账户
0xf5...efe7
0xF5...eFe7

0xF5...eFe7

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.4+commit.c7e474f2
语言
Solidity
合同源代码
文件 1 的 4:IERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}
合同源代码
文件 2 的 4:ReentrancyGuard.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}
合同源代码
文件 3 的 4:SafeMath.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is no longer needed starting with Solidity 0.8. The compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}
合同源代码
文件 4 的 4:Staking.sol
// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";

contract Staking is ReentrancyGuard {
    using SafeMath for uint256;

    uint128 constant private BASE_MULTIPLIER = uint128(1 * 10 ** 18);

    // timestamp for the epoch 1
    // everything before that is considered epoch 0 which won't have a reward but allows for the initial stake
    uint256 public epoch1Start;

    // duration of each epoch
    uint256 public epochDuration;

    // holds the current balance of the user for each token
    mapping(address => mapping(address => uint256)) private balances;

    struct Pool {
        uint256 size;
        bool set;
    }

    // for each token, we store the total pool size
    mapping(address => mapping(uint256 => Pool)) private poolSize;

    // a checkpoint of the valid balance of a user for an epoch
    struct Checkpoint {
        uint128 epochId;
        uint128 multiplier;
        uint256 startBalance;
        uint256 newDeposits;
    }

    // balanceCheckpoints[user][token][]
    mapping(address => mapping(address => Checkpoint[])) private balanceCheckpoints;

    mapping(address => uint128) private lastWithdrawEpochId;

    event Deposit(address indexed user, address indexed tokenAddress, uint256 amount);
    event Withdraw(address indexed user, address indexed tokenAddress, uint256 amount);
    event ManualEpochInit(address indexed caller, uint128 indexed epochId, address[] tokens);
    event EmergencyWithdraw(address indexed user, address indexed tokenAddress, uint256 amount);

    constructor (uint256 _epoch1Start, uint256 _epochDuration) {
        epoch1Start = _epoch1Start;
        epochDuration = _epochDuration;
    }

    /*
     * Stores `amount` of `tokenAddress` tokens for the `user` into the vault
     */
    function deposit(address tokenAddress, uint256 amount) external nonReentrant {
        require(amount > 0, "Staking: Amount must be > 0");

        IERC20 token = IERC20(tokenAddress);
        uint256 allowance = token.allowance(msg.sender, address(this));
        require(allowance >= amount, "Staking: Token allowance too small");

        balances[msg.sender][tokenAddress] = balances[msg.sender][tokenAddress].add(amount);

        bool success = token.transferFrom(msg.sender, address(this), amount);
        require(success, "Failed to transfer deposit");

        // epoch logic
        uint128 currentEpoch = getCurrentEpoch();
        uint128 currentMultiplier = currentEpochMultiplier();

        if (!epochIsInitialized(tokenAddress, currentEpoch)) {
            address[] memory tokens = new address[](1);
            tokens[0] = tokenAddress;
            manualEpochInit(tokens, currentEpoch);
        }

        // update the next epoch pool size
        Pool storage pNextEpoch = poolSize[tokenAddress][currentEpoch + 1];
        pNextEpoch.size = token.balanceOf(address(this));
        pNextEpoch.set = true;

        Checkpoint[] storage checkpoints = balanceCheckpoints[msg.sender][tokenAddress];

        uint256 balanceBefore = getEpochUserBalance(msg.sender, tokenAddress, currentEpoch);

        // if there's no checkpoint yet, it means the user didn't have any activity
        // we want to store checkpoints both for the current epoch and next epoch because
        // if a user does a withdraw, the current epoch can also be modified and
        // we don't want to insert another checkpoint in the middle of the array as that could be expensive
        if (checkpoints.length == 0) {
            checkpoints.push(Checkpoint(currentEpoch, currentMultiplier, 0, amount));

            // next epoch => multiplier is 1, epoch deposits is 0
            checkpoints.push(Checkpoint(currentEpoch + 1, BASE_MULTIPLIER, amount, 0));
        } else {
            uint256 last = checkpoints.length - 1;

