pool in seconds.
*/
function lookback() external view returns (uint256);
/**
* @notice Address of Pool accessor. This is Zero address for
* permissionless pools.
*/
function accessor() external view returns (address);
/**
* @notice Pool tokenA. Address of tokenA is such that tokenA < tokenB.
*/
function tokenA() external view returns (IERC20);
/**
* @notice Pool tokenB.
*/
function tokenB() external view returns (IERC20);
/**
* @notice Deploying factory of the pool and also contract that has ability
* to set and collect protocol fees for the pool.
*/
function factory() external view returns (IMaverickV2Factory);
/**
* @notice Most significant bit of scale value is a flag to indicate whether
* tokenA has more or less than 18 decimals. Scale is used in conjuction
* with Math.toScale/Math.fromScale functions to convert from token amounts
* to D18 scale internal pool accounting.
*/
function tokenAScale() external view returns (uint256);
/**
* @notice Most significant bit of scale value is a flag to indicate whether
* tokenA has more or less than 18 decimals. Scale is used in conjuction
* with Math.toScale/Math.fromScale functions to convert from token amounts
* to D18 scale internal pool accounting.
*/
function tokenBScale() external view returns (uint256);
/**
* @notice ID of bin at input tick position and kind.
*/
function binIdByTickKind(int32 tick, uint256 kind) external view returns (uint32);
/**
* @notice Accumulated tokenA protocol fee.
*/
function protocolFeeA() external view returns (uint128);
/**
* @notice Accumulated tokenB protocol fee.
*/
function protocolFeeB() external view returns (uint128);
/**
* @notice Lending fee rate on flash loans.
*/
function lendingFeeRateD18() external view returns (uint256);
/**
* @notice External function to get the current time-weighted average price.
*/
function getCurrentTwa() external view returns (int256);
/**
* @notice External function to get the state of the pool.
*/
function getState() external view returns (State memory);
/**
* @notice Return state of Bin at input binId.
*/
function getBin(uint32 binId) external view returns (BinState memory bin);
/**
* @notice Return state of Tick at input tick position.
*/
function getTick(int32 tick) external view returns (TickState memory tickState);
/**
* @notice Retrieves the balance of a user within a bin.
* @param user The user's address.
* @param subaccount The subaccount for the user.
* @param binId The ID of the bin.
*/
function balanceOf(address user, uint256 subaccount, uint32 binId) external view returns (uint128 lpToken);
/**
* @notice Add liquidity to a pool. This function allows users to deposit
* tokens into a liquidity pool.
* @dev This function will call `maverickV2AddLiquidityCallback` on the
* calling contract to collect the tokenA/tokenB payment.
* @param recipient The account that will receive credit for the added liquidity.
* @param subaccount The account that will receive credit for the added liquidity.
* @param params Parameters containing the details for adding liquidity,
* such as token types and amounts.
* @param data Bytes information that gets passed to the callback.
* @return tokenAAmount The amount of token A added to the pool.
* @return tokenBAmount The amount of token B added to the pool.
* @return binIds An array of bin IDs where the liquidity is stored.
*/
function addLiquidity(
address recipient,
uint256 subaccount,
AddLiquidityParams calldata params,
bytes calldata data
) external returns (uint256 tokenAAmount, uint256 tokenBAmount, uint32[] memory binIds);
/**
* @notice Removes liquidity from the pool.
* @dev Liquidy can only be removed from a bin that is either unmerged or
* has a mergeId of an unmerged bin. If a bin is merged more than one
* level deep, it must be migrated up the merge stack to the root bin
* before liquidity removal.
* @param recipient The address to receive the tokens.
* @param subaccount The subaccount for the recipient.
* @param params The parameters for removing liquidity.
* @return tokenAOut The amount of token A received.
* @return tokenBOut The amount of token B received.
*/
function removeLiquidity(
address recipient,
uint256 subaccount,
RemoveLiquidityParams calldata params
) external returns (uint256 tokenAOut, uint256 tokenBOut);
/**
* @notice Migrate bins up the linked list of merged bins so that its
* mergeId is the currrent active bin.
* @dev Liquidy can only be removed from a bin that is either unmerged or
* has a mergeId of an unmerged bin. If a bin is merged more than one
* level deep, it must be migrated up the merge stack to the root bin
* before liquidity removal.
* @param binId The ID of the bin to migrate.
* @param maxRecursion The maximum recursion depth for the migration.
*/
function migrateBinUpStack(uint32 binId, uint32 maxRecursion) external;
/**
* @notice Swap tokenA/tokenB assets in the pool. The swap user has two
* options for funding their swap.
* - The user can push the input token amount to the pool before calling
* the swap function. In order to avoid having the pool call the callback,
* the user should pass a zero-length `data` bytes object with the swap
* call.
* - The user can send the input token amount to the pool when the pool
* calls the `maverickV2SwapCallback` function on the calling contract.
* That callback has input parameters that specify the token address of the
* input token, the input and output amounts, and the bytes data sent to
* the swap function.
* @dev If the users elects to do a callback-based swap, the output
* assets will be sent before the callback is called, allowing the user to
* execute flash swaps. However, the pool does have reentrancy protection,
* so a swapper will not be able to interact with the same pool again
* while they are in the callback function.
* @param recipient The address to receive the output tokens.
* @param params Parameters containing the details of the swap
* @param data Bytes information that gets passed to the callback.
*/
function swap(
address recipient,
SwapParams memory params,
bytes calldata data
) external returns (uint256 amountIn, uint256 amountOut);
/**
* @notice Loan tokenA/tokenB assets from the pool to recipient. The fee
* rate of a loan is determined by `lendingFeeRateD18`, which is set at the
* protocol level by the factory. This function calls
* `maverickV2FlashLoanCallback` on the calling contract. At the end of
* the callback, the caller must pay back the loan with fee (if there is a
* fee).
* @param recipient The address to receive the loaned tokens.
* @param amountB Loan amount of tokenA sent to recipient.
* @param amountB Loan amount of tokenB sent to recipient.
* @param data Bytes information that gets passed to the callback.
*/
function flashLoan(
address recipient,
uint256 amountA,
uint256 amountB,
bytes calldata data
) external returns (uint128 lendingFeeA, uint128 lendingFeeB);
/**
* @notice Sets fee for permissioned pools. May only be called by the
* accessor.
*/
function setFee(uint256 newFeeAIn, uint256 newFeeBIn) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IMaverickV2Factory} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Factory.sol";
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IMaverickV2BoostedPosition} from "./IMaverickV2BoostedPosition.sol";
interface IMaverickV2PoolLens {
error LensTargetPriceOutOfBounds(uint256 targetSqrtPrice, uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice);
error LensTooLittleLiquidity(uint256 relativeLiquidityAmount, uint256 deltaA, uint256 deltaB);
error LensTargetingTokenWithNoDelta(bool targetIsA, uint256 deltaA, uint256 deltaB);
/**
* @notice Add liquidity slippage parameters for a distribution of liquidity.
* @param pool Pool where liquidity is being added.
* @param kind Bin kind; all bins must have the same kind in a given call
* to addLiquidity.
* @param ticks Array of tick values to add liquidity to.
* @param relativeLiquidityAmounts Relative liquidity amounts for the
* specified ticks. Liquidity in this case is not bin LP balance, it is
* the bin liquidity as defined by liquidity = deltaA / (sqrt(upper) -
* sqrt(lower)) or deltaB = liquidity / sqrt(lower) - liquidity /
* sqrt(upper).
* @param addSpec Slippage specification.
*/
struct AddParamsViewInputs {
IMaverickV2Pool pool;
uint8 kind;
int32[] ticks;
uint128[] relativeLiquidityAmounts;
AddParamsSpecification addSpec;
}
/**
* @notice Multi-price add param specification.
* @param slippageFactorD18 Max slippage allowed as a percent in D18 scale. e.g. 1% slippage is 0.01e18
* @param numberOfPriceBreaksPerSide Number of price break values on either
* side of current price.
* @param targetAmount Target token contribution amount in tokenA if
* targetIsA is true, otherwise this is the target amount for tokenB.
* @param targetIsA Indicates if the target amount is for tokenA or tokenB
*/
struct AddParamsSpecification {
uint256 slippageFactorD18;
uint256 numberOfPriceBreaksPerSide;
uint256 targetAmount;
bool targetIsA;
}
/**
* @notice Boosted position creation specification and add parameters.
* @param bpSpec Boosted position kind/binId/ratio information.
* @param packedSqrtPriceBreaks Array of sqrt price breaks packed into
* bytes. These breaks act as a lookup table for the packedArgs array to
* indicate to the Liquidity manager what add liquidity parameters from
* packedArgs to use depending on the price of the pool at add time.
* @param packedArgs Array of bytes arguments. Each array element is a
* packed version of addLiquidity paramters.
*/
struct CreateBoostedPositionInputs {
BoostedPositionSpecification bpSpec;
bytes packedSqrtPriceBreaks;
bytes[] packedArgs;
}
/**
* @notice Specification for deriving create pool parameters. Creating a pool in the liquidity manager has several steps:
*
* - Deploy pool
* - Donate a small amount of initial liquidity in the activeTick
* - Execute a small swap to set the pool price to the desired value
* - Add liquidity
*
* In order to execute these steps, the caller must specify the parameters
* of each step. The PoolLens has helper function to derive the values
* used by the LiquidityManager, but this struct is the input to that
* helper function and represents the core intent of the pool creator.
*
* @param fee Fraction of the pool swap amount that is retained as an LP in
* D18 scale.
* @param tickSpacing Tick spacing of pool where 1.0001^tickSpacing is the
* bin width.
* @param lookback Pool lookback in seconds.
* @param tokenA Address of tokenA.
* @param tokenB Address of tokenB.
* @param activeTick Tick position that contains the active bins.
* @param kinds 1-15 number to represent the active kinds
* 0b0001 = static;
* 0b0010 = right;
* 0b0100 = left;
* 0b1000 = both.
* e.g. a pool with all 4 modes will have kinds = b1111 = 15
* @param initialTargetB Amount of B to be donated to the pool after pool
* create. This amount needs to be big enough to meet the minimum bin
* liquidity.
* @param sqrtPrice Target sqrt price of the pool.
* @param kind Bin kind; all bins must have the same kind in a given call
* to addLiquidity.
* @param ticks Array of tick values to add liquidity to.
* @param relativeLiquidityAmounts Relative liquidity amounts for the
* specified ticks. Liquidity in this case is not bin LP balance, it is
* the bin liquidity as defined by liquidity = deltaA / (sqrt(upper) -
* sqrt(lower)) or deltaB = liquidity / sqrt(lower) - liquidity /
* sqrt(upper).
* @param targetAmount Target token contribution amount in tokenA if
* targetIsA is true, otherwise this is the target amount for tokenB.
* @param targetIsA Indicates if the target amount is for tokenA or tokenB
*/
struct CreateAndAddParamsViewInputs {
uint64 feeAIn;
uint64 feeBIn;
uint16 tickSpacing;
uint32 lookback;
IERC20 tokenA;
IERC20 tokenB;
int32 activeTick;
uint8 kinds;
// donate params
uint256 initialTargetB;
uint256 sqrtPrice;
// add target
uint8 kind;
int32[] ticks;
uint128[] relativeLiquidityAmounts;
uint256 targetAmount;
bool targetIsA;
}
struct Output {
uint256 deltaAOut;
uint256 deltaBOut;
uint256[] deltaAs;
uint256[] deltaBs;
uint128[] deltaLpBalances;
}
struct Reserves {
uint256 amountA;
uint256 amountB;
}
struct BinPositionKinds {
uint128[4] values;
}
struct PoolState {
IMaverickV2Pool.TickState[] tickStateMapping;
IMaverickV2Pool.BinState[] binStateMapping;
BinPositionKinds[] binIdByTickKindMapping;
IMaverickV2Pool.State state;
Reserves protocolFees;
}
struct BoostedPositionSpecification {
IMaverickV2Pool pool;
uint32[] binIds;
uint128[] ratios;
uint8 kind;
}
struct CreateAndAddParamsInputs {
uint64 feeAIn;
uint64 feeBIn;
uint16 tickSpacing;
uint32 lookback;
IERC20 tokenA;
IERC20 tokenB;
int32 activeTick;
uint8 kinds;
// donate params
IMaverickV2Pool.AddLiquidityParams donateParams;
// swap params
uint256 swapAmount;
// add params
IMaverickV2Pool.AddLiquidityParams addParams;
bytes[] packedAddParams;
uint256 deltaAOut;
uint256 deltaBOut;
uint256 preAddReserveA;
uint256 preAddReserveB;
}
struct TickDeltas {
uint256 deltaAOut;
uint256 deltaBOut;
uint256[] deltaAs;
uint256[] deltaBs;
}
/**
* @notice Converts add parameter slippage specification into add
* parameters. The return values are given in both raw format and as packed
* values that can be used in the LiquidityManager contract.
*/
function getAddLiquidityParams(
AddParamsViewInputs memory params
)
external
view
returns (
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs,
uint88[] memory sqrtPriceBreaks,
IMaverickV2Pool.AddLiquidityParams[] memory addParams,
IMaverickV2PoolLens.TickDeltas[] memory tickDeltas
);
/**
* @notice Converts add parameter slippage specification for a boosted
* position into add parameters. The return values are given in both raw
* format and as packed values that can be used in the LiquidityManager
* contract.
*/
function getAddLiquidityParamsForBoostedPosition(
IMaverickV2BoostedPosition boostedPosition,
AddParamsSpecification memory addSpec
)
external
view
returns (
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs,
uint88[] memory sqrtPriceBreaks,
IMaverickV2Pool.AddLiquidityParams[] memory addParams,
IMaverickV2PoolLens.TickDeltas[] memory tickDeltas
);
/**
* @notice Converts add parameter slippage specification and boosted
* position specification into add parameters. The return values are given
* in both raw format and as packed values that can be used in the
* LiquidityManager contract.
*/
function getCreateBoostedPositionParams(
BoostedPositionSpecification memory bpSpec,
AddParamsSpecification memory addSpec
)
external
view
returns (
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs,
uint88[] memory sqrtPriceBreaks,
IMaverickV2Pool.AddLiquidityParams[] memory addParams,
IMaverickV2PoolLens.TickDeltas[] memory tickDeltas
);
/**
* @notice Converts add parameter slippage specification and new pool
* specification into CreateAndAddParamsInputs parameters that can be used in the
* LiquidityManager contract.
*/
function getCreatePoolAtPriceAndAddLiquidityParams(
CreateAndAddParamsViewInputs memory params,
IMaverickV2Factory factory
) external view returns (CreateAndAddParamsInputs memory output);
/**
* @notice View function that provides information about pool ticks within
* a tick radius from the activeTick. Ticks with no reserves are not
* included in part o f the return array.
*/
function getTicksAroundActive(
IMaverickV2Pool pool,
int32 tickRadius
) external view returns (int32[] memory ticks, IMaverickV2Pool.TickState[] memory tickStates);
/**
* @notice View function that provides information about pool ticks within
* a range. Ticks with no reserves are not included in part o f the return
* array.
*/
function getTicks(
IMaverickV2Pool pool,
int32 tickStart,
int32 tickEnd
) external view returns (int32[] memory ticks, IMaverickV2Pool.TickState[] memory tickStates);
/**
* @notice View function that provides information about pool ticks within
* a range. Information returned includes all pool state needed to emulate
* a swap off chain. Ticks with no reserves are not included in part o f
* the return array.
*/
function getTicksAroundActiveWLiquidity(
IMaverickV2Pool pool,
int32 tickRadius
)
external
view
returns (
int32[] memory ticks,
IMaverickV2Pool.TickState[] memory tickStates,
uint256[] memory liquidities,
uint256[] memory sqrtLowerTickPrices,
uint256[] memory sqrtUpperTickPrices,
IMaverickV2Pool.State memory poolState,
uint256 sqrtPrice,
uint256 feeAIn,
uint256 feeBIn
);
/**
* @notice View function that provides pool state information.
*/
function getFullPoolState(
IMaverickV2Pool pool,
uint32 binStart,
uint32 binEnd
) external view returns (PoolState memory poolState);
/**
* @notice View function that provides price and liquidity of a given tick.
*/
function getTickSqrtPriceAndL(
IMaverickV2Pool pool,
int32 tick
) external view returns (uint256 sqrtPrice, uint256 liquidity);
/**
* @notice Pool sqrt price.
*/
function getPoolSqrtPrice(IMaverickV2Pool pool) external view returns (uint256 sqrtPrice);
/**
* @notice Pool price.
*/
function getPoolPrice(IMaverickV2Pool pool) external view returns (uint256 price);
/**
* @notice Token scale of two tokens in a pool.
*/
function tokenScales(IMaverickV2Pool pool) external view returns (uint256 tokenAScale, uint256 tokenBScale);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Factory} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Factory.sol";
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IMulticall} from "@maverick/v2-common/contracts/base/IMulticall.sol";
import {IPositionImage} from "./IPositionImage.sol";
import {INft} from "../positionbase/INft.sol";
import {IMigrateBins} from "../base/IMigrateBins.sol";
import {IChecks} from "../base/IChecks.sol";
interface IMaverickV2Position is INft, IMigrateBins, IMulticall, IChecks {
event PositionClearData(uint256 indexed tokenId);
event PositionSetData(uint256 indexed tokenId, uint256 index, PositionPoolBinIds newData);
error PositionDuplicatePool(uint256 index, IMaverickV2Pool pool);
error PositionNotFactoryPool();
error PositionPermissionedLiquidityPool();
struct PositionPoolBinIds {
IMaverickV2Pool pool;
uint32[] binIds;
}
struct PositionFullInformation {
PositionPoolBinIds poolBinIds;
uint256 amountA;
uint256 amountB;
uint256[] binAAmounts;
uint256[] binBAmounts;
int32[] ticks;
uint256[] liquidities;
}
/**
* @notice Contract that renders the position nft svg image.
*/
function positionImage() external view returns (IPositionImage);
/**
* @notice Pool factory.
*/
function factory() external view returns (IMaverickV2Factory);
/**
* @notice Mint NFT that holds liquidity in a Maverick V2 Pool. To mint
* liquidity to an NFT, add liquidity to bins in a pool where the
* add liquidity recipient is this contract and the subaccount is the
* tokenId. LiquidityManager can be used to simplify minting Position NFTs.
*/
function mint(address recipient, IMaverickV2Pool pool, uint32[] memory binIds) external returns (uint256 tokenId);
/**
* @notice Overwrites tokenId pool/binId information for a given data index.
*/
function setTokenIdData(uint256 tokenId, uint256 index, IMaverickV2Pool pool, uint32[] memory binIds) external;
/**
* @notice Overwrites entire pool/binId data set for a given tokenId.
*/
function setTokenIdData(uint256 tokenId, PositionPoolBinIds[] memory data) external;
/**
* @notice Append new pool/binIds data array to tokenId.
*/
function appendTokenIdData(uint256 tokenId, IMaverickV2Pool pool, uint32[] memory binIds) external;
/**
* @notice Get array pool/binIds data for a given tokenId.
*/
function getTokenIdData(uint256 tokenId) external view returns (PositionPoolBinIds[] memory);
/**
* @notice Get value from array of pool/binIds data for a given tokenId.
*/
function getTokenIdData(uint256 tokenId, uint256 index) external view returns (PositionPoolBinIds memory);
/**
* @notice Length of array of pool/binIds data for a given tokenId.
*/
function tokenIdDataLength(uint256 tokenId) external view returns (uint256 length);
/**
* @notice Remove liquidity from tokenId for a given pool. User can
* specify arbitrary bins to remove from for their subaccount in the pool
* even if those bins are not in the tokenIdData set.
*/
function removeLiquidity(
uint256 tokenId,
address recipient,
IMaverickV2Pool pool,
IMaverickV2Pool.RemoveLiquidityParams memory params
) external returns (uint256 tokenAAmount, uint256 tokenBAmount);
/**
* @notice Remove liquidity from tokenId for a given pool to sender. User
* can specify arbitrary bins to remove from for their subaccount in the
* pool even if those bins are not in the tokenIdData set.
*/
function removeLiquidityToSender(
uint256 tokenId,
IMaverickV2Pool pool,
IMaverickV2Pool.RemoveLiquidityParams memory params
) external returns (uint256 tokenAAmount, uint256 tokenBAmount);
/**
* @notice NFT asset information for a given range of pool/binIds indexes.
* This function only returns the liquidity in the pools/binIds stored as
* part of the tokenIdData, but it is possible that the NFT has additional
* liquidity in pools/binIds that have not been recorded.
*/
function tokenIdPositionInformation(
uint256 tokenId,
uint256 startIndex,
uint256 stopIndex
) external view returns (PositionFullInformation[] memory output);
/**
* @notice NFT asset information for a given pool/binIds index. This
* function only returns the liquidity in the pools/binIds stored as part
* of the tokenIdData, but it is possible that the NFT has additional
* liquidity in pools/binIds that have not been recorded.
*/
function tokenIdPositionInformation(
uint256 tokenId,
uint256 index
) external view returns (PositionFullInformation memory output);
/**
* @notice Get remove paramters for removing a fractional part of the
* liquidity owned by a given tokenId. The fractional factor to remove is
* given by proporationD18 in 18-decimal scale.
*/
function getRemoveParams(
uint256 tokenId,
uint256 index,
uint256 proportionD18
) external view returns (IMaverickV2Pool.RemoveLiquidityParams memory params);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {INft} from "@maverick/v2-supplemental/contracts/positionbase/INft.sol";
import {IMulticall} from "@maverick/v2-common/contracts/base/IMulticall.sol";
import {IMaverickV2VotingEscrow} from "./IMaverickV2VotingEscrow.sol";
import {IMaverickV2RewardVault} from "./IMaverickV2RewardVault.sol";
import {IRewardAccounting} from "../rewardbase/IRewardAccounting.sol";
interface IMaverickV2Reward is INft, IMulticall, IRewardAccounting {
event NotifyRewardAmount(
address sender,
IERC20 rewardTokenAddress,
uint256 amount,
uint256 duration,
uint256 rewardRate
);
event GetReward(
address sender,
uint256 tokenId,
address recipient,
uint8 rewardTokenIndex,
uint256 stakeDuration,
IERC20 rewardTokenAddress,
RewardOutput rewardOutput,
uint256 lockupId
);
event UnStake(
address sender,
uint256 tokenId,
uint256 amount,
address recipient,
uint256 userBalance,
uint256 totalSupply
);
event Stake(
address sender,
address supplier,
uint256 amount,
uint256 tokenId,
uint256 userBalance,
uint256 totalSupply
);
event AddRewardToken(IERC20 rewardTokenAddress, uint8 rewardTokenIndex);
event RemoveRewardToken(IERC20 rewardTokenAddress, uint8 rewardTokenIndex);
event ApproveRewardGetter(uint256 tokenId, address getter);
error RewardDurationOutOfBounds(uint256 duration, uint256 minDuration, uint256 maxDuration);
error RewardZeroAmount();
error RewardNotValidRewardToken(IERC20 rewardTokenAddress);
error RewardNotValidIndex(uint8 index);
error RewardTokenCannotBeStakingToken(IERC20 stakingToken);
error RewardTransferNotSupported();
error RewardNotApprovedGetter(uint256 tokenId, address approved, address getter);
error RewardUnboostedTimePeriodNotMet(uint256 timestamp, uint256 minTimestamp);
struct RewardInfo {
// Timestamp of when the rewards finish
uint256 finishAt;
// Minimum of last updated time and reward finish time
uint256 updatedAt;
// Reward to be paid out per second
uint256 rewardRate;
// Escrowed rewards
uint256 escrowedReward;
// Sum of (reward rate * dt * 1e18 / total supply)
uint256 rewardPerTokenStored;
// Reward Token to be emitted
IERC20 rewardToken;
// ve locking contract
IMaverickV2VotingEscrow veRewardToken;
// amount available to push to ve as incentive
uint128 unboostedAmount;
// timestamp of unboosted push
uint256 lastUnboostedPushTimestamp;
}
struct ContractInfo {
// Reward Name
string name;
// Reward Symbol
string symbol;
// total supply staked
uint256 totalSupply;
// staking token
IERC20 stakingToken;
}
struct EarnedInfo {
// earned
uint256 earned;
// reward token
IERC20 rewardToken;
}
struct RewardOutput {
uint256 amount;
bool asVe;
IMaverickV2VotingEscrow veContract;
}
// solhint-disable-next-line func-name-mixedcase
function MAX_DURATION() external view returns (uint256);
// solhint-disable-next-line func-name-mixedcase
function MIN_DURATION() external view returns (uint256);
/**
* @notice This function retrieves the minimum time gap in seconds that
* must have elasped between calls to `pushUnboostedToVe()`.
*/
// solhint-disable-next-line func-name-mixedcase
function UNBOOSTED_MIN_TIME_GAP() external view returns (uint256);
/**
* @notice This function retrieves the address of the token used for
* staking in this reward contract.
* @return The address of the staking token (IERC20).
*/
function stakingToken() external view returns (IERC20);
/**
* @notice This function retrieves the address of the MaverickV2RewardVault
* contract associated with this reward contract.
* @return The address of the IMaverickV2RewardVault contract.
*/
function vault() external view returns (IMaverickV2RewardVault);
/**
* @notice This function retrieves information about all available reward tokens for this reward contract.
* @return info An array of RewardInfo structs containing details about each reward token.
*/
function rewardInfo() external view returns (RewardInfo[] memory info);
/**
* @notice This function retrieves information about all available reward
* tokens and overall contract details for this reward contract.
* @return info An array of RewardInfo structs containing details about each reward token.
* @return _contractInfo A ContractInfo struct containing overall contract details.
*/
function contractInfo() external view returns (RewardInfo[] memory info, ContractInfo memory _contractInfo);
/**
* @notice This function calculates the total amount of all earned rewards
* for a specific tokenId across all reward tokens.
* @param tokenId The address of the tokenId for which to calculate earned rewards.
* @return earnedInfo An array of EarnedInfo structs containing details about earned rewards for each supported token.
*/
function earned(uint256 tokenId) external view returns (EarnedInfo[] memory earnedInfo);
/**
* @notice This function calculates the total amount of earned rewards for
* a specific tokenId for a particular reward token.
* @param tokenId The address of the tokenId for which to calculate earned rewards.
* @param rewardTokenAddress The address of the specific reward token.
* @return amount The total amount of earned rewards for the specified token.
*/
function earned(uint256 tokenId, IERC20 rewardTokenAddress) external view returns (uint256);
/**
* @notice This function retrieves the internal index associated with a specific reward token address.
* @param rewardToken The address of the reward token to get the index for.
* @return rewardTokenIndex The internal index of the token within the reward contract (uint8).
*/
function tokenIndex(IERC20 rewardToken) external view returns (uint8 rewardTokenIndex);
/**
* @notice This function retrieves the total number of supported reward tokens in this reward contract.
* @return count The total number of reward tokens (uint256).
*/
function rewardTokenCount() external view returns (uint256);
/**
* @notice This function transfers a specified amount of reward tokens from
* the caller to distribute them over a defined duration. The caller will
* need to approve this rewards contract to make the transfer on the
* caller's behalf. See `notifyRewardAmount` for details of how the
* duration is set by the rewards contract.
* @param rewardToken The address of the reward token to transfer.
* @param duration The duration (in seconds) over which to distribute the rewards.
* @param amount The amount of reward tokens to transfer.
* @return _duration The duration in seconds that the incentives will be distributed over.
*/
function transferAndNotifyRewardAmount(
IERC20 rewardToken,
uint256 duration,
uint256 amount
) external returns (uint256 _duration);
/**
* @notice This function notifies the vault to distribute a previously
* transferred amount of reward tokens over a defined duration. (Assumes
* tokens are already in the contract).
* @dev The duration of the distribution may not be the same as the input
* duration. If this notify amount is less than the amount already pending
* disbursement, then this new amount will be distributed as the same rate
* as the existing rate and that will dictate the duration. Alternatively,
* if the amount is more than the pending disbursement, then the input
* duration will be honored and all pending disbursement tokens will also be
* distributed at this newly set rate.
* @param rewardToken The address of the reward token to distribute.
* @param duration The duration (in seconds) over which to distribute the rewards.
* @return _duration The duration in seconds that the incentives will be distributed over.
*/
function notifyRewardAmount(IERC20 rewardToken, uint256 duration) external returns (uint256 _duration);
/**
* @notice This function transfers a specified amount of staking tokens
* from the caller to the staking `vault()` and stakes them on the
* recipient's behalf. The user has to approve this reward contract to
* transfer the staking token on their behalf for this function not to
* revert.
* @param tokenId Nft tokenId to stake for the staked tokens.
* @param _amount The amount of staking tokens to transfer and stake.
* @return amount The amount of staking tokens staked. May differ from
* input if there were unstaked tokens in the vault prior to this call.
* @return stakedTokenId TokenId where liquidity was staked to. This may
* differ from the input tokenIf if the input `tokenId=0`.
*/
function transferAndStake(
uint256 tokenId,
uint256 _amount
) external returns (uint256 amount, uint256 stakedTokenId);
/**
* @notice This function stakes the staking tokens to the specified
* tokenId. If `tokenId=0` is passed in, then this function will look up
* the caller's tokenIds and stake to the zero-index tokenId. If the user
* does not yet have a staking NFT tokenId, this function will mint one for
* the sender and stake to that newly-minted tokenId.
*
* @dev The amount staked is derived by looking at the new balance on
* the `vault()`. So, for staking to yield a non-zero balance, the user
* will need to have transfered the `stakingToken()` to the `vault()` prior
* to calling `stake`. Note, tokens sent to the reward contract instead
* of the vault will not be stakable and instead will be eligible to be
* disbursed as rewards to stakers. This is an advanced usage function.
* If in doubt about the mechanics of staking, use `transferAndStake()`
* instead.
* @param tokenId The address of the tokenId whose tokens to stake.
* @return amount The amount of staking tokens staked (uint256).
* @return stakedTokenId TokenId where liquidity was staked to. This may
* differ from the input tokenIf if the input `tokenId=0`.
*/
function stake(uint256 tokenId) external returns (uint256 amount, uint256 stakedTokenId);
/**
* @notice This function initiates unstaking of a specified amount of
* staking tokens for the caller and sends them to a recipient.
* @param tokenId The address of the tokenId whose tokens to unstake.
* @param amount The amount of staking tokens to unstake (uint256).
*/
function unstakeToOwner(uint256 tokenId, uint256 amount) external;
/**
* @notice This function initiates unstaking of a specified amount of
* staking tokens on behalf of a specific tokenId and sends them to a recipient.
* @dev To unstakeFrom, the caller must have an approval allowance of at
* least `amount`. Approvals follow the ERC-721 approval interface.
* @param tokenId The address of the tokenId whose tokens to unstake.
* @param recipient The address to which the unstaked tokens will be sent.
* @param amount The amount of staking tokens to unstake (uint256).
*/
function unstake(uint256 tokenId, address recipient, uint256 amount) external;
/**
* @notice This function retrieves the claimable reward for a specific
* reward token and stake duration for the caller.
* @param tokenId The address of the tokenId whose reward to claim.
* @param rewardTokenIndex The internal index of the reward token.
* @param stakeDuration The duration (in seconds) for which the rewards were staked.
* @return rewardOutput A RewardOutput struct containing details about the claimable reward.
*/
function getRewardToOwner(
uint256 tokenId,
uint8 rewardTokenIndex,
uint256 stakeDuration
) external returns (RewardOutput memory rewardOutput);
/**
* @notice This function retrieves the claimable reward for a specific
* reward token, stake duration, and lockup ID for the caller.
* @param tokenId The address of the tokenId whose reward to claim.
* @param rewardTokenIndex The internal index of the reward token.
* @param stakeDuration The duration (in seconds) for which the rewards were staked.
* @param lockupId The unique identifier for the specific lockup (optional).
* @return rewardOutput A RewardOutput struct containing details about the claimable reward.
*/
function getRewardToOwnerForExistingVeLockup(
uint256 tokenId,
uint8 rewardTokenIndex,
uint256 stakeDuration,
uint256 lockupId
) external returns (RewardOutput memory);
/**
* @notice This function retrieves the claimable reward for a specific
* reward token and stake duration for a specified tokenId and sends it to
* a recipient. If the reward is staked in the corresponding veToken, a
* new lockup in the ve token will be created.
* @param tokenId The address of the tokenId whose reward to claim.
* @param recipient The address to which the claimed reward will be sent.
* @param rewardTokenIndex The internal index of the reward token.
* @param stakeDuration The duration (in seconds) for which the rewards
* will be staked in the ve contract.
* @return rewardOutput A RewardOutput struct containing details about the claimable reward.
*/
function getReward(
uint256 tokenId,
address recipient,
uint8 rewardTokenIndex,
uint256 stakeDuration
) external returns (RewardOutput memory);
/**
* @notice This function retrieves a list of all supported tokens in the reward contract.
* @param includeStakingToken A flag indicating whether to include the staking token in the list.
* @return tokens An array of IERC20 token addresses.
*/
function tokenList(bool includeStakingToken) external view returns (IERC20[] memory tokens);
/**
* @notice This function retrieves the veToken contract associated with a
* specific index within the reward contract.
* @param index The index of the veToken to retrieve.
* @return output The IMaverickV2VotingEscrow contract associated with the index.
*/
function veTokenByIndex(uint8 index) external view returns (IMaverickV2VotingEscrow output);
/**
* @notice This function retrieves the reward token contract associated
* with a specific index within the reward contract.
* @param index The index of the reward token to retrieve.
* @return output The IERC20 contract associated with the index.
*/
function rewardTokenByIndex(uint8 index) external view returns (IERC20 output);
/**
* @notice This function calculates the boosted amount an tokenId would
* receive based on their veToken balance and stake duration.
* @param tokenId The address of the tokenId for which to calculate the boosted amount.
* @param veToken The IMaverickV2VotingEscrow contract representing the veToken used for boosting.
* @param rawAmount The raw (unboosted) amount.
* @param stakeDuration The duration (in seconds) for which the rewards would be staked.
* @return earnedAmount The boosted amount the tokenId would receive (uint256).
* @return asVe A boolean indicating whether the boosted amount is
* staked in the veToken (true) or is disbursed without ve staking required (false).
*/
function boostedAmount(
uint256 tokenId,
IMaverickV2VotingEscrow veToken,
uint256 rawAmount,
uint256 stakeDuration
) external view returns (uint256 earnedAmount, bool asVe);
/**
* @notice This function is used to push unboosted rewards to the veToken
* contract. This unboosted reward amount is then distributed to the
* veToken holders. This function will revert if less than
* `UNBOOSTED_MIN_TIME_GAP()` seconds have passed since the last call.
* @param rewardTokenIndex The internal index of the reward token.
* @return amount The amount of unboosted rewards pushed (uint128).
* @return timepoint The timestamp associated with the pushed rewards (uint48).
* @return batchIndex The batch index for the pushed rewards (uint256).
*/
function pushUnboostedToVe(
uint8 rewardTokenIndex
) external returns (uint128 amount, uint48 timepoint, uint256 batchIndex);
/**
* @notice Mints an NFT stake to a user. This NFT will not possesses any
* assets until a user `stake`s asset to the NFT tokenId as part of a
* separate call.
* @param recipient The address that owns the output NFT
*/
function mint(address recipient) external returns (uint256 tokenId);
/**
* @notice Mints an NFT stake to caller. This NFT will not possesses any
* assets until a user `stake`s asset to the NFT tokenId as part of a
* separate call.
*/
function mintToSender() external returns (uint256 tokenId);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IMaverickV2BoostedPositionFactory} from "@maverick/v2-supplemental/contracts/interfaces/IMaverickV2BoostedPositionFactory.sol";
import {IMaverickV2VotingEscrowFactory} from "./IMaverickV2VotingEscrowFactory.sol";
import {IMaverickV2VotingEscrow} from "./IMaverickV2VotingEscrow.sol";
import {IMaverickV2Reward} from "./IMaverickV2Reward.sol";
interface IMaverickV2RewardFactory {
error RewardFactoryNotFactoryBoostedPosition();
error RewardFactoryTooManyRewardTokens();
error RewardFactoryRewardAndVeLengthsAreNotEqual();
error RewardFactoryInvalidVeBaseTokenPair();
event CreateRewardsContract(
IERC20 stakeToken,
IERC20[] rewardTokens,
IMaverickV2VotingEscrow[] veTokens,
IMaverickV2Reward rewardsContract,
bool isFactoryBoostedPosition
);
/**
* @notice This function creates a new MaverickV2Reward contract associated
* with a specific stake token contract and set of reward and voting
* escrow tokens.
* @param stakeToken Token to be staked in reward contract; e.g. a boosted position contract.
* @param rewardTokens An array of IERC20 token addresses representing the available reward tokens.
* @param veTokens An array of IMaverickV2VotingEscrow contract addresses
* representing the associated veTokens for boosting.
* @return rewardsContract The newly created IMaverickV2Reward contract.
*/
function createRewardsContract(
IERC20 stakeToken,
IERC20[] memory rewardTokens,
IMaverickV2VotingEscrow[] memory veTokens
) external returns (IMaverickV2Reward rewardsContract);
/**
* @notice This function retrieves the address of the MaverickV2BoostedPositionFactory contract.
* @return factory The address of the IMaverickV2BoostedPositionFactory contract.
*/
function boostedPositionFactory() external returns (IMaverickV2BoostedPositionFactory);
/**
* @notice This function retrieves the address of the MaverickV2VotingEscrowFactory contract.
* @return factory The address of the IMaverickV2VotingEscrowFactory contract.
*/
function votingEscrowFactory() external returns (IMaverickV2VotingEscrowFactory);
/**
* @notice This function checks if a provided IMaverickV2Reward contract is
* a valid contract created by this factory.
* @param reward The IMaverickV2Reward contract to check.
* @return isFactoryContract True if the contract is a valid factory-created reward contract, False otherwise.
*/
function isFactoryContract(IMaverickV2Reward reward) external returns (bool);
/**
* @notice This function retrieves a list of all MaverickV2Reward contracts
* associated with a specific staking token contract within a specified
* range.
* @param stakeToken Lookup token.
* @param startIndex The starting index of the list to retrieve.
* @param endIndex The ending index of the list to retrieve.
* @return rewardsContract An array of IMaverickV2Reward contracts
* associated with the BoostedPosition within the specified range.
*/
function rewardsForStakeToken(
IERC20 stakeToken,
uint256 startIndex,
uint256 endIndex
) external view returns (IMaverickV2Reward[] memory rewardsContract);
/**
* @notice Returns the number of reward contracts this factory has deployed
* for a given staking token.
*/
function rewardsForStakeTokenCount(IERC20 stakeToken) external view returns (uint256 count);
/**
* @notice This function retrieves a list of all MaverickV2Reward contracts within a specified range.
* @param startIndex The starting index of the list to retrieve.
* @param endIndex The ending index of the list to retrieve.
* @return rewardsContract An array of IMaverickV2Reward contracts within the specified range.
*/
function rewards(
uint256 startIndex,
uint256 endIndex
) external view returns (IMaverickV2Reward[] memory rewardsContract);
/**
* @notice Returns the number of reward contracts this factory has deployed.
*/
function rewardsCount() external view returns (uint256 count);
/**
* @notice This function retrieves a list of all MaverickV2Reward contracts
* within a specified range that have a staking token that is a boosted
* position from the maverick boosted position contract.
* @param startIndex The starting index of the list to retrieve.
* @param endIndex The ending index of the list to retrieve.
* @return rewardsContract An array of IMaverickV2Reward contracts within the specified range.
*/
function boostedPositionRewards(
uint256 startIndex,
uint256 endIndex
) external view returns (IMaverickV2Reward[] memory);
/**
* @notice Returns the number of reward contracts where the staking token
* is a booste position that this factory has deployed.
*/
function boostedPositionRewardsCount() external view returns (uint256 count);
/**
* @notice This function retrieves a list of all MaverickV2Reward contracts
* within a specified range that have a staking token that is not a boosted
* position from the maverick boosted position contract.
* @param startIndex The starting index of the list to retrieve.
* @param endIndex The ending index of the list to retrieve.
* @return rewardsContract An array of IMaverickV2Reward contracts within the specified range.
*/
function nonBoostedPositionRewards(
uint256 startIndex,
uint256 endIndex
) external view returns (IMaverickV2Reward[] memory);
/**
* @notice Returns the number of reward contracts where the staking token
* is not a booste position that this factory has deployed.
*/
function nonBoostedPositionRewardsCount() external view returns (uint256 count);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IMaverickV2PoolLens} from "@maverick/v2-supplemental/contracts/interfaces/IMaverickV2PoolLens.sol";
import {IMaverickV2BoostedPosition} from "@maverick/v2-supplemental/contracts/interfaces/IMaverickV2BoostedPosition.sol";
import {IMaverickV2LiquidityManager} from "@maverick/v2-supplemental/contracts/interfaces/IMaverickV2LiquidityManager.sol";
import {IMaverickV2RewardFactory} from "./IMaverickV2RewardFactory.sol";
import {IMaverickV2VotingEscrowWSync} from "./IMaverickV2VotingEscrowWSync.sol";
import {IMaverickV2Reward} from "./IMaverickV2Reward.sol";
import {IMaverickV2VotingEscrow} from "./IMaverickV2VotingEscrow.sol";
interface IMaverickV2RewardRouter is IMaverickV2LiquidityManager {
/**
* @notice This function stakes any new staking token balance that are in
* the `reward.vault()` for a specified recipient tokenId. Passing input
* `tokenId=0` will cause the stake to mint to either the first tokenId for
* the caller, or a new NFT tokenId if the sender does not yet have one.
* @param reward The IMaverickV2Reward contract for which to stake.
* @param tokenId Nft tokenId to stake for the staked tokens.
* @return amount The amount of staking tokens staked. May differ from
* input if there were unstaked tokens in the vault prior to this call.
* @return stakedTokenId TokenId where liquidity was staked to. This may
* differ from the input tokenId if the input `tokenId=0`.
*/
function stake(
IMaverickV2Reward reward,
uint256 tokenId
) external payable returns (uint256 amount, uint256 stakedTokenId);
/**
* @notice This function retrieves the address of the MaverickV2RewardFactory
* contract associated with this contract.
*/
function rewardFactory() external view returns (IMaverickV2RewardFactory);
/**
* @notice This function transfers a specified amount of reward tokens from
* the caller to a reward contract and notifies it to distribute them over
* a defined duration.
* @param reward The IMaverickV2Reward contract to notify.
* @param rewardToken The address of the reward token to transfer.
* @param duration The duration (in seconds) over which to distribute the rewards.
* @return _duration The duration in seconds that the incentives will be distributed over.
*/
function notifyRewardAmount(
IMaverickV2Reward reward,
IERC20 rewardToken,
uint256 duration
) external payable returns (uint256 _duration);
/**
* @notice This function transfers a specified amount of staking tokens from
* the caller, stakes them on the recipient's behalf, and
* associates them with a specified reward contract.
* @param reward The IMaverickV2Reward contract for which to stake.
* @param tokenId Nft tokenId to stake for the staked tokens.
* @param _amount The amount of staking tokens to transfer and stake.
* @return amount The amount of staking tokens staked. May differ from
* input if there were unstaked tokens in the vault prior to this call.
* @return stakedTokenId TokenId where liquidity was staked to. This may
* differ from the input tokenIf if the input `tokenId=0`.
*
*/
function transferAndStake(
IMaverickV2Reward reward,
uint256 tokenId,
uint256 _amount
) external payable returns (uint256 amount, uint256 stakedTokenId);
/**
* @notice This function transfers a specified amount of reward tokens
* from the caller and adds them to the reward contract as incentives.
* @param reward The IMaverickV2Reward contract to notify.
* @param rewardToken The address of the reward token to transfer.
* @param duration The duration (in seconds) over which to distribute the rewards.
* @param amount The amount of staking tokens to stake (uint256).
* @return _duration The duration in seconds that the incentives will be distributed over.
*/
function transferAndNotifyRewardAmount(
IMaverickV2Reward reward,
IERC20 rewardToken,
uint256 duration,
uint256 amount
) external payable returns (uint256 _duration);
/**
* @notice This function creates a new BoostedPosition contract, adds
* liquidity to a pool using the provided parameters, stakes the received
* LP tokens, and associates them with a specified reward contract.
* @param recipient The address to which the minted LP tokens will be
* credited.
* @param params A struct containing parameters for creating the
* BoostedPosition (see IMaverickV2PoolLens.CreateBoostedPositionInputs).
* @param rewardTokens An array of IERC20 token addresses representing the
* available reward tokens for the staked LP position.
* @param veTokens An array of IMaverickV2VotingEscrow contract addresses
* representing the veTokens used for boosting.
* @return boostedPosition The created IMaverickV2BoostedPosition contract.
* @return mintedLpAmount The amount of LP tokens minted from the added liquidity.
* @return tokenAAmount The amount of token A deposited for liquidity.
* @return tokenBAmount The amount of token B deposited for liquidity.
* @return stakeAmount The amount of LP tokens staked in the reward contract.
* @return reward The IMaverickV2Reward contract.
* @return tokenId Token on reward contract where user liquidity was staked.