            // the last action happened in an older epoch (e.g. a deposit in epoch 3, current epoch is >=5)
            if (checkpoints[last].epochId < currentEpoch) {
                uint128 multiplier = computeNewMultiplier(
                    getCheckpointBalance(checkpoints[last]),
                    BASE_MULTIPLIER,
                    amount,
                    currentMultiplier
                );
                checkpoints.push(Checkpoint(currentEpoch, multiplier, getCheckpointBalance(checkpoints[last]), amount));

                uint256 balance = balances[msg.sender][tokenAddress];
                checkpoints.push(Checkpoint(currentEpoch + 1, BASE_MULTIPLIER, balance, 0));
            }
            // the last action happened in the previous epoch
            else if (checkpoints[last].epochId == currentEpoch) {
                checkpoints[last].multiplier = computeNewMultiplier(
                    getCheckpointBalance(checkpoints[last]),
                    checkpoints[last].multiplier,
                    amount,
                    currentMultiplier
                );
                checkpoints[last].newDeposits = checkpoints[last].newDeposits.add(amount);

                checkpoints.push(Checkpoint(currentEpoch + 1, BASE_MULTIPLIER, balances[msg.sender][tokenAddress], 0));
            }
            // the last action happened in the current epoch
            else {
                if (last >= 1 && checkpoints[last - 1].epochId == currentEpoch) {
                    checkpoints[last - 1].multiplier = computeNewMultiplier(
                        getCheckpointBalance(checkpoints[last - 1]),
                        checkpoints[last - 1].multiplier,
                        amount,
                        currentMultiplier
                    );
                    checkpoints[last - 1].newDeposits = checkpoints[last - 1].newDeposits.add(amount);
                }

                checkpoints[last].startBalance = balances[msg.sender][tokenAddress];
            }
        }

        uint256 balanceAfter = getEpochUserBalance(msg.sender, tokenAddress, currentEpoch);

        poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.add(balanceAfter.sub(balanceBefore));

        emit Deposit(msg.sender, tokenAddress, amount);
    }

    /*
     * Removes the deposit of the user and sends the amount of `tokenAddress` back to the `user`
     */
    function withdraw(address tokenAddress, uint256 amount) external nonReentrant {
        require(balances[msg.sender][tokenAddress] >= amount, "Staking: balance too small");

        balances[msg.sender][tokenAddress] = balances[msg.sender][tokenAddress].sub(amount);

        IERC20 token = IERC20(tokenAddress);
        bool success = token.transfer(msg.sender, amount);
        require(success, "Failed to transfer withdrawl");

        // epoch logic
        uint128 currentEpoch = getCurrentEpoch();

        lastWithdrawEpochId[tokenAddress] = currentEpoch;

        if (!epochIsInitialized(tokenAddress, currentEpoch)) {
            address[] memory tokens = new address[](1);
            tokens[0] = tokenAddress;
            manualEpochInit(tokens, currentEpoch);
        }

        // update the pool size of the next epoch to its current balance
        Pool storage pNextEpoch = poolSize[tokenAddress][currentEpoch + 1];
        pNextEpoch.size = token.balanceOf(address(this));
        pNextEpoch.set = true;

        Checkpoint[] storage checkpoints = balanceCheckpoints[msg.sender][tokenAddress];
        uint256 last = checkpoints.length - 1;

        // note: it's impossible to have a withdraw and no checkpoints because the balance would be 0 and revert

        // there was a deposit in an older epoch (more than 1 behind [eg: previous 0, now 5]) but no other action since then
        if (checkpoints[last].epochId < currentEpoch) {
            checkpoints.push(Checkpoint(currentEpoch, BASE_MULTIPLIER, balances[msg.sender][tokenAddress], 0));

            poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.sub(amount);
        }
        // there was a deposit in the `epochId - 1` epoch => we have a checkpoint for the current epoch
        else if (checkpoints[last].epochId == currentEpoch) {
            checkpoints[last].startBalance = balances[msg.sender][tokenAddress];
            checkpoints[last].newDeposits = 0;
            checkpoints[last].multiplier = BASE_MULTIPLIER;

            poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.sub(amount);
        }
        // there was a deposit in the current epoch
        else {
            Checkpoint storage currentEpochCheckpoint = checkpoints[last - 1];

            uint256 balanceBefore = getCheckpointEffectiveBalance(currentEpochCheckpoint);