*/
function createBoostedPositionAndAddLiquidityAndStake(
address recipient,
IMaverickV2PoolLens.CreateBoostedPositionInputs memory params,
IERC20[] memory rewardTokens,
IMaverickV2VotingEscrow[] memory veTokens
)
external
payable
returns (
IMaverickV2BoostedPosition boostedPosition,
uint256 mintedLpAmount,
uint256 tokenAAmount,
uint256 tokenBAmount,
uint256 stakeAmount,
IMaverickV2Reward reward,
uint256 tokenId
);
/**
* @notice This function is similar to
* `createBoostedPositionAndAddLiquidityAndStake` but stakes the minted LP
* tokens for the caller (msg.sender) instead of a specified recipient.
* @param params A struct containing parameters for creating the
* BoostedPosition (see IMaverickV2PoolLens.CreateBoostedPositionInputs).
* @param rewardTokens An array of IERC20 token addresses representing the
* available reward tokens for the staked LP position.
* @param veTokens An array of IMaverickV2VotingEscrow contract addresses
* representing the veTokens used for boosting.
* @return boostedPosition The created IMaverickV2BoostedPosition contract.
* @return mintedLpAmount The amount of LP tokens minted from the added liquidity.
* @return tokenAAmount The amount of token A deposited for liquidity.
* @return tokenBAmount The amount of token B deposited for liquidity.
* @return stakeAmount The amount of LP tokens staked in the reward contract.
* @return reward The IMaverickV2Reward contract associated with the staked LP position.
* @return tokenId Token on reward contract where user liquidity was staked.
*/
function createBoostedPositionAndAddLiquidityAndStakeToSender(
IMaverickV2PoolLens.CreateBoostedPositionInputs memory params,
IERC20[] memory rewardTokens,
IMaverickV2VotingEscrow[] memory veTokens
)
external
payable
returns (
IMaverickV2BoostedPosition boostedPosition,
uint256 mintedLpAmount,
uint256 tokenAAmount,
uint256 tokenBAmount,
uint256 stakeAmount,
IMaverickV2Reward reward,
uint256 tokenId
);
/**
* @notice This function adds liquidity to a pool using a pre-created
* BoostedPosition contract, stakes the received LP tokens, and associates
* them with a specified reward contract.
* @param tokenId Token on reward contract where liquidity is to be staked.
* @param boostedPosition The IMaverickV2BoostedPosition contract representing the existing boosted position.
* @param packedSqrtPriceBreaks A packed representation of sqrt price
* breaks for the liquidity range (see
* IMaverickV2Pool.IAddLiquidityParams).
* @param packedArgs Additional packed arguments for adding liquidity (see
* IMaverickV2Pool.IAddLiquidityParams).
* @param reward The IMaverickV2Reward contract for which to stake the LP tokens.
* @return mintedLpAmount The amount of LP tokens minted from the added liquidity.
* @return tokenAAmount The amount of token A deposited for liquidity.
* @return tokenBAmount The amount of token B deposited for liquidity.
* @return stakeAmount The amount of LP tokens staked in the reward contract.
*
*/
function addLiquidityAndMintBoostedPositionAndStake(
uint256 tokenId,
IMaverickV2BoostedPosition boostedPosition,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs,
IMaverickV2Reward reward
)
external
payable
returns (uint256 mintedLpAmount, uint256 tokenAAmount, uint256 tokenBAmount, uint256 stakeAmount);
/**
* @notice This function is similar to
* `addLiquidityAndMintBoostedPositionAndStake` but uses the caller
* (msg.sender) as the recipient for the minted reward stake.
* @param sendersTokenIndex Token index of sender on the reward contract to
* mint to. If sender does not have a token already, then this call will
* mint one for the user.
* @param boostedPosition The IMaverickV2BoostedPosition contract representing the existing boosted position.
* @param packedSqrtPriceBreaks A packed representation of sqrt price breaks for the liquidity range (see IMaverickV2Pool.IAddLiquidityParams).
* @param packedArgs Additional packed arguments for adding liquidity (see IMaverickV2Pool.IAddLiquidityParams).
* @param reward The IMaverickV2Reward contract for which to stake the LP tokens.
* @return mintedLpAmount The amount of LP tokens minted from the added liquidity.
* @return tokenAAmount The amount of token A deposited for liquidity.
* @return tokenBAmount The amount of token B deposited for liquidity.
* @return stakeAmount The amount of LP tokens staked in the reward contract.
* @return tokenId Token on reward contract where user liquidity was staked.
*/
function addLiquidityAndMintBoostedPositionAndStakeToSender(
uint256 sendersTokenIndex,
IMaverickV2BoostedPosition boostedPosition,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs,
IMaverickV2Reward reward
)
external
payable
returns (
uint256 mintedLpAmount,
uint256 tokenAAmount,
uint256 tokenBAmount,
uint256 stakeAmount,
uint256 tokenId
);
/**
* @notice This function syncs the balance of a staker's votes on the
* legacy ve mav contract with the new V2 ve mav contract.
* @param ve The IMaverickV2VotingEscrowWSync contract to interact with.
* @param staker The address of the user whose veToken lock may need syncing.
* @param legacyLockupIndexes A list of indexes to synchronize from the
* legacy veMav to the V2 ve contract.
*
*/
function sync(
IMaverickV2VotingEscrowWSync ve,
address staker,
uint256[] memory legacyLockupIndexes
) external returns (uint256[] memory newBalance);
function mintTokenInRewardToSender(IMaverickV2Reward reward) external payable returns (uint256 tokenId);
function mintTokenInReward(IMaverickV2Reward reward, address recipient) external payable returns (uint256 tokenId);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IMaverickV2RewardVault {
error RewardVaultUnauthorizedAccount(address caller, address owner);
/**
* @notice This function allows the owner of the reward vault to withdraw a
* specified amount of staking tokens to a recipient address. If non-owner
* calls this function, it will revert.
* @param recipient The address to which the withdrawn staking tokens will be sent.
* @param amount The amount of staking tokens to withdraw.
*/
function withdraw(address recipient, uint256 amount) external;
/**
* @notice This function retrieves the address of the owner of the reward
* vault contract.
*/
function owner() external view returns (address);
/**
* @notice This function retrieves the address of the ERC20 token used for
* staking within the reward vault.
*/
function stakingToken() external view returns (IERC20);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IVotes} from "@openzeppelin/contracts/governance/utils/IVotes.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC6372} from "@openzeppelin/contracts/interfaces/IERC6372.sol";
import {IHistoricalBalance} from "../votingescrowbase/IHistoricalBalance.sol";
interface IMaverickV2VotingEscrowBase is IVotes, IHistoricalBalance {
error VotingEscrowTransferNotSupported();
error VotingEscrowInvalidAddress(address);
error VotingEscrowInvalidAmount(uint256);
error VotingEscrowInvalidDuration(uint256 duration, uint256 minDuration, uint256 maxDuration);
error VotingEscrowInvalidEndTime(uint256 newEnd, uint256 oldEnd);
error VotingEscrowStakeStillLocked(uint256 currentTime, uint256 endTime);
error VotingEscrowStakeAlreadyRedeemed();
error VotingEscrowNotApprovedExtender(address account, address extender, uint256 lockupId);
error VotingEscrowIncentiveAlreadyClaimed(address account, uint256 batchIndex);
error VotingEscrowNoIncentivesToClaim(address account, uint256 batchIndex);
error VotingEscrowInvalidExtendIncentiveToken(IERC20 incentiveToken);
error VotingEscrowNoSupplyAtTimepoint();
error VotingEscrowIncentiveTimepointInFuture(uint256 timestamp, uint256 claimTimepoint);
event Stake(address indexed user, uint256 lockupId, Lockup);
event Unstake(address indexed user, uint256 lockupId, Lockup);
event ExtenderApproval(address staker, address extender, uint256 lockupId, bool newState);
event ClaimIncentiveBatch(uint256 batchIndex, address account, uint256 claimAmount);
event CreateNewIncentiveBatch(
address user,
uint256 amount,
uint256 timepoint,
uint256 stakeDuration,
IERC20 incentiveToken
);
struct Lockup {
uint128 amount;
uint128 end;
uint256 votes;
}
struct ClaimInformation {
bool timepointInPast;
bool hasClaimed;
uint128 claimAmount;
}
struct BatchInformation {
uint128 totalIncentives;
uint128 stakeDuration;
uint48 claimTimepoint;
IERC20 incentiveToken;
}
struct TokenIncentiveTotals {
uint128 totalIncentives;
uint128 claimedIncentives;
}
// solhint-disable-next-line func-name-mixedcase
function MIN_STAKE_DURATION() external returns (uint256 duration);
// solhint-disable-next-line func-name-mixedcase
function MAX_STAKE_DURATION() external returns (uint256 duration);
// solhint-disable-next-line func-name-mixedcase
function YEAR_BASE() external returns (uint256);
/**
* @notice This function retrieves the address of the ERC20 token used as the base token for staking and rewards.
* @return baseToken The address of the IERC20 base token contract.
*/
function baseToken() external returns (IERC20);
/**
* @notice This function retrieves the starting timestamp. This may be used
* for reward calculations or other time-based logic.
*/
function startTimestamp() external returns (uint256 timestamp);
/**
* @notice This function retrieves the details of a specific lockup for a given staker and lockup index.
* @param staker The address of the staker for which to retrieve the lockup details.
* @param index The index of the lockup within the staker's lockup history.
* @return lockup A Lockup struct containing details about the lockup (see struct definition for details).
*/
function getLockup(address staker, uint256 index) external view returns (Lockup memory lockup);
/**
* @notice This function retrieves the total number of lockups associated with a specific staker.
* @param staker The address of the staker for which to retrieve the lockup count.
* @return count The total number of lockups for the staker.
*/
function lockupCount(address staker) external view returns (uint256 count);
/**
* @notice This function simulates a lockup scenario, providing details about the resulting lockup structure for a specified amount and duration.
* @param amount The amount of tokens to be locked.
* @param duration The duration of the lockup period.
* @return lockup A Lockup struct containing details about the simulated lockup (see struct definition for details).
*/
function previewVotes(uint128 amount, uint256 duration) external view returns (Lockup memory lockup);
/**
* @notice This function grants approval for a designated extender contract to manage a specific lockup on behalf of the staker.
* @param extender The address of the extender contract to be approved.
* @param lockupId The ID of the lockup for which to grant approval.
*/
function approveExtender(address extender, uint256 lockupId) external;
/**
* @notice This function revokes approval previously granted to an extender contract for managing a specific lockup.
* @param extender The address of the extender contract whose approval is being revoked.
* @param lockupId The ID of the lockup for which to revoke approval.
*/
function revokeExtender(address extender, uint256 lockupId) external;
/**
* @notice This function checks whether a specific account has been approved by a staker to manage a particular lockup through an extender contract.
* @param account The address of the account to check for approval (may be the extender or another account).
* @param extender The address of the extender contract for which to check approval.
* @param lockupId The ID of the lockup to verify approval for.
* @return isApproved True if the account is approved for the lockup, False otherwise (bool).
*/
function isApprovedExtender(address account, address extender, uint256 lockupId) external view returns (bool);
/**
* @notice This function extends the lockup period for the caller (msg.sender) for a specified lockup ID, adding a new duration and amount.
* @param lockupId The ID of the lockup to be extended.
* @param duration The additional duration to extend the lockup by.
* @param amount The additional amount of tokens to be locked.
* @return newLockup A Lockup struct containing details about the newly extended lockup (see struct definition for details).
*/
function extendForSender(
uint256 lockupId,
uint256 duration,
uint128 amount
) external returns (Lockup memory newLockup);
/**
* @notice This function extends the lockup period for a specified account, adding a new duration and amount. The caller (msg.sender) must be authorized to manage the lockup through an extender contract.
* @param account The address of the account whose lockup is being extended.
* @param lockupId The ID of the lockup to be extended.
* @param duration The additional duration to extend the lockup by.
* @param amount The additional amount of tokens to be locked.
* @return newLockup A Lockup struct containing details about the newly extended lockup (see struct definition for details).
*/
function extendForAccount(
address account,
uint256 lockupId,
uint256 duration,
uint128 amount
) external returns (Lockup memory newLockup);
/**
* @notice This function merges multiple lockups associated with the caller
* (msg.sender) into a single new lockup.
* @param lockupIds An array containing the IDs of the lockups to be merged.
* @return newLockup A Lockup struct containing details about the newly merged lockup (see struct definition for details).
*/
function merge(uint256[] memory lockupIds) external returns (Lockup memory newLockup);
/**
* @notice This function unstakes the specified lockup ID for the caller (msg.sender), returning the details of the unstaked lockup.
* @param lockupId The ID of the lockup to be unstaked.
* @param to The address to which the unstaked tokens should be sent (optional, defaults to msg.sender).
* @return lockup A Lockup struct containing details about the unstaked lockup (see struct definition for details).
*/
function unstake(uint256 lockupId, address to) external returns (Lockup memory lockup);
/**
* @notice This function is a simplified version of `unstake` that automatically sends the unstaked tokens to the caller (msg.sender).
* @param lockupId The ID of the lockup to be unstaked.
* @return lockup A Lockup struct containing details about the unstaked lockup (see struct definition for details).
*/
function unstakeToSender(uint256 lockupId) external returns (Lockup memory lockup);
/**
* @notice This function stakes a specified amount of tokens for the caller
* (msg.sender) for a defined duration.
* @param amount The amount of tokens to be staked.
* @param duration The duration of the lockup period.
* @return lockup A Lockup struct containing details about the newly
* created lockup (see struct definition for details).
*/
function stakeToSender(uint128 amount, uint256 duration) external returns (Lockup memory lockup);
/**
* @notice This function stakes a specified amount of tokens for a defined
* duration, allowing the caller (msg.sender) to specify an optional
* recipient for the staked tokens.
* @param amount The amount of tokens to be staked.
* @param duration The duration of the lockup period.
* @param to The address to which the staked tokens will be credited (optional, defaults to msg.sender).
* @return lockup A Lockup struct containing details about the newly
* created lockup (see struct definition for details).
*/
function stake(uint128 amount, uint256 duration, address to) external returns (Lockup memory);
/**
* @notice This function retrieves the total incentive information for a specific ERC-20 token.
* @param token The address of the ERC20 token for which to retrieve incentive totals.
* @return totals A TokenIncentiveTotals struct containing details about
* the token's incentives (see struct definition for details).
*/
function incentiveTotals(IERC20 token) external view returns (TokenIncentiveTotals memory);
/**
* @notice This function retrieves the total number of created incentive batches.
* @return count The total number of incentive batches.
*/
function incentiveBatchCount() external view returns (uint256);
/**
* @notice This function retrieves claim information for a specific account and incentive batch index.
* @param account The address of the account for which to retrieve claim information.
* @param batchIndex The index of the incentive batch for which to retrieve
* claim information.
* @return claimInformation A ClaimInformation struct containing details about the
* account's claims for the specified batch (see struct definition for
* details).
* @return batchInformation A BatchInformation struct containing details about the
* specified batch (see struct definition for details).
*/
function claimAndBatchInformation(
address account,
uint256 batchIndex
) external view returns (ClaimInformation memory claimInformation, BatchInformation memory batchInformation);
/**
* @notice This function retrieves batch information for a incentive batch index.
* @param batchIndex The index of the incentive batch for which to retrieve
* claim information.
* @return info A BatchInformation struct containing details about the
* specified batch (see struct definition for details).
*/
function incentiveBatchInformation(uint256 batchIndex) external view returns (BatchInformation memory info);
/**
* @notice This function allows claiming rewards from a specific incentive
* batch while simultaneously extending a lockup with the claimed tokens.
* @param batchIndex The index of the incentive batch from which to claim rewards.
* @param lockupId The ID of the lockup to be extended with the claimed tokens.
* @return lockup A Lockup struct containing details about the updated
* lockup after extension (see struct definition for details).
* @return claimAmount The amount of tokens claimed from the incentive batch.
*/
function claimFromIncentiveBatchAndExtend(
uint256 batchIndex,
uint256 lockupId
) external returns (Lockup memory lockup, uint128 claimAmount);
/**
* @notice This function allows claiming rewards from a specific incentive
* batch, without extending any lockups.
* @param batchIndex The index of the incentive batch from which to claim rewards.
* @return lockup A Lockup struct containing details about the user's
* lockup that might have been affected by the claim (see struct definition
* for details).
* @return claimAmount The amount of tokens claimed from the incentive batch.
*/
function claimFromIncentiveBatch(uint256 batchIndex) external returns (Lockup memory lockup, uint128 claimAmount);
/**
* @notice This function creates a new incentive batch for a specified amount
* of incentive tokens, timepoint, stake duration, and associated ERC-20
* token. An incentive batch is a reward of incentives put up by the
* caller at a certain timepoint. The incentive batch is claimable by ve
* holders after the timepoint has passed. The ve holders will receive
* their incentive pro rata of their vote balance (`pastbalanceOf`) at that
* timepoint. The incentivizer can specify that users have to stake the
* resulting incentive for a given `stakeDuration` number of seconds.
* `stakeDuration` can either be zero, meaning that no staking is required
* on redemption, or can be a number between `MIN_STAKE_DURATION()` and
* `MAX_STAKE_DURATION()`.
* @param amount The total amount of incentive tokens to be distributed in the batch.
* @param timepoint The timepoint at which the incentive batch starts accruing rewards.
* @param stakeDuration The duration of the lockup period required to be
* eligible for the incentive batch rewards.
* @param incentiveToken The address of the ERC20 token used for the incentive rewards.
* @return index The index of the newly created incentive batch.
*/
function createIncentiveBatch(
uint128 amount,
uint48 timepoint,
uint128 stakeDuration,
IERC20 incentiveToken
) external returns (uint256 index);
}
interface IMaverickV2VotingEscrow is IMaverickV2VotingEscrowBase, IERC20Metadata, IERC6372 {}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IMaverickV2VotingEscrow} from "./IMaverickV2VotingEscrow.sol";
interface IMaverickV2VotingEscrowFactory {
error VotingEscrowTokenAlreadyExists(IERC20 baseToken, IMaverickV2VotingEscrow veToken);
event CreateVotingEscrow(IERC20 baseToken, IMaverickV2VotingEscrow veToken);
/**
* @notice This function retrieves the address of the legacy Maverick V1
* Voting Escrow (veMAV) token. The address will be zero for blockchains
* where this contract is deployed that do not have a legacy MAV contract
* deployed.
* @return legacyVeMav The address of the IERC20 legacy veMav token.
*/
function legacyVeMav() external view returns (IERC20);
/**
* @notice This function checks whether a provided IMaverickV2VotingEscrow
* contract address was created by this factory.
* @param veToken The address of the IMaverickV2VotingEscrow contract to be checked.
* @return isFactoryToken True if the veToken was created by this factory, False otherwise (bool).
*/
function isFactoryToken(IMaverickV2VotingEscrow veToken) external view returns (bool);
/**
* @notice This function creates a new Maverick V2 Voting Escrow (veToken)
* contract for a specified ERC20 base token.
* @dev Once the ve contract is created, it will call `name()` and
* `symbol()` on the `baseToken`. If those functions do not exist, the ve
* creation will revert.
* @param baseToken The address of the ERC-20 token to be used as the base token for the new veToken.
* @return veToken The address of the newly created IMaverickV2VotingEscrow contract.
*/
function createVotingEscrow(IERC20 baseToken) external returns (IMaverickV2VotingEscrow veToken);
/**
* @notice This function retrieves a paginated list of existing Maverick V2
* Voting Escrow (veToken) contracts within a specified index range.
* @param startIndex The starting index for the desired range of veTokens.
* @param endIndex The ending index for the desired range of veTokens.
* @return votingEscrows An array of IMaverickV2VotingEscrow addresses
* representing the veTokens within the specified range.
*/
function votingEscrows(
uint256 startIndex,
uint256 endIndex
) external view returns (IMaverickV2VotingEscrow[] memory votingEscrows);
/**
* @notice This function retrieves the total number of deployed Maverick V2
* Voting Escrow (veToken) contracts.
* @return count The total number of veTokens.
*/
function votingEscrowsCount() external view returns (uint256 count);
/**
* @notice This function retrieves the address of the existing Maverick V2
* Voting Escrow (veToken) contract associated with a specific ERC20 base
* token.
* @param baseToken The address of the ERC-20 base token for which to retrieve the veToken address.
* @return veToken The address of the IMaverickV2VotingEscrow contract
* associated with the base token, or the zero address if none exists.
*/
function veForBaseToken(IERC20 baseToken) external view returns (IMaverickV2VotingEscrow veToken);
/**
* @notice This function retrieves the default base token used for creating
* new voting escrow contracts. This state variable is only used
* temporarily when a new veToken is deployed.
* @return baseToken The address of the default ERC-20 base token.
*/
function baseTokenParameter() external returns (IERC20);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IMaverickV2VotingEscrowWSync {
error VotingEscrowLockupEndTooShortToSync(uint256 legacyLockupEnd, uint256 minimumLockupEnd);
event Sync(address staker, uint256 legacyLockupIndex, uint256 newBalance);
/**
* @notice This function retrieves the minimum lockup duration required for
* a legacy lockup to be eligible for synchronization.
* @return minSyncDuration The minimum allowed lockup end time.
*/
// solhint-disable-next-line func-name-mixedcase
function MIN_SYNC_DURATION() external pure returns (uint256 minSyncDuration);
/**
* @notice This function retrieves the address of the legacy Maverick V1
* Voting Escrow (veMav) token.
* @return legacyVeMav The address of the IERC20 legacy veMav token.
*/
function legacyVeMav() external view returns (IERC20);
/**
* @notice This function retrieves the synced balance for a specific legacy lockup index of a user.
* @param staker The address of the user for whom to retrieve the synced balance.
* @param legacyLockupIndex The index of the legacy lockup for which to
* retrieve the synced balance.
* @return balance The synced balance associated with the legacy lockup.
*/
function syncBalances(address staker, uint256 legacyLockupIndex) external view returns (uint256 balance);
/**
* @notice This function synchronizes a specific legacy lockup index for a
* user within the contract. If the legacy lockup.end is not at least
* `block.timestamp + MIN_SYNC_DURATION()`, this function will revert.
* @param staker The address of the user for whom to perform synchronization.
* @param legacyLockupIndex The index of the legacy lockup to be
* synchronized.
* @return newBalance The new balance resulting from the synchronization
* process.
*/
function sync(address staker, uint256 legacyLockupIndex) external returns (uint256 newBalance);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
interface IMigrateBins {
function migrateBinsUpStack(IMaverickV2Pool pool, uint32[] calldata binIds, uint32 maxRecursion) external payable;
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
interface IMulticall {
function multicall(bytes[] calldata data) external returns (bytes[] memory results);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC721Enumerable} from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";
interface INft is IERC721Enumerable {
/**
* @notice Check if an NFT exists for a given owner and index.
*/
function tokenOfOwnerByIndexExists(address owner, uint256 index) external view returns (bool);
/**
* @notice Return Id of the next token minted.
*/
function nextTokenId() external view returns (uint256 nextTokenId_);
/**
* @notice Check if the caller has access to a specific NFT by tokenId.
*/
function checkAuthorized(address spender, uint256 tokenId) external view returns (address owner);
/**
* @notice List of tokenIds by owner.
*/
function tokenIdsOfOwner(address owner) external view returns (uint256[] memory tokenIds);
/**
* @notice Get the token URI for a given tokenId.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
interface IPayableMulticall {
function multicall(bytes[] calldata data) external payable returns (bytes[] memory results);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IPayableMulticall} from "@maverick/v2-common/contracts/base/IPayableMulticall.sol";
import {IState} from "./IState.sol";
interface IPayment is IPayableMulticall, IState {
error PaymentSenderNotWETH9();
error PaymentInsufficientBalance(address token, uint256 amountMinimum, uint256 contractBalance);
receive() external payable;
/**
* @notice Unwrap WETH9 tokens into ETH and send that balance to recipient.
* If less than amountMinimum WETH is avialble, then revert.
*/
function unwrapWETH9(uint256 amountMinimum, address recipient) external payable;
/**
* @notice Transfers specified token amount to recipient
*/
function sweepTokenAmount(IERC20 token, uint256 amount, address recipient) external payable;
/**
* @notice Sweep entire ERC20 token balance on this contract to recipient.
* If less than amountMinimum balance is avialble, then revert.
*/
function sweepToken(IERC20 token, uint256 amountMinimum, address recipient) external payable;
/**
* @notice Send any ETH on this contract to msg.sender.
*/
function refundETH() external payable;
/**
* @notice For tokenA and tokenB, sweep all of the
* non-WETH tokens to msg.sender. Any WETH balance is unwrapped to ETH and
* then all the ETH on this contract is sent to msg.sender.
*/
function unwrapAndSweep(
IERC20 tokenA,
IERC20 tokenB,
uint256 tokenAAmountMin,
uint256 tokenBAmountMin
) external payable;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Position} from "./IMaverickV2Position.sol";
interface IPositionImage {
error PositionImageSetPositionError(address sender, address deployer, IMaverickV2Position currentPosition);
function position() external view returns (IMaverickV2Position _position);
function setPosition(IMaverickV2Position _position) external;
function image(uint256 tokenId, address tokenOwner) external view returns (string memory);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
interface IRewardAccounting {
error InsufficientBalance(uint256 tokenId, uint256 currentBalance, uint256 value);
/**
* @notice Balance of stake for a given `tokenId` account.
*/
function stakeBalanceOf(uint256 tokenId) external view returns (uint256 balance);
/**
* @notice Sum of all balances across all tokenIds.
*/
function stakeTotalSupply() external view returns (uint256 supply);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
interface IRouterErrors {
error RouterZeroSwap();
error RouterNotFactoryPool();
error RouterTooLittleReceived(uint256 amountOutMinimum, uint256 amountOut);
error RouterTooMuchRequested(uint256 amountInMaximum, uint256 amountIn);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IWETH9} from "./IWETH9.sol";
import {IMaverickV2Factory} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Factory.sol";
interface IState {
function weth() external view returns (IWETH9 _weth);
function factory() external view returns (IMaverickV2Factory _factory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol)
pragma solidity ^0.8.20;
/**
* @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
*/
interface IVotes {
/**
* @dev The signature used has expired.
*/
error VotesExpiredSignature(uint256 expiry);
/**
* @dev Emitted when an account changes their delegate.
*/
event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
/**
* @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units.
*/
event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes);
/**
* @dev Returns the current amount of votes that `account` has.
*/
function getVotes(address account) external view returns (uint256);
/**
* @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*/
function getPastVotes(address account, uint256 timepoint) external view returns (uint256);
/**
* @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
* configured to use block numbers, this will return the value at the end of the corresponding block.
*
* NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
* Votes that have not been delegated are still part of total supply, even though they would not participate in a
* vote.
*/
function getPastTotalSupply(uint256 timepoint) external view returns (uint256);
/**
* @dev Returns the delegate that `account` has chosen.
*/
function delegates(address account) external view returns (address);
/**
* @dev Delegates votes from the sender to `delegatee`.
*/
function delegate(address delegatee) external;
/**
* @dev Delegates votes from signer to `delegatee`.
*/
function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IWETH9 is IERC20 {
event Deposit(address indexed dst, uint256 wad);
event Withdrawal(address indexed src, uint256 wad);
function deposit() external payable;
function withdraw(uint256) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {SafeCast as Cast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {Math} from "@maverick/v2-common/contracts/libraries/Math.sol";
import {PoolLib} from "@maverick/v2-common/contracts/libraries/PoolLib.sol";
import {ONE, MINIMUM_LIQUIDITY} from "@maverick/v2-common/contracts/libraries/Constants.sol";
import {TickMath} from "@maverick/v2-common/contracts/libraries/TickMath.sol";
import {IMaverickV2PoolLens} from "../interfaces/IMaverickV2PoolLens.sol";
import {IMaverickV2BoostedPosition} from "../interfaces/IMaverickV2BoostedPosition.sol";
import {PoolInspection} from "../libraries/PoolInspection.sol";
import {PackLib} from "../libraries/PackLib.sol";
library LiquidityUtilities {
using Cast for uint256;
error LiquidityUtilitiesTargetPriceOutOfBounds(
uint256 targetSqrtPrice,
uint256 sqrtLowerTickPrice,
uint256 sqrtUpperTickPrice
);
error LiquidityUtilitiesTooLittleLiquidity(uint256 relativeLiquidityAmount, uint256 deltaA, uint256 deltaB);
error LiquidityUtilitiesTargetingTokenWithNoDelta(bool targetIsA, uint256 deltaA, uint256 deltaB);
error LiquidityUtilitiesNoSwapLiquidity();
error LiquidityUtilitiesFailedToFindDeltaAmounts();
error LiquidityUtilitiesInitialTargetBTooSmall(
uint256 initialTargetB,
uint256 deltaLpBalance,
uint256 minimumRequiredLpBalance
);
uint256 internal constant MIN_DELTA_RESERVES = 100;
/**
*
* @notice Return index into the price breaks array that corresponds to the
* current pool price.
*
* @dev Price break array is N elements [e_0, e_1, ..., e_{n-1}].
* @dev If price is less than e_0, then `0` is returned, if price is
* betweeen e_0 and e_1, then `1` is returned, etc. If the price is
* between e_{n-2} and e_{n-1}, then n-2 is returned. If price is larger
* than e_{n-1}, then n-1 is returned.
*
*/
function priceIndexFromPriceBreaks(
uint256 sqrtPrice,
bytes memory packedSqrtPriceBreaks
) internal pure returns (uint256 index) {
// index is zero if the pricebreaks array only has one price
if (packedSqrtPriceBreaks.length == 12) return index;
uint88[] memory breaks = PackLib.unpackUint88Array(packedSqrtPriceBreaks);
// loop terminates with `breaks.length - 1` as the max value.
for (; index < breaks.length - 1; index++) {
if (sqrtPrice <= breaks[index]) break;
}
}
function tokenScales(IMaverickV2Pool pool) internal view returns (uint256 tokenAScale, uint256 tokenBScale) {
tokenAScale = pool.tokenAScale();
tokenBScale = pool.tokenBScale();
}
function deltaReservesFromDeltaLpBalanceAtNewPrice(
IMaverickV2Pool pool,
int32 tick,
uint128 deltaLpBalance,
uint8 kind,
uint256 newSqrtPrice
) internal view returns (uint256 deltaA, uint256 deltaB) {
PoolLib.AddLiquidityInfo memory addLiquidityInfo;
uint32 binId = pool.binIdByTickKind(tick, kind);
IMaverickV2Pool.BinState memory bin = pool.getBin(binId);
addLiquidityInfo.tickSpacing = pool.tickSpacing();
addLiquidityInfo.tick = tick;
IMaverickV2Pool.TickState memory tickState;
(tickState, addLiquidityInfo.tickLtActive, ) = reservesInTickForGivenPrice(pool, tick, newSqrtPrice);
PoolLib.deltaTickBalanceFromDeltaLpBalance(
bin.tickBalance,
bin.totalSupply,
tickState,
deltaLpBalance,
addLiquidityInfo
);
(uint256 tokenAScale, uint256 tokenBScale) = tokenScales(pool);
deltaA = Math.ammScaleToTokenScale(addLiquidityInfo.deltaA, tokenAScale, true);
deltaB = Math.ammScaleToTokenScale(addLiquidityInfo.deltaB, tokenBScale, true);
}
function deltaReservesFromDeltaLpBalancesAtNewPrice(
IMaverickV2Pool pool,
IMaverickV2Pool.AddLiquidityParams memory addParams,
uint256 newSqrtPrice
) internal view returns (IMaverickV2PoolLens.TickDeltas memory tickDeltas) {
uint256 length = addParams.ticks.length;
tickDeltas.deltaAs = new uint256[](length);
tickDeltas.deltaBs = new uint256[](length);
for (uint256 k; k < length; k++) {
(tickDeltas.deltaAs[k], tickDeltas.deltaBs[k]) = deltaReservesFromDeltaLpBalanceAtNewPrice(
pool,
addParams.ticks[k],
addParams.amounts[k],
addParams.kind,
newSqrtPrice
);
tickDeltas.deltaAOut += tickDeltas.deltaAs[k];
tickDeltas.deltaBOut += tickDeltas.deltaBs[k];
}
}
function scaleAddParams(
IMaverickV2Pool.AddLiquidityParams memory addParams,
uint128[] memory ratios,
uint256 addAmount,
uint256 targetAmount
) internal pure returns (IMaverickV2Pool.AddLiquidityParams memory addParamsScaled) {
uint256 length = addParams.ticks.length;
addParamsScaled.ticks = addParams.ticks;
addParamsScaled.kind = addParams.kind;
addParamsScaled.amounts = new uint128[](length);
addParamsScaled.amounts[0] = Math.mulDivFloor(addParams.amounts[0], targetAmount, addAmount).toUint128();
for (uint256 k = 1; k < length; k++) {
addParamsScaled.amounts[k] = Math.mulCeil(addParamsScaled.amounts[0], ratios[k]).toUint128();
}
}
function getScaledAddParams(
IMaverickV2Pool pool,
IMaverickV2Pool.AddLiquidityParams memory addParams,
uint128[] memory ratios,
uint256 newSqrtPrice,
uint256 targetAmount,
bool targetIsA
)
internal
view
returns (
IMaverickV2Pool.AddLiquidityParams memory addParamsScaled,
IMaverickV2PoolLens.TickDeltas memory tickDeltas
)
{
// find A and B amount for input addParams
tickDeltas = deltaReservesFromDeltaLpBalancesAtNewPrice(pool, addParams, newSqrtPrice);
uint256 unScaledAmount = targetIsA ? tickDeltas.deltaAOut : tickDeltas.deltaBOut;
if (unScaledAmount == 0) revert LiquidityUtilitiesFailedToFindDeltaAmounts();
// scale addParams to meet the delta target
addParamsScaled = scaleAddParams(
addParams,
ratios,
targetIsA ? tickDeltas.deltaAOut : tickDeltas.deltaBOut,
targetAmount
);
tickDeltas = deltaReservesFromDeltaLpBalancesAtNewPrice(pool, addParamsScaled, newSqrtPrice);
}
function getAddLiquidityParamsFromRelativeBinLpBalance(
IMaverickV2PoolLens.BoostedPositionSpecification memory spec,
int32[] memory ticks,
IMaverickV2PoolLens.AddParamsSpecification memory params
)
internal
view
returns (
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs,
uint88[] memory sqrtPriceBreaks,
IMaverickV2Pool.AddLiquidityParams[] memory addParams,
IMaverickV2PoolLens.TickDeltas[] memory tickDeltas
)
{
uint256 length = params.numberOfPriceBreaksPerSide * 2 + 1;
addParams = new IMaverickV2Pool.AddLiquidityParams[](length);
tickDeltas = new IMaverickV2PoolLens.TickDeltas[](length);
uint256 sqrtPrice = PoolInspection.poolSqrtPrice(spec.pool);
addParams[params.numberOfPriceBreaksPerSide].ticks = ticks;
addParams[params.numberOfPriceBreaksPerSide].amounts = spec.ratios;
addParams[params.numberOfPriceBreaksPerSide].kind = spec.kind;
(
addParams[params.numberOfPriceBreaksPerSide],
tickDeltas[params.numberOfPriceBreaksPerSide]
) = getScaledAddParams(
spec.pool,
addParams[params.numberOfPriceBreaksPerSide],
spec.ratios,
sqrtPrice,
params.targetAmount,
params.targetIsA
);
sqrtPriceBreaks = new uint88[](length);
sqrtPriceBreaks[params.numberOfPriceBreaksPerSide] = sqrtPrice.toUint88();
// left of price,
for (uint256 k; k < params.numberOfPriceBreaksPerSide; k++) {
params.targetIsA = false;
params.targetAmount = Math.mulDown(tickDeltas[params.numberOfPriceBreaksPerSide].deltaBOut, 0.99999e18);
if (params.targetAmount == 0) continue;
// price / (factor + 1), price / (factor * (n-1) / n + 1), price / (factor * (n-2)/n + 1)...
uint256 factor = Math.mulDivFloor(
params.slippageFactorD18,
params.numberOfPriceBreaksPerSide - k,
params.numberOfPriceBreaksPerSide
);
sqrtPriceBreaks[k] = Math.divCeil(sqrtPrice, factor + ONE).toUint88();
(addParams[k], tickDeltas[k]) = getScaledAddParams(
spec.pool,
addParams[params.numberOfPriceBreaksPerSide],
spec.ratios,
sqrtPriceBreaks[k],
params.targetAmount,
params.targetIsA
);
}
// right of price
for (uint256 k; k < params.numberOfPriceBreaksPerSide; k++) {
uint256 index = params.numberOfPriceBreaksPerSide + k + 1;
params.targetIsA = true;
params.targetAmount = Math.mulDown(tickDeltas[params.numberOfPriceBreaksPerSide].deltaAOut, 0.99999e18);
if (params.targetAmount == 0) {
sqrtPriceBreaks[index - 1] = type(uint88).max;
break;
}
{
// price * (factor * (1 / n) + 1), price * (factor * (2 / n) + 1), price / (factor * (3 / n) + 1)...
uint256 factor = Math.mulDivFloor(params.slippageFactorD18, k + 1, params.numberOfPriceBreaksPerSide);
sqrtPriceBreaks[index] = Math.mulCeil(sqrtPrice, factor + ONE).toUint88();
}
(addParams[index], tickDeltas[index]) = getScaledAddParams(
spec.pool,
addParams[params.numberOfPriceBreaksPerSide],
spec.ratios,
sqrtPriceBreaks[index],
params.targetAmount,
params.targetIsA
);
}
sortAddParamsArray(addParams, tickDeltas);
packedArgs = PackLib.packAddLiquidityArgsArray(addParams);
packedSqrtPriceBreaks = PackLib.packArray(sqrtPriceBreaks);
}
/** @notice Compute add params for N price breaks around price with max right
* slippage of p * (1 + f) and max left slippage of p / (1 + f).
*
* The user specifies the max A and B they are willing to spend. If the
* price of the pool does not move, the user will spend exactly this
* amount. If the price moves left, then the user would like to spend the
* specified B amount, but will end up spending less A. Conversely, if the
* price moves right, the user will spend their max A amount, but less B.
*
* By having more break points, we make it so that the user gets as much
* liquidity as possible at the new price. With too few break points, the
* user will not have bought as much liquidity as they could have.
*/
function getAddLiquidityParams(
IMaverickV2PoolLens.AddParamsViewInputs memory params
)
internal
view
returns (
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs,
uint88[] memory sqrtPriceBreaks,
IMaverickV2Pool.AddLiquidityParams[] memory addParams,
IMaverickV2PoolLens.TickDeltas[] memory tickDeltas
)
{
RelativeLiquidityInput memory input;
input.poolTickSpacing = params.pool.tickSpacing();
(input.tokenAScale, input.tokenBScale) = tokenScales(params.pool);
input.ticks = params.ticks;
input.relativeLiquidityAmounts = params.relativeLiquidityAmounts;
uint256 length = params.addSpec.numberOfPriceBreaksPerSide * 2 + 1;
addParams = new IMaverickV2Pool.AddLiquidityParams[](length);
tickDeltas = new IMaverickV2PoolLens.TickDeltas[](length);
// initially target the bigger amount at pool price
input.targetIsA = params.addSpec.targetIsA;
input.targetAmount = params.addSpec.targetAmount;
uint256 startingPrice = PoolInspection.poolSqrtPrice(params.pool);
input.newSqrtPrice = startingPrice;
bool success;
(
addParams[params.addSpec.numberOfPriceBreaksPerSide],
tickDeltas[params.addSpec.numberOfPriceBreaksPerSide],
success
) = lpBalanceForArrayOfTargetAmounts(input, params.pool, params.kind);
if (!success) revert LiquidityUtilitiesFailedToFindDeltaAmounts();
sqrtPriceBreaks = new uint88[](length);
sqrtPriceBreaks[params.addSpec.numberOfPriceBreaksPerSide] = input.newSqrtPrice.toUint88();
// compute slippage price
// look through N breaks
// compute deltas
// convert to addParams
//
// left of price,
for (uint256 k; k < params.addSpec.numberOfPriceBreaksPerSide; k++) {
input.targetIsA = false;
input.targetAmount = tickDeltas[params.addSpec.numberOfPriceBreaksPerSide].deltaBOut;
// price / (factor + 1), price / (factor * (n-1) / n + 1), price / (factor * (n-2)/n + 1)...
uint256 factor = Math.mulDivFloor(
params.addSpec.slippageFactorD18,
params.addSpec.numberOfPriceBreaksPerSide - k,
params.addSpec.numberOfPriceBreaksPerSide
);
sqrtPriceBreaks[k] = Math.divCeil(startingPrice, factor + ONE).toUint88();
input.newSqrtPrice = sqrtPriceBreaks[k];
(addParams[k], tickDeltas[k], success) = lpBalanceForArrayOfTargetAmounts(input, params.pool, params.kind);
if (!success) sqrtPriceBreaks[k] = 0;
}
// right of price
for (uint256 k; k < params.addSpec.numberOfPriceBreaksPerSide; k++) {
uint256 index = params.addSpec.numberOfPriceBreaksPerSide + k + 1;
input.targetIsA = true;
input.targetAmount = tickDeltas[params.addSpec.numberOfPriceBreaksPerSide].deltaAOut;
// price * (factor * (1 / n) + 1), price * (factor * (2 / n) + 1), price / (factor * (3 / n) + 1)...