            // in case of withdraw, we have 2 branches:
            // 1. the user withdraws less than he added in the current epoch
            // 2. the user withdraws more than he added in the current epoch (including 0)
            if (amount < currentEpochCheckpoint.newDeposits) {
                uint128 avgDepositMultiplier = uint128(
                    balanceBefore.sub(currentEpochCheckpoint.startBalance).mul(BASE_MULTIPLIER).div(currentEpochCheckpoint.newDeposits)
                );

                currentEpochCheckpoint.newDeposits = currentEpochCheckpoint.newDeposits.sub(amount);

                currentEpochCheckpoint.multiplier = computeNewMultiplier(
                    currentEpochCheckpoint.startBalance,
                    BASE_MULTIPLIER,
                    currentEpochCheckpoint.newDeposits,
                    avgDepositMultiplier
                );
            } else {
                currentEpochCheckpoint.startBalance = currentEpochCheckpoint.startBalance.sub(
                    amount.sub(currentEpochCheckpoint.newDeposits)
                );
                currentEpochCheckpoint.newDeposits = 0;
                currentEpochCheckpoint.multiplier = BASE_MULTIPLIER;
            }

            uint256 balanceAfter = getCheckpointEffectiveBalance(currentEpochCheckpoint);

            poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.sub(balanceBefore.sub(balanceAfter));

            checkpoints[last].startBalance = balances[msg.sender][tokenAddress];
        }

        emit Withdraw(msg.sender, tokenAddress, amount);
    }

    /*
     * manualEpochInit can be used by anyone to initialize an epoch based on the previous one
     * This is only applicable if there was no action (deposit/withdraw) in the current epoch.
     * Any deposit and withdraw will automatically initialize the current and next epoch.
     */
    function manualEpochInit(address[] memory tokens, uint128 epochId) public {
        require(epochId <= getCurrentEpoch(), "can't init a future epoch");

        for (uint i = 0; i < tokens.length; i++) {
            Pool storage p = poolSize[tokens[i]][epochId];

            if (epochId == 0) {
                p.size = uint256(0);
                p.set = true;
            } else {
                require(!epochIsInitialized(tokens[i], epochId), "Staking: epoch already initialized");
                require(epochIsInitialized(tokens[i], epochId - 1), "Staking: previous epoch not initialized");

                p.size = poolSize[tokens[i]][epochId - 1].size;
                p.set = true;
            }
        }

        emit ManualEpochInit(msg.sender, epochId, tokens);
    }

    function emergencyWithdraw(address tokenAddress) external {
        require((getCurrentEpoch() - lastWithdrawEpochId[tokenAddress]) >= 10, "At least 10 epochs must pass without success");

        uint256 totalUserBalance = balances[msg.sender][tokenAddress];
        require(totalUserBalance > 0, "Amount must be > 0");

        balances[msg.sender][tokenAddress] = 0;

        IERC20 token = IERC20(tokenAddress);
        bool success = token.transfer(msg.sender, totalUserBalance);
        require(success, "Emergency withdraw transfer failed");

        emit EmergencyWithdraw(msg.sender, tokenAddress, totalUserBalance);
    }

    /*
     * Returns the valid balance of a user that was taken into consideration in the total pool size for the epoch
     * A deposit will only change the next epoch balance.
     * A withdraw will decrease the current epoch (and subsequent) balance.
     */
    function getEpochUserBalance(address user, address token, uint128 epochId) public view returns (uint256) {
        Checkpoint[] storage checkpoints = balanceCheckpoints[user][token];

        // if there are no checkpoints, it means the user never deposited any tokens, so the balance is 0
        if (checkpoints.length == 0 || epochId < checkpoints[0].epochId) {
            return 0;
        }

        uint min = 0;
        uint max = checkpoints.length - 1;

        // shortcut for blocks newer than the latest checkpoint == current balance
        if (epochId >= checkpoints[max].epochId) {
            return getCheckpointEffectiveBalance(checkpoints[max]);
        }

        // binary search of the value in the array
        while (max > min) {
            uint mid = (max + min + 1) / 2;
            if (checkpoints[mid].epochId <= epochId) {
                min = mid;
            } else {
                max = mid - 1;
            }
        }

        return getCheckpointEffectiveBalance(checkpoints[min]);
    }

    /*
     * Returns the amount of `token` that the `user` has currently staked
     */
    function balanceOf(address user, address token) external view returns (uint256) {
        return balances[user][token];
    }