uint256 factor = Math.mulDivFloor(
params.addSpec.slippageFactorD18,
k + 1,
params.addSpec.numberOfPriceBreaksPerSide
);
sqrtPriceBreaks[index] = Math.mulCeil(startingPrice, factor + ONE).toUint88();
input.newSqrtPrice = sqrtPriceBreaks[index];
(addParams[index], tickDeltas[index], success) = lpBalanceForArrayOfTargetAmounts(
input,
params.pool,
params.kind
);
if (!success) {
sqrtPriceBreaks[index - 1] = type(uint88).max;
break;
}
}
packedArgs = PackLib.packAddLiquidityArgsArray(addParams);
packedSqrtPriceBreaks = PackLib.packArray(sqrtPriceBreaks);
}
function deltaReservesFromDeltaLiquidity(
uint256 poolTickSpacing,
uint256 tokenAScale,
uint256 tokenBScale,
int32 tick,
uint128 deltaLiquidity,
uint256 tickSqrtPrice
) internal pure returns (uint256 deltaA, uint256 deltaB) {
(uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice) = TickMath.tickSqrtPrices(poolTickSpacing, tick);
{
uint256 lowerEdge = Math.max(sqrtLowerTickPrice, tickSqrtPrice);
deltaB = Math.mulDivCeil(
deltaLiquidity,
ONE * Math.clip(sqrtUpperTickPrice, lowerEdge),
sqrtUpperTickPrice * lowerEdge
);
}
if (tickSqrtPrice < sqrtLowerTickPrice) {
deltaA = 0;
} else if (tickSqrtPrice >= sqrtUpperTickPrice) {
deltaA = Math.mulCeil(deltaLiquidity, sqrtUpperTickPrice - sqrtLowerTickPrice);
deltaB = 0;
} else {
deltaA = Math.mulCeil(
deltaLiquidity,
Math.clip(Math.min(sqrtUpperTickPrice, tickSqrtPrice), sqrtLowerTickPrice)
);
}
deltaA = Math.ammScaleToTokenScale(deltaA, tokenAScale, true);
deltaB = Math.ammScaleToTokenScale(deltaB, tokenBScale, true);
}
function deltasFromBinLiquidityAmounts(
uint256 poolTickSpacing,
uint256 tokenAScale,
uint256 tokenBScale,
int32[] memory ticks,
uint128[] memory liquidityAmounts,
uint256 newSqrtPrice
) internal pure returns (uint256 deltaA, uint256 deltaB, uint256[] memory deltaAs, uint256[] memory deltaBs) {
uint256 length = ticks.length;
deltaAs = new uint256[](length);
deltaBs = new uint256[](length);
for (uint256 k = 0; k < length; k++) {
(deltaAs[k], deltaBs[k]) = deltaReservesFromDeltaLiquidity(
poolTickSpacing,
tokenAScale,
tokenBScale,
ticks[k],
liquidityAmounts[k],
newSqrtPrice
);
deltaA += deltaAs[k];
deltaB += deltaBs[k];
}
}
struct StateInfo {
uint256 reserveA;
uint256 reserveB;
uint256 binTotalSupply;
int32 activeTick;
}
struct RelativeLiquidityInput {
uint256 poolTickSpacing;
uint256 tokenAScale;
uint256 tokenBScale;
int32[] ticks;
uint128[] relativeLiquidityAmounts;
uint256 targetAmount;
bool targetIsA;
uint256 newSqrtPrice;
}
function _deltasFromRelativeBinLiquidityAmountsAndTargetAmount(
RelativeLiquidityInput memory input
) internal pure returns (IMaverickV2PoolLens.TickDeltas memory output, bool success) {
uint256 deltaA;
uint256 deltaB;
success = true;
(deltaA, deltaB, output.deltaAs, output.deltaBs) = deltasFromBinLiquidityAmounts(
input.poolTickSpacing,
input.tokenAScale,
input.tokenBScale,
input.ticks,
input.relativeLiquidityAmounts,
input.newSqrtPrice
);
uint256 deltaDenominator = input.targetIsA ? deltaA : deltaB;
if ((input.targetIsA && deltaA == 0) || (!input.targetIsA && deltaB == 0)) return (output, false);
for (uint256 k; k < input.ticks.length; k++) {
output.deltaAs[k] = Math
.mulDivFloor(Math.clip(output.deltaAs[k], 1), input.targetAmount, deltaDenominator)
.toUint128();
output.deltaBs[k] = Math
.mulDivFloor(Math.clip(output.deltaBs[k], 1), input.targetAmount, deltaDenominator)
.toUint128();
if (output.deltaAs[k] < MIN_DELTA_RESERVES && output.deltaBs[k] < MIN_DELTA_RESERVES)
return (output, false);
output.deltaAOut += output.deltaAs[k];
output.deltaBOut += output.deltaBs[k];
}
}
function lpBalanceForArrayOfTargetAmountsEmptyPool(
IMaverickV2PoolLens.TickDeltas memory tickDeltas,
RelativeLiquidityInput memory input,
StateInfo memory existingState,
uint8 kind
) internal pure returns (IMaverickV2Pool.AddLiquidityParams memory addParams) {
addParams.ticks = input.ticks;
addParams.kind = kind;
addParams.amounts = new uint128[](input.ticks.length);
for (uint256 k; k < input.ticks.length; k++) {
bool tickIsActive = existingState.activeTick == input.ticks[k];
addParams.amounts[k] = lpBalanceRequiredForTargetReserveAmountsOneBinTick(
input,
input.ticks[k],
Math.tokenScaleToAmmScale(tickDeltas.deltaAs[k], input.tokenAScale),
Math.tokenScaleToAmmScale(tickDeltas.deltaBs[k], input.tokenBScale),
tickIsActive ? existingState.reserveA : 0,
tickIsActive ? existingState.reserveB : 0,
tickIsActive ? existingState.binTotalSupply : 0,
input.ticks[k] < existingState.activeTick
).toUint128();
}
}
function lpBalanceForArrayOfTargetAmounts(
RelativeLiquidityInput memory input,
IMaverickV2Pool pool,
uint8 kind
)
internal
view
returns (
IMaverickV2Pool.AddLiquidityParams memory addParams,
IMaverickV2PoolLens.TickDeltas memory tickDeltas,
bool success
)
{
(tickDeltas, success) = _deltasFromRelativeBinLiquidityAmountsAndTargetAmount(input);
addParams.ticks = input.ticks;
addParams.kind = kind;
addParams.amounts = new uint128[](input.ticks.length);
for (uint256 k; k < input.ticks.length; k++) {
addParams.amounts[k] = lpBalanceRequiredForTargetReserveAmountsMultiBinTick(
input,
pool,
input.ticks[k],
kind,
Math.tokenScaleToAmmScale(tickDeltas.deltaAs[k], input.tokenAScale),
Math.tokenScaleToAmmScale(tickDeltas.deltaBs[k], input.tokenBScale)
).toUint128();
}
}
function donateAndSwapData(
uint256 poolTickSpacing,
int32 poolTick,
uint256 poolFee,
IERC20 tokenB,
uint256 targetAmountB,
uint256 targetSqrtPrice
) internal view returns (uint128 deltaLpBalanceB, uint256 swapAmount) {
uint256 tokenBScale = Math.scale(IERC20Metadata(address(tokenB)).decimals());
targetAmountB = Math.tokenScaleToAmmScale(targetAmountB, tokenBScale);
(uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice) = TickMath.tickSqrtPrices(poolTickSpacing, poolTick);
deltaLpBalanceB = Math.mulFloor(targetAmountB, sqrtUpperTickPrice).toUint128();
uint256 liquidity = TickMath.getTickL(0, targetAmountB, sqrtLowerTickPrice, sqrtUpperTickPrice);
if (targetSqrtPrice <= sqrtLowerTickPrice || targetSqrtPrice >= sqrtUpperTickPrice)
revert LiquidityUtilitiesTargetPriceOutOfBounds(targetSqrtPrice, sqrtLowerTickPrice, sqrtUpperTickPrice);
swapAmount = Math.mulDivCeil(
liquidity,
ONE * (targetSqrtPrice - sqrtLowerTickPrice),
targetSqrtPrice * sqrtLowerTickPrice
);
swapAmount = Math.ammScaleToTokenScale(swapAmount, tokenBScale, true);
swapAmount = Math.mulCeil(swapAmount, ONE - poolFee);
}
function getCreatePoolParams(
IMaverickV2PoolLens.CreateAndAddParamsViewInputs memory params,
uint256 protocolFeeRatio
) internal view returns (IMaverickV2PoolLens.CreateAndAddParamsInputs memory output) {
(uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice) = TickMath.tickSqrtPrices(
params.tickSpacing,
params.activeTick
);
RelativeLiquidityInput memory input;
StateInfo memory existingState;
input.poolTickSpacing = params.tickSpacing;
input.tokenAScale = Math.scale(IERC20Metadata(address(params.tokenA)).decimals());
input.tokenBScale = Math.scale(IERC20Metadata(address(params.tokenB)).decimals());
input.ticks = params.ticks;
input.relativeLiquidityAmounts = params.relativeLiquidityAmounts;
input.targetAmount = params.targetAmount;
input.targetIsA = params.targetIsA;
existingState.activeTick = params.activeTick;
output.donateParams.ticks = new int32[](1);
output.donateParams.ticks[0] = params.activeTick;
output.donateParams.amounts = new uint128[](1);
if (sqrtLowerTickPrice != params.sqrtPrice) {
// target price is not tick edge, need to dontate/swap
(output.donateParams.amounts[0], output.swapAmount) = donateAndSwapData(
params.tickSpacing,
params.activeTick,
params.feeAIn,
params.tokenB,
params.initialTargetB,
params.sqrtPrice
);
if (output.donateParams.amounts[0] < MINIMUM_LIQUIDITY)
revert LiquidityUtilitiesInitialTargetBTooSmall(
params.initialTargetB,
output.donateParams.amounts[0],
MINIMUM_LIQUIDITY
);
existingState.binTotalSupply = output.donateParams.amounts[0];
existingState.reserveB = Math.tokenScaleToAmmScale(
params.initialTargetB - output.swapAmount,
input.tokenBScale
);
existingState.reserveA = emulateExactOut(
Math.tokenScaleToAmmScale(output.swapAmount, input.tokenBScale),
Math.tokenScaleToAmmScale(params.initialTargetB, input.tokenBScale),
sqrtLowerTickPrice,
sqrtUpperTickPrice,
params.feeAIn,
protocolFeeRatio
);
(input.newSqrtPrice, ) = TickMath.getTickSqrtPriceAndL(
existingState.reserveA,
existingState.reserveB,
sqrtLowerTickPrice,
sqrtUpperTickPrice
);
} else {
input.newSqrtPrice = sqrtLowerTickPrice;
}
{
(
IMaverickV2PoolLens.TickDeltas memory tickDeltas,
bool success
) = _deltasFromRelativeBinLiquidityAmountsAndTargetAmount(input);
if (!success) revert LiquidityUtilitiesFailedToFindDeltaAmounts();
output.addParams = lpBalanceForArrayOfTargetAmountsEmptyPool(tickDeltas, input, existingState, params.kind);
output.packedAddParams = PackLib.packAddLiquidityArgsToArray(output.addParams);
output.deltaAOut = tickDeltas.deltaAOut;
output.deltaBOut = tickDeltas.deltaBOut;
output.preAddReserveA = existingState.reserveA;
output.preAddReserveB = existingState.reserveB;
}
}
function emulateExactOut(
uint256 amountOut,
uint256 currentReserveB,
uint256 sqrtLowerTickPrice,
uint256 sqrtUpperTickPrice,
uint256 fee,
uint256 protocolFee
) internal pure returns (uint256 amountAIn) {
uint256 existingLiquidity = TickMath.getTickL(0, currentReserveB, sqrtLowerTickPrice, sqrtUpperTickPrice);
if (existingLiquidity == 0) revert LiquidityUtilitiesNoSwapLiquidity();
uint256 binAmountIn = Math.mulDivCeil(
amountOut,
sqrtLowerTickPrice,
Math.invFloor(sqrtLowerTickPrice) - Math.divCeil(amountOut, existingLiquidity)
);
// some of the input is fee
uint256 feeBasis = Math.mulDivCeil(binAmountIn, fee, ONE - fee);
// fee is added to input amount and just increases bin liquidity
// out = in / (1-fee) -> out - fee * out = in -> out = in + fee * out
uint256 inWithoutProtocolFee = binAmountIn + feeBasis;
// add on protocol fee
amountAIn = protocolFee != 0
? Math.clip(inWithoutProtocolFee, Math.mulCeil(feeBasis, protocolFee))
: inWithoutProtocolFee;
}
/**
* @notice Calculates deltaA = liquidity * (sqrt(upper) - sqrt(lower))
* Calculates deltaB = liquidity / sqrt(lower) - liquidity / sqrt(upper),
* i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
*/
function reservesInTickForGivenPrice(
IMaverickV2Pool pool,
int32 tick,
uint256 newSqrtPrice
) internal view returns (IMaverickV2Pool.TickState memory tickState, bool tickLtActive, bool tickGtActive) {
tickState = pool.getTick(tick);
(uint256 lowerSqrtPrice, uint256 upperSqrtPrice) = TickMath.tickSqrtPrices(pool.tickSpacing(), tick);
tickGtActive = newSqrtPrice < lowerSqrtPrice;
tickLtActive = newSqrtPrice >= upperSqrtPrice;
uint256 liquidity = TickMath.getTickL(tickState.reserveA, tickState.reserveB, lowerSqrtPrice, upperSqrtPrice);
if (liquidity == 0) {
(tickState.reserveA, tickState.reserveB) = (0, 0);
} else {
uint256 lowerEdge = Math.max(lowerSqrtPrice, newSqrtPrice);
tickState.reserveA = Math
.mulCeil(liquidity, Math.clip(Math.min(upperSqrtPrice, newSqrtPrice), lowerSqrtPrice))
.toUint128();
tickState.reserveB = Math
.mulDivCeil(liquidity, ONE * Math.clip(upperSqrtPrice, lowerEdge), upperSqrtPrice * lowerEdge)
.toUint128();
}
}
function lpBalanceRequiredForTargetReserveAmountsMultiBinTick(
RelativeLiquidityInput memory input,
IMaverickV2Pool pool,
int32 tick,
uint8 kind,
uint256 amountAMax,
uint256 amountBMax
) internal view returns (uint256 deltaLpBalance) {
(IMaverickV2Pool.TickState memory tickState, bool tickLtActive, ) = reservesInTickForGivenPrice(
pool,
tick,
input.newSqrtPrice
);
if (tickState.reserveB != 0 || tickState.reserveA != 0) {
uint256 liquidity;
{
(uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice) = TickMath.tickSqrtPrices(
input.poolTickSpacing,
tick
);
liquidity = TickMath.getTickL(
tickState.reserveA,
tickState.reserveB,
sqrtLowerTickPrice,
sqrtUpperTickPrice
);
}
uint32 binId = pool.binIdByTickKind(tick, kind);
IMaverickV2Pool.BinState memory bin = pool.getBin(binId);
uint256 numerator = Math.max(1, uint256(tickState.totalSupply)) * Math.max(1, uint256(bin.totalSupply));
if (tickState.reserveA != 0) {
uint256 denominator = Math.max(1, uint256(bin.tickBalance)) * uint256(tickState.reserveA);
amountAMax = Math.max(amountAMax, 1);
deltaLpBalance = Math.mulDivFloor(amountAMax, numerator, denominator);
} else {
deltaLpBalance = type(uint256).max;
}
if (tickState.reserveB != 0) {
uint256 denominator = Math.max(1, uint256(bin.tickBalance)) * uint256(tickState.reserveB);
amountBMax = Math.max(amountBMax, 1);
deltaLpBalance = Math.min(deltaLpBalance, Math.mulDivFloor(amountBMax, numerator, denominator));
}
} else {
deltaLpBalance = emptyTickLpBalanceRequirement(input, tick, amountAMax, amountBMax, tickLtActive);
}
}
function lpBalanceRequiredForTargetReserveAmountsOneBinTick(
RelativeLiquidityInput memory input,
int32 tick,
uint256 amountAMax,
uint256 amountBMax,
uint256 reserveA,
uint256 reserveB,
uint256 binTotalSupply,
bool tickLtActive
) internal pure returns (uint256 deltaLpBalance) {
if (reserveB != 0 || reserveA != 0) {
deltaLpBalance = Math.min(
reserveA == 0 ? type(uint256).max : Math.mulDivFloor(amountAMax, binTotalSupply, reserveA),
reserveB == 0 ? type(uint256).max : Math.mulDivFloor(amountBMax, binTotalSupply, reserveB)
);
} else {
deltaLpBalance = emptyTickLpBalanceRequirement(input, tick, amountAMax, amountBMax, tickLtActive);
}
}
function emptyTickLpBalanceRequirement(
RelativeLiquidityInput memory input,
int32 tick,
uint256 amountAMax,
uint256 amountBMax,
bool tickLtActive
) internal pure returns (uint256 deltaLpBalance) {
(uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice) = TickMath.tickSqrtPrices(input.poolTickSpacing, tick);
if (tickLtActive) {
deltaLpBalance = Math.divFloor(amountAMax, sqrtLowerTickPrice);
} else {
deltaLpBalance = Math.mulFloor(amountBMax, sqrtUpperTickPrice);
}
}
function getBoostedPositionSpec(
IMaverickV2BoostedPosition boostedPosition
) internal view returns (IMaverickV2PoolLens.BoostedPositionSpecification memory spec, int32[] memory ticks) {
spec.pool = boostedPosition.pool();
spec.binIds = boostedPosition.getBinIds();
spec.ratios = boostedPosition.getRatios();
spec.kind = boostedPosition.kind();
ticks = boostedPosition.getTicks();
}
/**
* @notice Sort ticks and amounts in addParams struct array in tick order.
* Mutates input params array in place.
*
* @notice Sort operation in this function assumes that all element of the
* input arrays have the same tick ordering.
*/
function sortAddParamsArray(
IMaverickV2Pool.AddLiquidityParams[] memory addParams,
IMaverickV2PoolLens.TickDeltas[] memory tickDeltas
) internal pure {
uint256 breakPoints = addParams.length;
uint256 length = addParams[0].ticks.length;
for (uint256 i = 0; i < length - 1; i++) {
for (uint256 j = 0; j < length - i - 1; j++) {
// compare
if (addParams[0].ticks[j] > addParams[0].ticks[j + 1]) {
// if there is a mis-ordering, flip values in all addParam structs
for (uint256 k = 0; k < breakPoints; k++) {
(addParams[k].ticks[j], addParams[k].ticks[j + 1]) = (
addParams[k].ticks[j + 1],
addParams[k].ticks[j]
);
(addParams[k].amounts[j], addParams[k].amounts[j + 1]) = (
addParams[k].amounts[j + 1],
addParams[k].amounts[j]
);
(tickDeltas[k].deltaAs[j], tickDeltas[k].deltaAs[j + 1]) = (
tickDeltas[k].deltaAs[j + 1],
tickDeltas[k].deltaAs[j]
);
(tickDeltas[k].deltaBs[j], tickDeltas[k].deltaBs[j + 1]) = (
tickDeltas[k].deltaBs[j + 1],
tickDeltas[k].deltaBs[j]
);
}
}
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IMaverickV2Factory} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Factory.sol";
import {EMPTY_PRICE_BREAKS} from "@maverick/v2-common/contracts/libraries/Constants.sol";
import {PoolInspection} from "./libraries/PoolInspection.sol";
import {IMaverickV2Position} from "./interfaces/IMaverickV2Position.sol";
import {IMaverickV2PoolLens} from "./interfaces/IMaverickV2PoolLens.sol";
import {IMaverickV2BoostedPosition} from "./interfaces/IMaverickV2BoostedPosition.sol";
import {IMaverickV2LiquidityManager} from "./interfaces/IMaverickV2LiquidityManager.sol";
import {IMaverickV2BoostedPositionFactory} from "./interfaces/IMaverickV2BoostedPositionFactory.sol";
import {IWETH9} from "./paymentbase/IWETH9.sol";
import {ArgPacker} from "./liquiditybase/ArgPacker.sol";
import {State} from "./paymentbase/State.sol";
import {ExactOutputSlim} from "./routerbase/ExactOutputSlim.sol";
import {LiquidityUtilities} from "./libraries/LiquidityUtilities.sol";
import {Checks} from "./base/Checks.sol";
import {MigrateBins} from "./base/MigrateBins.sol";
/**
* @notice Maverick liquidity management contract that provides helper
* functions for minting either NFT liquidity positions or boosted positions
* which are fungible positions in a Maverick V2 pool. While this contract
* does have public payment callback functions, these are access controlled
* so that they can only be called by a factory pool; so it is safe to approve
* this contract to spend a caller's tokens.
*
* This contract inherits "Check" functions that can be multicalled with
* liquidity management functions to create slippage and deadline constraints on
* transactions.
*
*
* @dev This contract has a multicall interface and all public functions are
* payable which facilitates multicall combinations of both payable
* interactions and non-payable interactions.
*
* @dev addLiquidity parameters are specified as a lookup table of prices where
* the caller specifies packedSqrtPriceBreaks and packedArgs. During the add
* operation, this contract queries the pool for its current sqrtPrice and then
* looks up this price relative to the price breaks array (the array is packed
* as bytes using the conventions in the inherited ArgPacker contract to save
* calldata space). If the current pool sqrt price is in between the N and N+1
* elements of the packedSqrtPriceBreaks array, then the add parameters from the
* Nth element of the packedArgs array are used in the add liquidity call.
*
* @dev This lookup table approach provides a flexible way for callers to
* manage price slippage between the time they submit their transaction and the
* time it is executed. The MaverickV2PoolLens contract provides a number of
* helper function to create this slippage lookup table.
*/
contract MaverickV2LiquidityManager is Checks, ExactOutputSlim, ArgPacker, MigrateBins, IMaverickV2LiquidityManager {
/// @inheritdoc IMaverickV2LiquidityManager
IMaverickV2Position public immutable position;
/// @inheritdoc IMaverickV2LiquidityManager
IMaverickV2BoostedPositionFactory public immutable boostedPositionFactory;
constructor(
IMaverickV2Factory _factory,
IWETH9 _weth,
IMaverickV2Position _position,
IMaverickV2BoostedPositionFactory _boostedPositionFactory
) State(_factory, _weth) {
position = _position;
boostedPositionFactory = _boostedPositionFactory;
}
///////////////////////////
//// Pool functions
///////////////////////////
/// @inheritdoc IMaverickV2LiquidityManager
function createPool(
uint64 fee,
uint16 tickSpacing,
uint32 lookback,
IERC20 tokenA,
IERC20 tokenB,
int32 activeTick,
uint8 kinds
) public payable returns (IMaverickV2Pool pool) {
pool = factory().create(fee, fee, tickSpacing, lookback, tokenA, tokenB, activeTick, kinds);
}
/// @inheritdoc IMaverickV2LiquidityManager
function createPool(
uint64 feeAIn,
uint64 feeBIn,
uint16 tickSpacing,
uint32 lookback,
IERC20 tokenA,
IERC20 tokenB,
int32 activeTick,
uint8 kinds
) public payable returns (IMaverickV2Pool pool) {
pool = factory().create(feeAIn, feeBIn, tickSpacing, lookback, tokenA, tokenB, activeTick, kinds);
}
/// @inheritdoc IMaverickV2LiquidityManager
function addLiquidity(
IMaverickV2Pool pool,
address recipient,
uint256 subaccount,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs
) public payable returns (uint256 tokenAAmount, uint256 tokenBAmount, uint32[] memory binIds) {
uint256 sqrtPrice = PoolInspection.poolSqrtPrice(pool);
uint256 priceIndex = LiquidityUtilities.priceIndexFromPriceBreaks(sqrtPrice, packedSqrtPriceBreaks);
IMaverickV2Pool.AddLiquidityParams memory args = unpackAddLiquidityArgs(packedArgs[priceIndex]);
(tokenAAmount, tokenBAmount, binIds) = pool.addLiquidity(recipient, subaccount, args, abi.encode(msg.sender));
}
/// @inheritdoc IMaverickV2LiquidityManager
function donateLiquidity(IMaverickV2Pool pool, IMaverickV2Pool.AddLiquidityParams memory args) public payable {
pool.addLiquidity(address(position), 0, args, abi.encode(msg.sender));
}
/// @inheritdoc IMaverickV2LiquidityManager
function createPoolAtPriceAndAddLiquidityToSender(
IMaverickV2PoolLens.CreateAndAddParamsInputs memory params
)
public
payable
returns (
IMaverickV2Pool pool,
uint256 tokenAAmount,
uint256 tokenBAmount,
uint32[] memory binIds,
uint256 tokenId
)
{
return createPoolAtPriceAndAddLiquidity(msg.sender, params);
}
/// @inheritdoc IMaverickV2LiquidityManager
function createPoolAtPriceAndAddLiquidity(
address recipient,
IMaverickV2PoolLens.CreateAndAddParamsInputs memory params
)
public
payable
returns (
IMaverickV2Pool pool,
uint256 tokenAAmount,
uint256 tokenBAmount,
uint32[] memory binIds,
uint256 tokenId
)
{
pool = createPool(
params.feeAIn,
params.feeBIn,
params.tickSpacing,
params.lookback,
params.tokenA,
params.tokenB,
params.activeTick,
params.kinds
);
if (params.swapAmount != 0) {
donateLiquidity(pool, params.donateParams);
exactOutputSingleMinimal(recipient, pool, true, params.swapAmount, type(int32).max);
}
(tokenAAmount, tokenBAmount, binIds, tokenId) = mintPositionNft(
pool,
recipient,
EMPTY_PRICE_BREAKS,
params.packedAddParams
);
}
function maverickV2AddLiquidityCallback(
IERC20 tokenA,
IERC20 tokenB,
uint256 amountA,
uint256 amountB,
bytes calldata data
) public {
if (!factory().isFactoryPool(IMaverickV2Pool(msg.sender))) revert LiquidityManagerNotFactoryPool();
address payer = abi.decode(data, (address));
if (amountA != 0) {
pay(tokenA, payer, msg.sender, amountA);
}
if (amountB != 0) {
pay(tokenB, payer, msg.sender, amountB);
}
}
///////////////////////////
//// Position NFT functions
///////////////////////////
/// @inheritdoc IMaverickV2LiquidityManager
function addPositionLiquidityToSenderByTokenIndex(
IMaverickV2Pool pool,
uint256 index,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs
) public payable returns (uint256 tokenAAmount, uint256 tokenBAmount, uint32[] memory binIds) {
(tokenAAmount, tokenBAmount, binIds) = addLiquidity(
pool,
address(position),
position.tokenOfOwnerByIndex(msg.sender, index),
packedSqrtPriceBreaks,
packedArgs
);
}
/// @inheritdoc IMaverickV2LiquidityManager
function addPositionLiquidityToRecipientByTokenIndex(
IMaverickV2Pool pool,
address recipient,
uint256 index,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs
) public payable returns (uint256 tokenAAmount, uint256 tokenBAmount, uint32[] memory binIds) {
(tokenAAmount, tokenBAmount, binIds) = addLiquidity(
pool,
address(position),
position.tokenOfOwnerByIndex(recipient, index),
packedSqrtPriceBreaks,
packedArgs
);
}
/// @inheritdoc IMaverickV2LiquidityManager
function mintPositionNft(
IMaverickV2Pool pool,
address recipient,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs
) public payable returns (uint256 tokenAAmount, uint256 tokenBAmount, uint32[] memory binIds, uint256 tokenId) {
(tokenAAmount, tokenBAmount, binIds) = addLiquidity(
pool,
address(position),
position.nextTokenId(),
packedSqrtPriceBreaks,
packedArgs
);
tokenId = position.mint(recipient, pool, binIds);
}
/// @inheritdoc IMaverickV2LiquidityManager
function mintPositionNftToSender(
IMaverickV2Pool pool,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs
) public payable returns (uint256 tokenAAmount, uint256 tokenBAmount, uint32[] memory binIds, uint256 tokenId) {
return mintPositionNft(pool, msg.sender, packedSqrtPriceBreaks, packedArgs);
}
///////////////////////////
//// Booste Position functions
///////////////////////////
/// @inheritdoc IMaverickV2LiquidityManager
function migrateBoostedPosition(IMaverickV2BoostedPosition boostedPosition) public payable {
boostedPosition.migrateBinLiquidityToRoot();
}
/// @inheritdoc IMaverickV2LiquidityManager
function skimBoostedPosition(
IMaverickV2BoostedPosition boostedPosition,
address recipient
) public payable returns (uint256 tokenAAmount, uint256 tokenBAmount) {
(tokenAAmount, tokenBAmount) = boostedPosition.skim(recipient);
}
/// @inheritdoc IMaverickV2LiquidityManager
function mintBoostedPosition(
IMaverickV2BoostedPosition boostedPosition,
address recipient
) public payable returns (uint256 mintedLpAmount) {
mintedLpAmount = boostedPosition.mint(recipient);
}
/// @inheritdoc IMaverickV2LiquidityManager
function addLiquidityAndMintBoostedPosition(
address recipient,
IMaverickV2BoostedPosition boostedPosition,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs
) public payable virtual returns (uint256 mintedLpAmount, uint256 tokenAAmount, uint256 tokenBAmount) {
boostedPosition.migrateBinLiquidityToRoot();
if (boostedPosition.skimmableAmount() != 0) skimBoostedPosition(boostedPosition, recipient);
(tokenAAmount, tokenBAmount, ) = addLiquidity(
boostedPosition.pool(),
address(boostedPosition),
0,
packedSqrtPriceBreaks,
packedArgs
);
mintedLpAmount = boostedPosition.mint(recipient);
}
/// @inheritdoc IMaverickV2LiquidityManager
function addLiquidityAndMintBoostedPositionToSender(
IMaverickV2BoostedPosition boostedPosition,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs
) public payable returns (uint256 mintedLpAmount, uint256 tokenAAmount, uint256 tokenBAmount) {
return addLiquidityAndMintBoostedPosition(msg.sender, boostedPosition, packedSqrtPriceBreaks, packedArgs);
}
/// @inheritdoc IMaverickV2LiquidityManager
function createBoostedPositionAndAddLiquidityToSender(
IMaverickV2PoolLens.CreateBoostedPositionInputs memory params
)
public
payable
returns (
IMaverickV2BoostedPosition boostedPosition,
uint256 mintedLpAmount,
uint256 tokenAAmount,
uint256 tokenBAmount
)
{
return createBoostedPositionAndAddLiquidity(msg.sender, params);
}
/// @inheritdoc IMaverickV2LiquidityManager
function createBoostedPositionAndAddLiquidity(
address recipient,
IMaverickV2PoolLens.CreateBoostedPositionInputs memory params
)
public
payable
virtual
returns (
IMaverickV2BoostedPosition boostedPosition,
uint256 mintedLpAmount,
uint256 tokenAAmount,
uint256 tokenBAmount
)
{
boostedPosition = boostedPositionFactory.createBoostedPosition(
params.bpSpec.pool,
params.bpSpec.binIds,
params.bpSpec.ratios,
params.bpSpec.kind
);
(tokenAAmount, tokenBAmount, ) = addLiquidity(
params.bpSpec.pool,
address(boostedPosition),
0,
params.packedSqrtPriceBreaks,
params.packedArgs
);
mintedLpAmount = boostedPosition.mint(recipient);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IMaverickV2Factory} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Factory.sol";
import {MaverickV2LiquidityManager} from "@maverick/v2-supplemental/contracts/MaverickV2LiquidityManager.sol";
import {IMaverickV2PoolLens} from "@maverick/v2-supplemental/contracts/interfaces/IMaverickV2PoolLens.sol";
import {IMaverickV2BoostedPosition} from "@maverick/v2-supplemental/contracts/interfaces/IMaverickV2BoostedPosition.sol";
import {IWETH9} from "@maverick/v2-supplemental/contracts/paymentbase/IWETH9.sol";
import {IMaverickV2Position} from "@maverick/v2-supplemental/contracts/interfaces/IMaverickV2Position.sol";
import {IMaverickV2BoostedPositionFactory} from "@maverick/v2-supplemental/contracts/interfaces/IMaverickV2BoostedPositionFactory.sol";
import {IMaverickV2Reward} from "./interfaces/IMaverickV2Reward.sol";
import {IMaverickV2RewardRouter} from "./interfaces/IMaverickV2RewardRouter.sol";
import {IMaverickV2RewardFactory} from "./interfaces/IMaverickV2RewardFactory.sol";
import {IMaverickV2VotingEscrow} from "./interfaces/IMaverickV2VotingEscrow.sol";
import {IMaverickV2VotingEscrowWSync} from "./interfaces/IMaverickV2VotingEscrowWSync.sol";
/**
* @notice Liquidity and Reward contract to facilitate multi-step interactions
* with adding and staking liquidity in Maverick V2. This contracts inherits
* all of the functionality of `MaverickV2LiquidityManager` that allows the
* creation of pools and BPs and adds mechanisms to interact with the various
* reward and ve functionality that are present in v2-rewards. All of the
* functions are specified as `payable` to enable multicall transactions that
* involve functions that require ETH and those that do not.
*/
contract MaverickV2RewardRouter is IMaverickV2RewardRouter, MaverickV2LiquidityManager {
using SafeERC20 for IERC20;
/// @inheritdoc IMaverickV2RewardRouter
IMaverickV2RewardFactory public immutable rewardFactory;
constructor(
IMaverickV2Factory _factory,
IWETH9 _weth,
IMaverickV2Position _position,
IMaverickV2BoostedPositionFactory _boostedPositionFactory,
IMaverickV2RewardFactory _rewardFactory
) MaverickV2LiquidityManager(_factory, _weth, _position, _boostedPositionFactory) {
rewardFactory = _rewardFactory;
}
/// @inheritdoc IMaverickV2RewardRouter
function stake(
IMaverickV2Reward reward,
uint256 tokenId
) public payable returns (uint256 amount, uint256 stakedTokenId) {
stakedTokenId = tokenId;
if (stakedTokenId == 0) {
if (reward.tokenOfOwnerByIndexExists(msg.sender, 0)) {
stakedTokenId = reward.tokenOfOwnerByIndex(msg.sender, 0);
} else {
stakedTokenId = reward.mint(msg.sender);
}
}
return reward.stake(stakedTokenId);
}
/// @inheritdoc IMaverickV2RewardRouter
function transferAndStake(
IMaverickV2Reward reward,
uint256 tokenId,
uint256 _amount
) public payable returns (uint256 amount, uint256 stakedTokenId) {
reward.stakingToken().safeTransferFrom(msg.sender, address(reward.vault()), _amount);
return stake(reward, tokenId);
}
/// @inheritdoc IMaverickV2RewardRouter
function notifyRewardAmount(
IMaverickV2Reward reward,
IERC20 rewardToken,
uint256 duration
) public payable returns (uint256 _duration) {
return reward.notifyRewardAmount(rewardToken, duration);
}
/// @inheritdoc IMaverickV2RewardRouter
function transferAndNotifyRewardAmount(
IMaverickV2Reward reward,
IERC20 rewardToken,
uint256 duration,
uint256 amount
) public payable returns (uint256 _duration) {
rewardToken.safeTransferFrom(msg.sender, address(reward), amount);
return reward.notifyRewardAmount(rewardToken, duration);
}
/// @inheritdoc IMaverickV2RewardRouter
function createBoostedPositionAndAddLiquidityAndStake(
address recipient,
IMaverickV2PoolLens.CreateBoostedPositionInputs memory params,
IERC20[] memory rewardTokens,
IMaverickV2VotingEscrow[] memory veTokens
)
public
payable
returns (
IMaverickV2BoostedPosition boostedPosition,
uint256 mintedLpAmount,
uint256 tokenAAmount,
uint256 tokenBAmount,
uint256 stakeAmount,
IMaverickV2Reward reward,
uint256 tokenId
)
{
(boostedPosition, mintedLpAmount, tokenAAmount, tokenBAmount) = createBoostedPositionAndAddLiquidity(
address(this),
params
);
reward = rewardFactory.createRewardsContract(boostedPosition, rewardTokens, veTokens);
tokenId = reward.mint(recipient);
boostedPosition.transfer(address(reward.vault()), boostedPosition.balanceOf(address(this)));
(stakeAmount, ) = reward.stake(tokenId);
}
/// @inheritdoc IMaverickV2RewardRouter
function createBoostedPositionAndAddLiquidityAndStakeToSender(
IMaverickV2PoolLens.CreateBoostedPositionInputs memory params,
IERC20[] memory rewardTokens,
IMaverickV2VotingEscrow[] memory veTokens
)
public
payable
returns (
IMaverickV2BoostedPosition boostedPosition,
uint256 mintedLpAmount,
uint256 tokenAAmount,
uint256 tokenBAmount,
uint256 stakeAmount,
IMaverickV2Reward reward,
uint256 tokenId
)
{
return createBoostedPositionAndAddLiquidityAndStake(msg.sender, params, rewardTokens, veTokens);
}
/// @inheritdoc IMaverickV2RewardRouter
function addLiquidityAndMintBoostedPositionAndStake(
uint256 tokenId,
IMaverickV2BoostedPosition boostedPosition,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs,
IMaverickV2Reward reward
) public payable returns (uint256 mintedLpAmount, uint256 tokenAAmount, uint256 tokenBAmount, uint256 stakeAmount) {
(mintedLpAmount, tokenAAmount, tokenBAmount) = addLiquidityAndMintBoostedPosition(
address(reward.vault()),
boostedPosition,
packedSqrtPriceBreaks,
packedArgs
);
(stakeAmount, ) = reward.stake(tokenId);
}
/// @inheritdoc IMaverickV2RewardRouter
function addLiquidityAndMintBoostedPositionAndStakeToSender(
uint256 sendersTokenIndex,
IMaverickV2BoostedPosition boostedPosition,
bytes memory packedSqrtPriceBreaks,
bytes[] memory packedArgs,
IMaverickV2Reward reward
)
public
payable
returns (
uint256 mintedLpAmount,
uint256 tokenAAmount,
uint256 tokenBAmount,
uint256 stakeAmount,
uint256 tokenId
)
{
if (reward.tokenOfOwnerByIndexExists(msg.sender, sendersTokenIndex)) {
tokenId = reward.tokenOfOwnerByIndex(msg.sender, sendersTokenIndex);
} else {
tokenId = reward.mint(msg.sender);
}
(mintedLpAmount, tokenAAmount, tokenBAmount, stakeAmount) = addLiquidityAndMintBoostedPositionAndStake(
tokenId,
boostedPosition,
packedSqrtPriceBreaks,
packedArgs,
reward
);
}
function mintTokenInRewardToSender(IMaverickV2Reward reward) public payable returns (uint256 tokenId) {
tokenId = reward.mint(msg.sender);
}
function mintTokenInReward(IMaverickV2Reward reward, address recipient) public payable returns (uint256 tokenId) {
tokenId = reward.mint(recipient);
}
/// @inheritdoc IMaverickV2RewardRouter
function sync(
IMaverickV2VotingEscrowWSync ve,
address staker,
uint256[] memory legacyLockupIndexes
) public returns (uint256[] memory newBalance) {
uint256 length = legacyLockupIndexes.length;
newBalance = new uint256[](length);
for (uint256 k; k < length; k++) {
newBalance[k] = ve.sync(staker, k);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {IMigrateBins} from "./IMigrateBins.sol";
abstract contract MigrateBins is IMigrateBins {
/**
* @dev Migrates bins up the stack in the pool.
* @param pool The MaverickV2Pool contract.
* @param binIds An array of bin IDs to migrate.
* @param maxRecursion The maximum recursion depth.
*/
function migrateBinsUpStack(IMaverickV2Pool pool, uint32[] memory binIds, uint32 maxRecursion) public payable {
for (uint256 i = 0; i < binIds.length; i++) {
pool.migrateBinUpStack(binIds[i], maxRecursion);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
// adapted from https://github.com/latticexyz/mud/blob/main/packages/store/src/Slice.sol
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {SafeCast as Cast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {BytesLib} from "./BytesLib.sol";
library PackLib {
using Cast for uint256;
using BytesLib for bytes;
function unpackExactInputSingleArgsAmounts(
bytes memory argsPacked
)
internal
pure
returns (address recipient, IMaverickV2Pool pool, bool tokenAIn, uint256 amountIn, uint256 amountOutMinimum)
{
address pool_;
(recipient, pool_, tokenAIn, amountIn, amountOutMinimum) = argsPacked.toAddressAddressBoolUint128Uint128();
pool = IMaverickV2Pool(pool_);
}
function unpackAddLiquidityArgs(
bytes memory argsPacked
) internal pure returns (IMaverickV2Pool.AddLiquidityParams memory args) {
args.kind = uint8(argsPacked[0]);
args.ticks = unpackInt32Array(argsPacked.slice(1, argsPacked.length - 1));
uint256 startByte = args.ticks.length * 4 + 2;
args.amounts = unpackUint128Array(argsPacked.slice(startByte, argsPacked.length - startByte));
}
function packAddLiquidityArgs(
IMaverickV2Pool.AddLiquidityParams memory args
) internal pure returns (bytes memory argsPacked) {
argsPacked = abi.encodePacked(args.kind);
argsPacked = bytes.concat(argsPacked, packArray(args.ticks));
argsPacked = bytes.concat(argsPacked, packArray(args.amounts));
}
function packAddLiquidityArgsToArray(
IMaverickV2Pool.AddLiquidityParams memory args
) internal pure returns (bytes[] memory argsPacked) {
argsPacked = new bytes[](1);
argsPacked[0] = packAddLiquidityArgs(args);
}
function packAddLiquidityArgsArray(
IMaverickV2Pool.AddLiquidityParams[] memory args
) internal pure returns (bytes[] memory argsPacked) {
argsPacked = new bytes[](args.length);
for (uint256 k; k < args.length; k++) {
argsPacked[k] = packAddLiquidityArgs(args[k]);
}
}
function unpackInt32Array(bytes memory input) internal pure returns (int32[] memory array) {
uint256[] memory output = _unpackArray(input, 4);
assembly ("memory-safe") {
array := output
}
}
function unpackUint128Array(bytes memory input) internal pure returns (uint128[] memory array) {
uint256[] memory output = _unpackArray(input, 16);
assembly ("memory-safe") {
array := output
}
}
function unpackUint88Array(bytes memory input) internal pure returns (uint88[] memory array) {
uint256[] memory output = _unpackArray(input, 11);
assembly ("memory-safe") {
array := output
}
}
function packArray(int32[] memory array) internal pure returns (bytes memory output) {
uint256[] memory input;
assembly ("memory-safe") {
input := array
}
output = _packArray(input, 4);
}
function packArray(uint128[] memory array) internal pure returns (bytes memory output) {
uint256[] memory input;
assembly ("memory-safe") {
input := array
}
output = _packArray(input, 16);
}
function packArray(uint88[] memory array) internal pure returns (bytes memory output) {
uint256[] memory input;
assembly ("memory-safe") {
input := array
}
output = _packArray(input, 11);
}
/*
* @notice [length, array[0], array[1],..., array[length-1]]. length is 1 bytes.
* @dev Unpacked signed array elements will contain "dirty bits". That is,
* this function does not 0xf pad signed return elements.
*/
function _unpackArray(bytes memory input, uint256 elementBytes) internal pure returns (uint256[] memory array) {
uint256 packedPointer;
uint256 arrayLength;
assembly ("memory-safe") {
// read from input pointer + 32 bytes
// pad 1-byte length value to fill 32 bytes (248 pad bits)
arrayLength := shr(248, mload(add(input, 0x20)))
packedPointer := add(input, 0x21)
}
uint256 padRight = 256 - 8 * elementBytes;
assembly ("memory-safe") {
// Allocate a word for each element, and a word for the array's length
let allocateBytes := add(mul(arrayLength, 32), 0x20)
// Allocate memory and update the free memory pointer
array := mload(0x40)
mstore(0x40, add(array, allocateBytes))
// Store array length
mstore(array, arrayLength)
for {
let i := 0
let arrayCursor := add(array, 0x20) // skip array length
let packedCursor := packedPointer
} lt(i, arrayLength) {
// Loop until we reach the end of the array
i := add(i, 1)
arrayCursor := add(arrayCursor, 0x20) // increment array pointer by one word
packedCursor := add(packedCursor, elementBytes) // increment packed pointer by one element size
} {
mstore(arrayCursor, shr(padRight, mload(packedCursor))) // unpack one array element
}
}
}
/*
* @dev [length, array[0], array[1],..., array[length-1]]. length is 1 bytes.
*/
function _packArray(uint256[] memory array, uint256 elementBytes) internal pure returns (bytes memory output) {
// cast to check size fits in 8 bits
uint8 arrayLength = array.length.toUint8();
uint256 packedLength = arrayLength * elementBytes + 1;
output = new bytes(packedLength);
uint256 padLeft = 256 - 8 * elementBytes;
assembly ("memory-safe") {
// Store array length
mstore(add(output, 0x20), shl(248, arrayLength))
for {
let i := 0
let arrayCursor := add(array, 0x20) // skip array length
let packedCursor := add(output, 0x21) // skip length
} lt(i, arrayLength) {
// Loop until we reach the end of the array
i := add(i, 1)
arrayCursor := add(arrayCursor, 0x20) // increment array pointer by one word
packedCursor := add(packedCursor, elementBytes) // increment packed pointer by one element size
} {
mstore(packedCursor, shl(padLeft, mload(arrayCursor))) // pack one array element
}
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
import {IPayableMulticall} from "./IPayableMulticall.sol";
import {Address} from "@openzeppelin/contracts/utils/Address.sol";
// Modified from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/6ba452dea4258afe77726293435f10baf2bed265/contracts/utils/Multicall.sol
/*
* @notice Payable multicall; requires all functions in the multicall to also be
* payable.
*/
abstract contract PayableMulticall is IPayableMulticall {
/**
* @dev This function allows multiple calls to different contract functions
* in a single transaction.
* @param data An array of encoded function call data.
* @return results An array of the results of the function calls.
*/
function multicall(bytes[] calldata data) external payable returns (bytes[] memory results) {
results = new bytes[](data.length);
for (uint256 i = 0; i < data.length; i++) {
results[i] = Address.functionDelegateCall(address(this), data[i]);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Address} from "@openzeppelin/contracts/utils/Address.sol";
import {TransferLib} from "@maverick/v2-common/contracts/libraries/TransferLib.sol";
import {PayableMulticall} from "@maverick/v2-common/contracts/base/PayableMulticall.sol";
import {IWETH9} from "./IWETH9.sol";
import {State} from "./State.sol";
import {IPayment} from "./IPayment.sol";
/**
* @notice Payment helper function that lets user sweep ERC20 tokens off the
* router and liquidity manager. Also provides mechanism to wrap and unwrap
* ETH/WETH so that it can be used in the Maverick pools.
*/
abstract contract Payment is State, PayableMulticall, IPayment {
receive() external payable {
if (IWETH9(msg.sender) != weth()) revert PaymentSenderNotWETH9();
}
/// @inheritdoc IPayment
function unwrapWETH9(uint256 amountMinimum, address recipient) public payable {
uint256 balanceWETH9 = weth().balanceOf(address(this));
if (balanceWETH9 < amountMinimum)
revert PaymentInsufficientBalance(address(weth()), amountMinimum, balanceWETH9);
if (balanceWETH9 > 0) {
weth().withdraw(balanceWETH9);
Address.sendValue(payable(recipient), balanceWETH9);
}
}
/// @inheritdoc IPayment
function sweepToken(IERC20 token, uint256 amountMinimum, address recipient) public payable {
uint256 balanceToken = token.balanceOf(address(this));
if (balanceToken < amountMinimum)
revert PaymentInsufficientBalance(address(token), amountMinimum, balanceToken);
if (balanceToken > 0) {
TransferLib.transfer(token, recipient, balanceToken);
}
}
/// @inheritdoc IPayment
function sweepTokenAmount(IERC20 token, uint256 amount, address recipient) public payable {
TransferLib.transfer(token, recipient, amount);
}
/// @inheritdoc IPayment
function unwrapAndSweep(
IERC20 tokenA,
IERC20 tokenB,
uint256 tokenAAmountMin,
uint256 tokenBAmountMin
) public payable {
if (address(tokenA) == address(weth())) {
unwrapWETH9(tokenAAmountMin, msg.sender);
refundETH();
sweepToken(tokenB, tokenBAmountMin, msg.sender);
} else if (address(tokenB) == address(weth())) {
sweepToken(tokenA, tokenAAmountMin, msg.sender);
unwrapWETH9(tokenBAmountMin, msg.sender);
refundETH();
} else {
sweepToken(tokenA, tokenAAmountMin, msg.sender);
sweepToken(tokenB, tokenBAmountMin, msg.sender);
}
}
/// @inheritdoc IPayment
function refundETH() public payable {
if (address(this).balance > 0) Address.sendValue(payable(msg.sender), address(this).balance);
}
/**
* @notice Internal function to pay tokens or eth.
* @param token ERC20 token to pay.
* @param payer Address of the payer.
* @param recipient Address of the recipient.