    /*
     * Returns the id of the current epoch derived from block.timestamp
     */
    function getCurrentEpoch() public view returns (uint128) {
        if (block.timestamp < epoch1Start) {
            return 0;
        }

        return uint128((block.timestamp - epoch1Start) / epochDuration + 1);
    }

    /*
     * Returns the total amount of `tokenAddress` that was locked from beginning to end of epoch identified by `epochId`
     */
    function getEpochPoolSize(address tokenAddress, uint128 epochId) external view returns (uint256) {
        // Premises:
        // 1. it's impossible to have gaps of uninitialized epochs
        // - any deposit or withdraw initialize the current epoch which requires the previous one to be initialized
        if (epochIsInitialized(tokenAddress, epochId)) {
            return poolSize[tokenAddress][epochId].size;
        }

        // epochId not initialized and epoch 0 not initialized => there was never any action on this pool
        if (!epochIsInitialized(tokenAddress, 0)) {
            return 0;
        }

        // epoch 0 is initialized => there was an action at some point but none that initialized the epochId
        // which means the current pool size is equal to the current balance of token held by the staking contract
        IERC20 token = IERC20(tokenAddress);
        return token.balanceOf(address(this));
    }

    /*
     * Returns the percentage of time left in the current epoch
     */
    function currentEpochMultiplier() public view returns (uint128) {
        uint128 currentEpoch = getCurrentEpoch();
        uint256 currentEpochEnd = epoch1Start + currentEpoch * epochDuration;
        uint256 timeLeft = currentEpochEnd - block.timestamp;
        uint128 multiplier = uint128(timeLeft * BASE_MULTIPLIER / epochDuration);

        return multiplier;
    }

    function computeNewMultiplier(uint256 prevBalance, uint128 prevMultiplier, uint256 amount, uint128 currentMultiplier) public pure returns (uint128) {
        uint256 prevAmount = prevBalance.mul(prevMultiplier).div(BASE_MULTIPLIER);
        uint256 addAmount = amount.mul(currentMultiplier).div(BASE_MULTIPLIER);
        uint128 newMultiplier = uint128(prevAmount.add(addAmount).mul(BASE_MULTIPLIER).div(prevBalance.add(amount)));

        return newMultiplier;
    }

    /*
     * Checks if an epoch is initialized, meaning we have a pool size set for it
     */
    function epochIsInitialized(address token, uint128 epochId) public view returns (bool) {
        return poolSize[token][epochId].set;
    }

    function getCheckpointBalance(Checkpoint memory c) internal pure returns (uint256) {
        return c.startBalance.add(c.newDeposits);
    }

    function getCheckpointEffectiveBalance(Checkpoint memory c) internal pure returns (uint256) {
        return getCheckpointBalance(c).mul(c.multiplier).div(BASE_MULTIPLIER);
    }
}
设置
{
  "compilationTarget": {
    "github/dn3010/staking-contracts/Staking.sol": "Staking"
  },
  "evmVersion": "istanbul",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "remappings": []
}
ABI
[{"inputs":[{"internalType":"uint256","name":"_epoch1Start","type":"uint256"},{"internalType":"uint256","name":"_epochDuration","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"tokenAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"tokenAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EmergencyWithdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"uint128","name":"epochId","type":"uint128"},{"indexed":false,"internalType":"address[]","name":"tokens","type":"address[]"}],"name":"ManualEpochInit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"tokenAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"address","name":"token","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"prevBalance","type":"uint256"},{"internalType":"uint128","name":"prevMultiplier","type":"uint128"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint128","name":"currentMultiplier","type":"uint128"}],"name":"computeNewMultiplier","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"currentEpochMultiplier","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"}],"name":"emergencyWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"epoch1Start","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"epochDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint128","name":"epochId","type":"uint128"}],"name":"epochIsInitialized","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentEpoch","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint128","name":"epochId","type":"uint128"}],"name":"getEpochPoolSize","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint128","name":"epochId","type":"uint128"}],"name":"getEpochUserBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"uint128","name":"epochId","type":"uint128"}],"name":"manualEpochInit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]