* @param value Amount of tokens to pay.
*/
function pay(IERC20 token, address payer, address recipient, uint256 value) internal {
if (IWETH9(address(token)) == weth() && address(this).balance >= value) {
weth().deposit{value: value}();
weth().transfer(recipient, value);
} else if (payer == address(this)) {
TransferLib.transfer(token, recipient, value);
} else {
TransferLib.transferFrom(token, payer, recipient, value);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {SafeCast as Cast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
import {Math} from "@maverick/v2-common/contracts/libraries/Math.sol";
import {PoolLib} from "@maverick/v2-common/contracts/libraries/PoolLib.sol";
import {TickMath} from "@maverick/v2-common/contracts/libraries/TickMath.sol";
library PoolInspection {
using Cast for uint256;
/**
* @dev Calculates the square root price of a given Maverick V2 pool.
* @param pool The Maverick V2 pool to inspect.
* @return sqrtPrice The square root price of the pool.
*/
function poolSqrtPrice(IMaverickV2Pool pool) internal view returns (uint256 sqrtPrice) {
int32 activeTick = pool.getState().activeTick;
IMaverickV2Pool.TickState memory tickState = pool.getTick(activeTick);
(uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice) = TickMath.tickSqrtPrices(
pool.tickSpacing(),
activeTick
);
(sqrtPrice, ) = TickMath.getTickSqrtPriceAndL(
tickState.reserveA,
tickState.reserveB,
sqrtLowerTickPrice,
sqrtUpperTickPrice
);
}
/**
* @dev Retrieves the reserves of a user's subaccount for a specific bin.
*/
function userSubaccountBinReserves(
IMaverickV2Pool pool,
address user,
uint256 subaccount,
uint32 binId
) internal view returns (uint256 amountA, uint256 amountB, int32 tick, uint256 liquidity) {
IMaverickV2Pool.BinState memory bin = pool.getBin(binId);
uint256 userBinLpBalance = pool.balanceOf(user, subaccount, binId);
while (bin.mergeId != 0) {
userBinLpBalance = bin.totalSupply == 0
? 0
: Math.mulDivFloor(userBinLpBalance, bin.mergeBinBalance, bin.totalSupply);
bin = pool.getBin(bin.mergeId);
}
tick = bin.tick;
IMaverickV2Pool.TickState memory tickState = pool.getTick(tick);
uint256 activeBinDeltaLpBalance = Math.min(userBinLpBalance, bin.totalSupply);
uint128 deltaTickBalance = Math
.mulDivDown(activeBinDeltaLpBalance, bin.tickBalance, bin.totalSupply)
.toUint128();
deltaTickBalance = Math.min128(deltaTickBalance, tickState.totalSupply);
(amountA, amountB) = PoolLib.binReserves(
deltaTickBalance,
tickState.reserveA,
tickState.reserveB,
tickState.totalSupply
);
{
(uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice) = TickMath.tickSqrtPrices(
pool.tickSpacing(),
tick
);
liquidity = TickMath.getTickL(amountA, amountB, sqrtLowerTickPrice, sqrtUpperTickPrice);
}
}
/**
* @dev Retrieves the reserves of a token for all bins associated with it.
* Bin reserve amounts are in pool D18 scale units.
*/
function subaccountPositionInformation(
IMaverickV2Pool pool,
address user,
uint256 subaccount,
uint32[] memory binIds
)
internal
view
returns (
uint256 amountA,
uint256 amountB,
uint256[] memory binAAmounts,
uint256[] memory binBAmounts,
int32[] memory ticks,
uint256[] memory liquidities
)
{
binAAmounts = new uint256[](binIds.length);
binBAmounts = new uint256[](binIds.length);
ticks = new int32[](binIds.length);
liquidities = new uint256[](binIds.length);
for (uint256 i; i < binIds.length; i++) {
(binAAmounts[i], binBAmounts[i], ticks[i], liquidities[i]) = userSubaccountBinReserves(
pool,
user,
subaccount,
binIds[i]
);
amountA += binAAmounts[i];
amountB += binBAmounts[i];
}
{
uint256 tokenAScale = pool.tokenAScale();
uint256 tokenBScale = pool.tokenBScale();
amountA = Math.ammScaleToTokenScale(amountA, tokenAScale, false);
amountB = Math.ammScaleToTokenScale(amountB, tokenBScale, false);
}
}
function binLpBalances(
IMaverickV2Pool pool,
uint32[] memory binIds,
uint256 subaccount
) internal view returns (uint128[] memory amounts) {
amounts = new uint128[](binIds.length);
for (uint256 i = 0; i < binIds.length; i++) {
amounts[i] = pool.balanceOf(address(this), subaccount, binIds[i]);
}
}
function lpBalanceForTargetReserveAmounts(
IMaverickV2Pool pool,
uint32 binId,
uint256 amountA,
uint256 amountB,
uint256 scaleA,
uint256 scaleB
) internal view returns (IMaverickV2Pool.AddLiquidityParams memory addParams) {
amountA = Math.tokenScaleToAmmScale(amountA, scaleA);
amountB = Math.tokenScaleToAmmScale(amountB, scaleB);
IMaverickV2Pool.BinState memory bin = pool.getBin(binId);
uint128[] memory amounts = new uint128[](1);
IMaverickV2Pool.TickState memory tickState = pool.getTick(bin.tick);
uint256 numerator = Math.max(1, uint256(tickState.totalSupply)) * Math.max(1, uint256(bin.totalSupply));
if (amountA != 0) {
uint256 denominator = Math.max(1, uint256(bin.tickBalance)) * uint256(tickState.reserveA);
amounts[0] = Math.mulDivFloor(amountA, numerator, denominator).toUint128();
}
if (amountB != 0) {
uint256 denominator = Math.max(1, uint256(bin.tickBalance)) * uint256(tickState.reserveB);
if (amountA != 0) {
amounts[0] = Math.min128(amounts[0], Math.mulDivFloor(amountB, numerator, denominator).toUint128());
} else {
amounts[0] = Math.mulDivFloor(amountB, numerator, denominator).toUint128();
}
}
{
int32[] memory ticks = new int32[](1);
ticks[0] = bin.tick;
addParams = IMaverickV2Pool.AddLiquidityParams({kind: bin.kind, ticks: ticks, amounts: amounts});
}
}
function maxRemoveParams(
IMaverickV2Pool pool,
uint32 binId,
address user,
uint256 subaccount
) internal view returns (IMaverickV2Pool.RemoveLiquidityParams memory params) {
uint32[] memory binIds = new uint32[](1);
uint128[] memory amounts = new uint128[](1);
binIds[0] = binId;
amounts[0] = pool.balanceOf(user, subaccount, binId);
params = IMaverickV2Pool.RemoveLiquidityParams({binIds: binIds, amounts: amounts});
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
import {SafeCast as Cast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {IMaverickV2Pool} from "../interfaces/IMaverickV2Pool.sol";
import {TickMath} from "./TickMath.sol";
import {Math} from "./Math.sol";
/**
* @notice Library of pool functions.
*/
library PoolLib {
using Cast for uint256;
struct AddLiquidityInfo {
uint256 deltaA;
uint256 deltaB;
bool tickLtActive;
uint256 tickSpacing;
int32 tick;
}
/**
* @notice Check to ensure that the ticks are in ascending order and amount
* array is same length as tick array.
* @param ticks An array of int32 values representing ticks to be checked.
* @param amountsLength Amount array length.
*/
function uniqueOrderedTicksCheck(int32[] memory ticks, uint256 amountsLength) internal pure {
unchecked {
if (ticks.length != amountsLength)
revert IMaverickV2Pool.PoolTicksAmountsLengthMismatch(ticks.length, amountsLength);
int32 lastTick = type(int32).min;
for (uint256 i; i < ticks.length; ) {
if (ticks[i] <= lastTick) revert IMaverickV2Pool.PoolTicksNotSorted(i, lastTick, ticks[i]);
lastTick = ticks[i];
i = i + 1;
}
}
}
/**
* @notice Compute bin reserves assuming the bin is not merged; not accurate
* reflection of reserves for merged bins.
* @param bin The storage reference to the state for this bin.
* @param tick The memory reference to the state for this tick.
* @return reserveA The reserve amount for token A.
* @return reserveB The reserve amount for token B.
*/
function binReserves(
IMaverickV2Pool.BinState storage bin,
IMaverickV2Pool.TickState memory tick
) internal view returns (uint128 reserveA, uint128 reserveB) {
return binReserves(bin.tickBalance, tick.reserveA, tick.reserveB, tick.totalSupply);
}
/**
* @notice Compute bin reserves assuming the bin is not merged; not accurate
* reflection of reserves for merged bins.
* @param tickBalance Bin's balance in the tick.
* @param tickReserveA Tick's tokenA reserves.
* @param tickReserveB Tick's tokenB reserves.
* @param tickTotalSupply Tick total supply of bin balances.
*/
function binReserves(
uint128 tickBalance,
uint128 tickReserveA,
uint128 tickReserveB,
uint128 tickTotalSupply
) internal pure returns (uint128 reserveA, uint128 reserveB) {
if (tickTotalSupply != 0) {
reserveA = reserveValue(tickReserveA, tickBalance, tickTotalSupply);
reserveB = reserveValue(tickReserveB, tickBalance, tickTotalSupply);
}
}
/**
* @notice Reserves of a bin in a tick.
* @param tickReserve Tick reserve amount in a given token.
* @param tickBalance Bin's balance in the tick.
* @param tickTotalSupply Tick total supply of bin balances.
*/
function reserveValue(
uint128 tickReserve,
uint128 tickBalance,
uint128 tickTotalSupply
) internal pure returns (uint128 reserve) {
reserve = Math.mulDivFloor(tickReserve, tickBalance, tickTotalSupply).toUint128();
reserve = Math.min128(tickReserve, reserve);
}
/**
* @notice Calculate delta A, delta B, and delta Tick Balance based on delta
* LP balance and the Tick/Bin state.
*/
function deltaTickBalanceFromDeltaLpBalance(
uint256 binTickBalance,
uint256 binTotalSupply,
IMaverickV2Pool.TickState memory tickState,
uint128 deltaLpBalance,
AddLiquidityInfo memory addLiquidityInfo
) internal pure returns (uint256 deltaTickBalance) {
unchecked {
if (tickState.reserveA != 0 || tickState.reserveB != 0) {
// if there are already reserves, then we just contribute pro rata
// deltaLiquidity = deltaBinLP / binTS * binTickBalance / tickTS * tickL
uint256 numerator = Math.max(1, binTickBalance) * uint256(deltaLpBalance);
uint256 denominator = Math.max(1, tickState.totalSupply) * Math.max(1, binTotalSupply);
addLiquidityInfo.deltaA = Math.mulDivCeil(tickState.reserveA, numerator, denominator);
addLiquidityInfo.deltaB = Math.mulDivCeil(tickState.reserveB, numerator, denominator);
} else {
_setRequiredDeltaReservesForEmptyTick(deltaLpBalance, addLiquidityInfo);
}
// round down the amount credited to the tick; this could lead to a
// small add amount getting zero reserves credit.
deltaTickBalance = tickState.totalSupply == 0
? deltaLpBalance
: Math.mulDivDown(deltaLpBalance, Math.max(1, binTickBalance), binTotalSupply);
}
}
/**
* @notice Calculates deltaA = liquidity * (sqrt(upper) - sqrt(lower))
* @notice Calculates deltaB = liquidity / sqrt(lower) - liquidity / sqrt(upper),
* @notice i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
* @notice we set liquidity = deltaLpBalance / (1.0001^(tick * tickspacing) - 1)
* @notice which simplifies the A/B amounts to:
* @notice deltaA = deltaLpBalance * sqrt(lower)
* @notice deltaB = deltaLpBalance / sqrt(upper)
*/
function _setRequiredDeltaReservesForEmptyTick(
uint128 deltaLpBalance,
AddLiquidityInfo memory addLiquidityInfo
) internal pure {
// No reserves, so we will use deltaLpBalance as liquidity to be added.
// In this logic branch, the tick is empty, so we know the tick will be
// a one-asset add.
(uint256 sqrtLowerTickPrice, uint256 sqrtUpperTickPrice) = TickMath.tickSqrtPrices(
addLiquidityInfo.tickSpacing,
addLiquidityInfo.tick
);
addLiquidityInfo.deltaA = addLiquidityInfo.tickLtActive ? Math.mulCeil(deltaLpBalance, sqrtLowerTickPrice) : 0;
addLiquidityInfo.deltaB = addLiquidityInfo.tickLtActive ? 0 : Math.divCeil(deltaLpBalance, sqrtUpperTickPrice);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Factory} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Factory.sol";
import {IWETH9} from "./IWETH9.sol";
import {IState} from "./IState.sol";
abstract contract State is IState {
IWETH9 private immutable _weth;
IMaverickV2Factory private immutable _factory;
constructor(IMaverickV2Factory __factory, IWETH9 __weth) {
_factory = __factory;
_weth = __weth;
}
function weth() public view returns (IWETH9 weth_) {
weth_ = _weth;
}
function factory() public view returns (IMaverickV2Factory factory_) {
factory_ = _factory;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IMaverickV2Pool} from "@maverick/v2-common/contracts/interfaces/IMaverickV2Pool.sol";
/**
* @notice Base contract support for swaps
*/
abstract contract Swap {
/**
* @notice Internal swap function. Override this function to add logic
* before or after a swap.
*/
function _swap(
IMaverickV2Pool pool,
address recipient,
IMaverickV2Pool.SwapParams memory params,
bytes memory data
) internal virtual returns (uint256 amountIn, uint256 amountOut) {
(amountIn, amountOut) = pool.swap(recipient, params, data);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
import {Math as OzMath} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Math} from "./Math.sol";
import {MAX_TICK, ONE} from "./Constants.sol";
/**
* @notice Math functions related to tick operations.
*/
library TickMath {
using Math for uint256;
error TickMaxExceeded(int256 tick);
/**
* @notice Compute the lower and upper sqrtPrice of a tick.
* @param tickSpacing The tick spacing used for calculations.
* @param _tick The input tick value.
*/
function tickSqrtPrices(
uint256 tickSpacing,
int32 _tick
) internal pure returns (uint256 sqrtLowerPrice, uint256 sqrtUpperPrice) {
unchecked {
sqrtLowerPrice = tickSqrtPrice(tickSpacing, _tick);
sqrtUpperPrice = tickSqrtPrice(tickSpacing, _tick + 1);
}
}
/**
* @notice Compute the base tick value from the pool tick and the
* tickSpacing. Revert if base tick is beyond the max tick boundary.
* @param tickSpacing The tick spacing used for calculations.
* @param _tick The input tick value.
*/
function subTickIndex(uint256 tickSpacing, int32 _tick) internal pure returns (uint32 subTick) {
subTick = Math.abs32(_tick);
subTick *= uint32(tickSpacing);
if (subTick > MAX_TICK) {
revert TickMaxExceeded(_tick);
}
}
/**
* @notice Calculate the square root price for a given tick and tick spacing.
* @param tickSpacing The tick spacing used for calculations.
* @param _tick The input tick value.
* @return _result The square root price.
*/
function tickSqrtPrice(uint256 tickSpacing, int32 _tick) internal pure returns (uint256 _result) {
unchecked {
uint256 tick = subTickIndex(tickSpacing, _tick);
uint256 ratio = tick & 0x1 != 0 ? 0xfffcb933bd6fad9d3af5f0b9f25db4d6 : 0x100000000000000000000000000000000;
if (tick & 0x2 != 0) ratio = (ratio * 0xfff97272373d41fd789c8cb37ffcaa1c) >> 128;
if (tick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656ac9229c67059486f389) >> 128;
if (tick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e81259b3cddc7a064941) >> 128;
if (tick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f67b19e8887e0bd251eb7) >> 128;
if (tick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98cd2e57b660be99eb2c4a) >> 128;
if (tick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c9838804e327cb417cafcb) >> 128;
if (tick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99d51e2cc356c2f617dbe0) >> 128;
if (tick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900aecf64236ab31f1f9dcb5) >> 128;
if (tick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac4d9194200696907cf2e37) >> 128;
if (tick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b88206f8abe8a3b44dd9be) >> 128;
if (tick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c578ef4f1d17b2b235d480) >> 128;
if (tick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd254ee83bdd3f248e7e785e) >> 128;
if (tick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d8f7dd10e744d913d033333) >> 128;
if (tick & 0x4000 != 0) ratio = (ratio * 0x70d869a156ddd32a39e257bc3f50aa9b) >> 128;
if (tick & 0x8000 != 0) ratio = (ratio * 0x31be135f97da6e09a19dc367e3b6da40) >> 128;
if (tick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7e5a9780b0cc4e25d61a56) >> 128;
if (tick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedbcb3a6ccb7ce618d14225) >> 128;
if (tick & 0x40000 != 0) ratio = (ratio * 0x2216e584f630389b2052b8db590e) >> 128;
if (_tick > 0) ratio = type(uint256).max / ratio;
_result = (ratio * ONE) >> 128;
}
}
/**
* @notice Calculate liquidity of a tick.
* @param reserveA Tick reserve of token A.
* @param reserveB Tick reserve of token B.
* @param sqrtLowerTickPrice The square root price of the lower tick edge.
* @param sqrtUpperTickPrice The square root price of the upper tick edge.
*/
function getTickL(
uint256 reserveA,
uint256 reserveB,
uint256 sqrtLowerTickPrice,
uint256 sqrtUpperTickPrice
) internal pure returns (uint256 liquidity) {
// known:
// - sqrt price values are different
// - reserveA and reserveB fit in 128 bit
// - sqrt price is in (1e-7, 1e7)
// - D18 max for uint256 is 1.15e59
// - D18 min is 1e-18
unchecked {
// diff is in (5e-12, 4e6); max tick spacing is 10_000
uint256 diff = sqrtUpperTickPrice - sqrtLowerTickPrice;
// Need to maximize precision by shifting small values A and B up so
// that they use more of the available bit range. Two constraints to
// consider: we need A * B * diff / sqrtPrice to be bigger than 1e-18
// when the bump is not in play. This constrains the threshold for
// bumping to be at least 77 bit; ie, either a or b needs 2^77 which
// means that term A * B * diff / sqrtPrice > 1e-18.
//
// At the other end, the second constraint is that b^2 needs to fit in
// a 256-bit number, so, post bump, the max reserve value needs to be
// less than 6e22. With a 78-bit threshold and a 57-bit bump, we have A
// and B are in (1.4e-1, 4.4e22 (2^(78+57))) with bump, and one of A or
// B is at least 2^78 without the bump, but the other reserve value may
// be as small as 1 wei.
uint256 precisionBump = 0;
if ((reserveA >> 78) == 0 && (reserveB >> 78) == 0) {
precisionBump = 57;
reserveA <<= precisionBump;
reserveB <<= precisionBump;
}
if (reserveB == 0) return Math.divDown(reserveA, diff) >> precisionBump;
if (reserveA == 0)
return Math.mulDivDown(reserveB.mulDown(sqrtLowerTickPrice), sqrtUpperTickPrice, diff) >> precisionBump;
// b is in (7.2e-9 (2^57 / 1e7 / 2), 2.8e29 (2^(78+57) * 1e7 / 2)) with bump
// b is in a subset of the same range without bump
uint256 b = (reserveA.divDown(sqrtUpperTickPrice) + reserveB.mulDown(sqrtLowerTickPrice)) >> 1;
// b^2 is in (5.1e-17, 4.8e58); and will not overflow on either end;
// A*B is in (3e-13 (2^78 / 1e18 * 1e-18), 1.9e45) without bump and is in a subset range with bump
// A*B*diff/sqrtUpper is in (1.5e-17 (3e-13 * 5e-12 * 1e7), 7.6e58);
// Since b^2 is at the upper edge of the precision range, we are not
// able to multiply the argument of the sqrt by 1e18, instead, we move
// this factor outside of the sqrt. The resulting loss of precision
// means that this liquidity value is a lower bound on the tick
// liquidity
return
OzMath.mulDiv(
b +
Math.sqrt(
(OzMath.mulDiv(b, b, ONE) +
OzMath.mulDiv(reserveB.mulFloor(reserveA), diff, sqrtUpperTickPrice))
) *
1e9,
sqrtUpperTickPrice,
diff
) >> precisionBump;
}
}
/**
* @notice Calculate square root price of a tick. Returns left edge of the
* tick if the tick has no reserves.
* @param reserveA Tick reserve of token A.
* @param reserveB Tick reserve of token B.
* @param sqrtLowerTickPrice The square root price of the lower tick edge.
* @param sqrtUpperTickPrice The square root price of the upper tick edge.
* @return sqrtPrice The calculated square root price.
*/
function getSqrtPrice(
uint256 reserveA,
uint256 reserveB,
uint256 sqrtLowerTickPrice,
uint256 sqrtUpperTickPrice,
uint256 liquidity
) internal pure returns (uint256 sqrtPrice) {
unchecked {
if (reserveA == 0) {
return sqrtLowerTickPrice;
}
if (reserveB == 0) {
return sqrtUpperTickPrice;
}
sqrtPrice = Math.sqrt(
ONE *
(reserveA + liquidity.mulDown(sqrtLowerTickPrice)).divDown(
reserveB + liquidity.divDown(sqrtUpperTickPrice)
)
);
sqrtPrice = Math.boundValue(sqrtPrice, sqrtLowerTickPrice, sqrtUpperTickPrice);
}
}
/**
* @notice Calculate square root price of a tick. Returns left edge of the
* tick if the tick has no reserves.
* @param reserveA Tick reserve of token A.
* @param reserveB Tick reserve of token B.
* @param sqrtLowerTickPrice The square root price of the lower tick edge.
* @param sqrtUpperTickPrice The square root price of the upper tick edge.
* @return sqrtPrice The calculated square root price.
* @return liquidity The calculated liquidity.
*/
function getTickSqrtPriceAndL(
uint256 reserveA,
uint256 reserveB,
uint256 sqrtLowerTickPrice,
uint256 sqrtUpperTickPrice
) internal pure returns (uint256 sqrtPrice, uint256 liquidity) {
liquidity = getTickL(reserveA, reserveB, sqrtLowerTickPrice, sqrtUpperTickPrice);
sqrtPrice = getSqrtPrice(reserveA, reserveB, sqrtLowerTickPrice, sqrtUpperTickPrice, liquidity);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/**
* @notice Low-gas transfer functions.
*/
library TransferLib {
error TransferFailed(IERC20 token, address to, uint256 amount);
error TransferFromFailed(IERC20 token, address from, address to, uint256 amount);
// implementation adapted from
// https://github.com/transmissions11/solmate/blob/e8f96f25d48fe702117ce76c79228ca4f20206cb/src/utils/SafeTransferLib.sol
/**
* @notice Transfer token amount. Amount is sent from caller address to `to` address.
*/
function transfer(IERC20 token, address to, uint256 amount) internal {
bool success;
assembly ("memory-safe") {
// We'll write our calldata to this slot below, but restore it later.
let memPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(memPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
// Append arguments. Addresses are assumed clean. Transfer will fail otherwise.
mstore(add(memPointer, 0x4), to)
mstore(add(memPointer, 0x24), amount) // Append the "amount" argument.
// 68 bytes total
// fail if reverted; only allocate 32 bytes for return to ensure we
// only use mem slot 0 which is scatch space and memory safe to use.
success := call(gas(), token, 0, memPointer, 68, 0, 32)
// handle transfers that return 1/true and ensure the value is from
// the return and not dirty bits left in the scratch space.
let returnedOne := and(eq(mload(0), 1), gt(returndatasize(), 31))
// handle transfers that return nothing
let noReturn := iszero(returndatasize())
// good if didn't revert and the return is either empty or true
success := and(success, or(returnedOne, noReturn))
}
if (!success) revert TransferFailed(token, to, amount);
}
/**
* @notice Transfer token amount. Amount is sent from `from` address to `to` address.
*/
function transferFrom(IERC20 token, address from, address to, uint256 amount) internal {
bool success;
assembly ("memory-safe") {
// We'll write our calldata to this slot below, but restore it later.
let memPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(memPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
// Append arguments. Addresses are assumed clean. Transfer will fail otherwise.
mstore(add(memPointer, 0x4), from) // Append the "from" argument.
mstore(add(memPointer, 0x24), to) // Append the "to" argument.
mstore(add(memPointer, 0x44), amount) // Append the "amount" argument.
// 100 bytes total
// fail if reverted; only allocate 32 bytes for return to ensure we
// only use mem slot 0 which is scatch space and memory safe to use.
success := call(gas(), token, 0, memPointer, 100, 0, 32)
// handle transfers that return 1/true and ensure the value is from
// the return and not dirty bits left in the scratch space.
let returnedOne := and(eq(mload(0), 1), gt(returndatasize(), 31))
// handle transfers that return nothing
let noReturn := iszero(returndatasize())
// good if didn't revert and the return is either empty or true
success := and(success, or(returnedOne, noReturn))
}
if (!success) revert TransferFromFailed(token, from, to, amount);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
{
"compilationTarget": {
"@maverick/v2-rewards/contracts/MaverickV2RewardRouter.sol": "MaverickV2RewardRouter"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 5500
},
"remappings": [],
"viaIR": true
}
[{"inputs":[{"internalType":"contract IMaverickV2Factory","name":"_factory","type":"address"},{"internalType":"contract IWETH9","name":"_weth","type":"address"},{"internalType":"contract IMaverickV2Position","name":"_position","type":"address"},{"internalType":"contract IMaverickV2BoostedPositionFactory","name":"_boostedPositionFactory","type":"address"},{"internalType":"contract IMaverickV2RewardFactory","name":"_rewardFactory","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"BytesLibSliceOutOfBounds","type":"error"},{"inputs":[],"name":"BytesLibSliceOverflow","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"LiquidityManagerNotFactoryPool","type":"error"},{"inputs":[],"name":"LiquidityManagerNotTokenIdOwner","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amountMinimum","type":"uint256"},{"internalType":"uint256","name":"contractBalance","type":"uint256"}],"name":"PaymentInsufficientBalance","type":"error"},{"inputs":[],"name":"PaymentSenderNotWETH9","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"blockTimestamp","type":"uint256"}],"name":"PositionDeadlinePassed","type":"error"},{"inputs":[{"internalType":"uint256","name":"sqrtPrice","type":"uint256"},{"internalType":"uint256","name":"minSqrtPrice","type":"uint256"},{"internalType":"uint256","name":"maxSqrtPrice","type":"uint256"}],"name":"PositionExceededPriceBounds","type":"error"},{"inputs":[],"name":"RouterNotFactoryPool","type":"error"},{"inputs":[{"internalType":"uint256","name":"amountOutMinimum","type":"uint256"},{"internalType":"uint256","name":"amountOut","type":"uint256"}],"name":"RouterTooLittleReceived","type":"error"},{"inputs":[{"internalType":"uint256","name":"amountInMaximum","type":"uint256"},{"internalType":"uint256","name":"amountIn","type":"uint256"}],"name":"RouterTooMuchRequested","type":"error"},{"inputs":[],"name":"RouterZeroSwap","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintDowncast","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"int256","name":"tick","type":"int256"}],"name":"TickMaxExceeded","type":"error"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TransferFailed","type":"error"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TransferFromFailed","type":"error"},{"inputs":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"subaccount","type":"uint256"},{"internalType":"bytes","name":"packedSqrtPriceBreaks","type":"bytes"},{"internalType":"bytes[]","name":"packedArgs","type":"bytes[]"}],"name":"addLiquidity","outputs":[{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"},{"internalType":"uint32[]","name":"binIds","type":"uint32[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"contract IMaverickV2BoostedPosition","name":"boostedPosition","type":"address"},{"internalType":"bytes","name":"packedSqrtPriceBreaks","type":"bytes"},{"internalType":"bytes[]","name":"packedArgs","type":"bytes[]"}],"name":"addLiquidityAndMintBoostedPosition","outputs":[{"internalType":"uint256","name":"mintedLpAmount","type":"uint256"},{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"contract IMaverickV2BoostedPosition","name":"boostedPosition","type":"address"},{"internalType":"bytes","name":"packedSqrtPriceBreaks","type":"bytes"},{"internalType":"bytes[]","name":"packedArgs","type":"bytes[]"},{"internalType":"contract IMaverickV2Reward","name":"reward","type":"address"}],"name":"addLiquidityAndMintBoostedPositionAndStake","outputs":[{"internalType":"uint256","name":"mintedLpAmount","type":"uint256"},{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"},{"internalType":"uint256","name":"stakeAmount","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"sendersTokenIndex","type":"uint256"},{"internalType":"contract IMaverickV2BoostedPosition","name":"boostedPosition","type":"address"},{"internalType":"bytes","name":"packedSqrtPriceBreaks","type":"bytes"},{"internalType":"bytes[]","name":"packedArgs","type":"bytes[]"},{"internalType":"contract IMaverickV2Reward","name":"reward","type":"address"}],"name":"addLiquidityAndMintBoostedPositionAndStakeToSender","outputs":[{"internalType":"uint256","name":"mintedLpAmount","type":"uint256"},{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"},{"internalType":"uint256","name":"stakeAmount","type":"uint256"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2BoostedPosition","name":"boostedPosition","type":"address"},{"internalType":"bytes","name":"packedSqrtPriceBreaks","type":"bytes"},{"internalType":"bytes[]","name":"packedArgs","type":"bytes[]"}],"name":"addLiquidityAndMintBoostedPositionToSender","outputs":[{"internalType":"uint256","name":"mintedLpAmount","type":"uint256"},{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"bytes","name":"packedSqrtPriceBreaks","type":"bytes"},{"internalType":"bytes[]","name":"packedArgs","type":"bytes[]"}],"name":"addPositionLiquidityToRecipientByTokenIndex","outputs":[{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"},{"internalType":"uint32[]","name":"binIds","type":"uint32[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"bytes","name":"packedSqrtPriceBreaks","type":"bytes"},{"internalType":"bytes[]","name":"packedArgs","type":"bytes[]"}],"name":"addPositionLiquidityToSenderByTokenIndex","outputs":[{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"},{"internalType":"uint32[]","name":"binIds","type":"uint32[]"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"boostedPositionFactory","outputs":[{"internalType":"contract IMaverickV2BoostedPositionFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"checkDeadline","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"internalType":"uint256","name":"minSqrtPrice","type":"uint256"},{"internalType":"uint256","name":"maxSqrtPrice","type":"uint256"}],"name":"checkSqrtPrice","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"components":[{"components":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"internalType":"uint32[]","name":"binIds","type":"uint32[]"},{"internalType":"uint128[]","name":"ratios","type":"uint128[]"},{"internalType":"uint8","name":"kind","type":"uint8"}],"internalType":"struct IMaverickV2PoolLens.BoostedPositionSpecification","name":"bpSpec","type":"tuple"},{"internalType":"bytes","name":"packedSqrtPriceBreaks","type":"bytes"},{"internalType":"bytes[]","name":"packedArgs","type":"bytes[]"}],"internalType":"struct IMaverickV2PoolLens.CreateBoostedPositionInputs","name":"params","type":"tuple"}],"name":"createBoostedPositionAndAddLiquidity","outputs":[{"internalType":"contract IMaverickV2BoostedPosition","name":"boostedPosition","type":"address"},{"internalType":"uint256","name":"mintedLpAmount","type":"uint256"},{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"components":[{"components":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"internalType":"uint32[]","name":"binIds","type":"uint32[]"},{"internalType":"uint128[]","name":"ratios","type":"uint128[]"},{"internalType":"uint8","name":"kind","type":"uint8"}],"internalType":"struct IMaverickV2PoolLens.BoostedPositionSpecification","name":"bpSpec","type":"tuple"},{"internalType":"bytes","name":"packedSqrtPriceBreaks","type":"bytes"},{"internalType":"bytes[]","name":"packedArgs","type":"bytes[]"}],"internalType":"struct IMaverickV2PoolLens.CreateBoostedPositionInputs","name":"params","type":"tuple"},{"internalType":"contract IERC20[]","name":"rewardTokens","type":"address[]"},{"internalType":"contract IMaverickV2VotingEscrow[]","name":"veTokens","type":"address[]"}],"name":"createBoostedPositionAndAddLiquidityAndStake","outputs":[{"internalType":"contract IMaverickV2BoostedPosition","name":"boostedPosition","type":"address"},{"internalType":"uint256","name":"mintedLpAmount","type":"uint256"},{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"},{"internalType":"uint256","name":"stakeAmount","type":"uint256"},{"internalType":"contract IMaverickV2Reward","name":"reward","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"internalType":"uint32[]","name":"binIds","type":"uint32[]"},{"internalType":"uint128[]","name":"ratios","type":"uint128[]"},{"internalType":"uint8","name":"kind","type":"uint8"}],"internalType":"struct IMaverickV2PoolLens.BoostedPositionSpecification","name":"bpSpec","type":"tuple"},{"internalType":"bytes","name":"packedSqrtPriceBreaks","type":"bytes"},{"internalType":"bytes[]","name":"packedArgs","type":"bytes[]"}],"internalType":"struct IMaverickV2PoolLens.CreateBoostedPositionInputs","name":"params","type":"tuple"},{"internalType":"contract IERC20[]","name":"rewardTokens","type":"address[]"},{"internalType":"contract IMaverickV2VotingEscrow[]","name":"veTokens","type":"address[]"}],"name":"createBoostedPositionAndAddLiquidityAndStakeToSender","outputs":[{"internalType":"contract IMaverickV2BoostedPosition","name":"boostedPosition","type":"address"},{"internalType":"uint256","name":"mintedLpAmount","type":"uint256"},{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"},{"internalType":"uint256","name":"stakeAmount","type":"uint256"},{"internalType":"contract IMaverickV2Reward","name":"reward","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"internalType":"uint32[]","name":"binIds","type":"uint32[]"},{"internalType":"uint128[]","name":"ratios","type":"uint128[]"},{"internalType":"uint8","name":"kind","type":"uint8"}],"internalType":"struct IMaverickV2PoolLens.BoostedPositionSpecification","name":"bpSpec","type":"tuple"},{"internalType":"bytes","name":"packedSqrtPriceBreaks","type":"bytes"},{"internalType":"bytes[]","name":"packedArgs","type":"bytes[]"}],"internalType":"struct IMaverickV2PoolLens.CreateBoostedPositionInputs","name":"params","type":"tuple"}],"name":"createBoostedPositionAndAddLiquidityToSender","outputs":[{"internalType":"contract IMaverickV2BoostedPosition","name":"boostedPosition","type":"address"},{"internalType":"uint256","name":"mintedLpAmount","type":"uint256"},{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint64","name":"fee","type":"uint64"},{"internalType":"uint16","name":"tickSpacing","type":"uint16"},{"internalType":"uint32","name":"lookback","type":"uint32"},{"internalType":"contract IERC20","name":"tokenA","type":"address"},{"internalType":"contract IERC20","name":"tokenB","type":"address"},{"internalType":"int32","name":"activeTick","type":"int32"},{"internalType":"uint8","name":"kinds","type":"uint8"}],"name":"createPool","outputs":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint64","name":"feeAIn","type":"uint64"},{"internalType":"uint64","name":"feeBIn","type":"uint64"},{"internalType":"uint16","name":"tickSpacing","type":"uint16"},{"internalType":"uint32","name":"lookback","type":"uint32"},{"internalType":"contract IERC20","name":"tokenA","type":"address"},{"internalType":"contract IERC20","name":"tokenB","type":"address"},{"internalType":"int32","name":"activeTick","type":"int32"},{"internalType":"uint8","name":"kinds","type":"uint8"}],"name":"createPool","outputs":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"components":[{"internalType":"uint64","name":"feeAIn","type":"uint64"},{"internalType":"uint64","name":"feeBIn","type":"uint64"},{"internalType":"uint16","name":"tickSpacing","type":"uint16"},{"internalType":"uint32","name":"lookback","type":"uint32"},{"internalType":"contract IERC20","name":"tokenA","type":"address"},{"internalType":"contract IERC20","name":"tokenB","type":"address"},{"internalType":"int32","name":"activeTick","type":"int32"},{"internalType":"uint8","name":"kinds","type":"uint8"},{"components":[{"internalType":"uint8","name":"kind","type":"uint8"},{"internalType":"int32[]","name":"ticks","type":"int32[]"},{"internalType":"uint128[]","name":"amounts","type":"uint128[]"}],"internalType":"struct IMaverickV2Pool.AddLiquidityParams","name":"donateParams","type":"tuple"},{"internalType":"uint256","name":"swapAmount","type":"uint256"},{"components":[{"internalType":"uint8","name":"kind","type":"uint8"},{"internalType":"int32[]","name":"ticks","type":"int32[]"},{"internalType":"uint128[]","name":"amounts","type":"uint128[]"}],"internalType":"struct IMaverickV2Pool.AddLiquidityParams","name":"addParams","type":"tuple"},{"internalType":"bytes[]","name":"packedAddParams","type":"bytes[]"},{"internalType":"uint256","name":"deltaAOut","type":"uint256"},{"internalType":"uint256","name":"deltaBOut","type":"uint256"},{"internalType":"uint256","name":"preAddReserveA","type":"uint256"},{"internalType":"uint256","name":"preAddReserveB","type":"uint256"}],"internalType":"struct IMaverickV2PoolLens.CreateAndAddParamsInputs","name":"params","type":"tuple"}],"name":"createPoolAtPriceAndAddLiquidity","outputs":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"},{"internalType":"uint32[]","name":"binIds","type":"uint32[]"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"uint64","name":"feeAIn","type":"uint64"},{"internalType":"uint64","name":"feeBIn","type":"uint64"},{"internalType":"uint16","name":"tickSpacing","type":"uint16"},{"internalType":"uint32","name":"lookback","type":"uint32"},{"internalType":"contract IERC20","name":"tokenA","type":"address"},{"internalType":"contract IERC20","name":"tokenB","type":"address"},{"internalType":"int32","name":"activeTick","type":"int32"},{"internalType":"uint8","name":"kinds","type":"uint8"},{"components":[{"internalType":"uint8","name":"kind","type":"uint8"},{"internalType":"int32[]","name":"ticks","type":"int32[]"},{"internalType":"uint128[]","name":"amounts","type":"uint128[]"}],"internalType":"struct IMaverickV2Pool.AddLiquidityParams","name":"donateParams","type":"tuple"},{"internalType":"uint256","name":"swapAmount","type":"uint256"},{"components":[{"internalType":"uint8","name":"kind","type":"uint8"},{"internalType":"int32[]","name":"ticks","type":"int32[]"},{"internalType":"uint128[]","name":"amounts","type":"uint128[]"}],"internalType":"struct IMaverickV2Pool.AddLiquidityParams","name":"addParams","type":"tuple"},{"internalType":"bytes[]","name":"packedAddParams","type":"bytes[]"},{"internalType":"uint256","name":"deltaAOut","type":"uint256"},{"internalType":"uint256","name":"deltaBOut","type":"uint256"},{"internalType":"uint256","name":"preAddReserveA","type":"uint256"},{"internalType":"uint256","name":"preAddReserveB","type":"uint256"}],"internalType":"struct IMaverickV2PoolLens.CreateAndAddParamsInputs","name":"params","type":"tuple"}],"name":"createPoolAtPriceAndAddLiquidityToSender","outputs":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"},{"internalType":"uint32[]","name":"binIds","type":"uint32[]"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"components":[{"internalType":"uint8","name":"kind","type":"uint8"},{"internalType":"int32[]","name":"ticks","type":"int32[]"},{"internalType":"uint128[]","name":"amounts","type":"uint128[]"}],"internalType":"struct IMaverickV2Pool.AddLiquidityParams","name":"args","type":"tuple"}],"name":"donateLiquidity","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"internalType":"bool","name":"tokenAIn","type":"bool"},{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"int32","name":"tickLimit","type":"int32"}],"name":"exactOutputSingleMinimal","outputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"amountOut_","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"contract IMaverickV2Factory","name":"factory_","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"tokenA","type":"address"},{"internalType":"contract IERC20","name":"tokenB","type":"address"},{"internalType":"uint256","name":"amountA","type":"uint256"},{"internalType":"uint256","name":"amountB","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"maverickV2AddLiquidityCallback","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountToPay","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"maverickV2SwapCallback","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"internalType":"uint32[]","name":"binIds","type":"uint32[]"},{"internalType":"uint32","name":"maxRecursion","type":"uint32"}],"name":"migrateBinsUpStack","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2BoostedPosition","name":"boostedPosition","type":"address"}],"name":"migrateBoostedPosition","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2BoostedPosition","name":"boostedPosition","type":"address"},{"internalType":"address","name":"recipient","type":"address"}],"name":"mintBoostedPosition","outputs":[{"internalType":"uint256","name":"mintedLpAmount","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"bytes","name":"packedSqrtPriceBreaks","type":"bytes"},{"internalType":"bytes[]","name":"packedArgs","type":"bytes[]"}],"name":"mintPositionNft","outputs":[{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"},{"internalType":"uint32[]","name":"binIds","type":"uint32[]"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2Pool","name":"pool","type":"address"},{"internalType":"bytes","name":"packedSqrtPriceBreaks","type":"bytes"},{"internalType":"bytes[]","name":"packedArgs","type":"bytes[]"}],"name":"mintPositionNftToSender","outputs":[{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"},{"internalType":"uint32[]","name":"binIds","type":"uint32[]"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2Reward","name":"reward","type":"address"},{"internalType":"address","name":"recipient","type":"address"}],"name":"mintTokenInReward","outputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2Reward","name":"reward","type":"address"}],"name":"mintTokenInRewardToSender","outputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"data","type":"bytes[]"}],"name":"multicall","outputs":[{"internalType":"bytes[]","name":"results","type":"bytes[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2Reward","name":"reward","type":"address"},{"internalType":"contract IERC20","name":"rewardToken","type":"address"},{"internalType":"uint256","name":"duration","type":"uint256"}],"name":"notifyRewardAmount","outputs":[{"internalType":"uint256","name":"_duration","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"uint8","name":"kind","type":"uint8"},{"internalType":"int32[]","name":"ticks","type":"int32[]"},{"internalType":"uint128[]","name":"amounts","type":"uint128[]"}],"internalType":"struct IMaverickV2Pool.AddLiquidityParams","name":"args","type":"tuple"}],"name":"packAddLiquidityArgs","outputs":[{"internalType":"bytes","name":"argsPacked","type":"bytes"}],"stateMutability":"pure","type":"function"},{"inputs":[{"components":[{"internalType":"uint8","name":"kind","type":"uint8"},{"internalType":"int32[]","name":"ticks","type":"int32[]"},{"internalType":"uint128[]","name":"amounts","type":"uint128[]"}],"internalType":"struct IMaverickV2Pool.AddLiquidityParams[]","name":"args","type":"tuple[]"}],"name":"packAddLiquidityArgsArray","outputs":[{"internalType":"bytes[]","name":"argsPacked","type":"bytes[]"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint88[]","name":"fullArray","type":"uint88[]"}],"name":"packUint88Array","outputs":[{"internalType":"bytes","name":"packedArray","type":"bytes"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"position","outputs":[{"internalType":"contract IMaverickV2Position","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"refundETH","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"rewardFactory","outputs":[{"internalType":"contract IMaverickV2RewardFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2BoostedPosition","name":"boostedPosition","type":"address"},{"internalType":"address","name":"recipient","type":"address"}],"name":"skimBoostedPosition","outputs":[{"internalType":"uint256","name":"tokenAAmount","type":"uint256"},{"internalType":"uint256","name":"tokenBAmount","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2Reward","name":"reward","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"stake","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"stakedTokenId","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amountMinimum","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"sweepToken","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"sweepTokenAmount","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2VotingEscrowWSync","name":"ve","type":"address"},{"internalType":"address","name":"staker","type":"address"},{"internalType":"uint256[]","name":"legacyLockupIndexes","type":"uint256[]"}],"name":"sync","outputs":[{"internalType":"uint256[]","name":"newBalance","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2Reward","name":"reward","type":"address"},{"internalType":"contract IERC20","name":"rewardToken","type":"address"},{"internalType":"uint256","name":"duration","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferAndNotifyRewardAmount","outputs":[{"internalType":"uint256","name":"_duration","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IMaverickV2Reward","name":"reward","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"transferAndStake","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"stakedTokenId","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes","name":"argsPacked","type":"bytes"}],"name":"unpackAddLiquidityArgs","outputs":[{"components":[{"internalType":"uint8","name":"kind","type":"uint8"},{"internalType":"int32[]","name":"ticks","type":"int32[]"},{"internalType":"uint128[]","name":"amounts","type":"uint128[]"}],"internalType":"struct IMaverickV2Pool.AddLiquidityParams","name":"args","type":"tuple"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes","name":"packedArray","type":"bytes"}],"name":"unpackUint88Array","outputs":[{"internalType":"uint88[]","name":"fullArray","type":"uint88[]"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"tokenA","type":"address"},{"internalType":"contract IERC20","name":"tokenB","type":"address"},{"internalType":"uint256","name":"tokenAAmountMin","type":"uint256"},{"internalType":"uint256","name":"tokenBAmountMin","type":"uint256"}],"name":"unwrapAndSweep","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountMinimum","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"unwrapWETH9","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"weth","outputs":[{"internalType":"contract IWETH9","name":"weth_","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]