// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Arrays.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";
/**
* @dev Collection of functions related to array types.
*/
library Arrays {
using StorageSlot for bytes32;
/**
* @dev Searches a sorted `array` and returns the first index that contains
* a value greater or equal to `element`. If no such index exists (i.e. all
* values in the array are strictly less than `element`), the array length is
* returned. Time complexity O(log n).
*
* `array` is expected to be sorted in ascending order, and to contain no
* repeated elements.
*/
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
low = mid + 1;
}
}
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
if (low > 0 && unsafeAccess(array, low - 1).value == element) {
return low - 1;
} else {
return low;
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
bytes32 slot;
// We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
// following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
/// @solidity memory-safe-assembly
assembly {
mstore(0, arr.slot)
slot := add(keccak256(0, 0x20), pos)
}
return slot.getAddressSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
bytes32 slot;
// We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
// following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
/// @solidity memory-safe-assembly
assembly {
mstore(0, arr.slot)
slot := add(keccak256(0, 0x20), pos)
}
return slot.getBytes32Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
bytes32 slot;
// We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
// following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
/// @solidity memory-safe-assembly
assembly {
mstore(0, arr.slot)
slot := add(keccak256(0, 0x20), pos)
}
return slot.getUint256Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError, bytes32) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {IERC-5267}.
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/ERC1155.sol)
pragma solidity ^0.8.20;
import {IERC1155} from "./IERC1155.sol";
import {IERC1155Receiver} from "./IERC1155Receiver.sol";
import {IERC1155MetadataURI} from "./extensions/IERC1155MetadataURI.sol";
import {Context} from "../../utils/Context.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {Arrays} from "../../utils/Arrays.sol";
import {IERC1155Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the basic standard multi-token.
* See https://eips.ethereum.org/EIPS/eip-1155
* Originally based on code by Enjin: https://github.com/enjin/erc-1155
*/
abstract contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI, IERC1155Errors {
using Arrays for uint256[];
using Arrays for address[];
mapping(uint256 id => mapping(address account => uint256)) private _balances;
mapping(address account => mapping(address operator => bool)) private _operatorApprovals;
// Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
string private _uri;
/**
* @dev See {_setURI}.
*/
constructor(string memory uri_) {
_setURI(uri_);
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC1155).interfaceId ||
interfaceId == type(IERC1155MetadataURI).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC1155MetadataURI-uri}.
*
* This implementation returns the same URI for *all* token types. It relies
* on the token type ID substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
*
* Clients calling this function must replace the `\{id\}` substring with the
* actual token type ID.
*/
function uri(uint256 /* id */) public view virtual returns (string memory) {
return _uri;
}
/**
* @dev See {IERC1155-balanceOf}.
*/
function balanceOf(address account, uint256 id) public view virtual returns (uint256) {
return _balances[id][account];
}
/**
* @dev See {IERC1155-balanceOfBatch}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] memory accounts,
uint256[] memory ids
) public view virtual returns (uint256[] memory) {
if (accounts.length != ids.length) {
revert ERC1155InvalidArrayLength(ids.length, accounts.length);
}
uint256[] memory batchBalances = new uint256[](accounts.length);
for (uint256 i = 0; i < accounts.length; ++i) {
batchBalances[i] = balanceOf(accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i));
}
return batchBalances;
}
/**
* @dev See {IERC1155-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC1155-isApprovedForAll}.
*/
function isApprovedForAll(address account, address operator) public view virtual returns (bool) {
return _operatorApprovals[account][operator];
}
/**
* @dev See {IERC1155-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual {
address sender = _msgSender();
if (from != sender && !isApprovedForAll(from, sender)) {
revert ERC1155MissingApprovalForAll(sender, from);
}
_safeTransferFrom(from, to, id, value, data);
}
/**
* @dev See {IERC1155-safeBatchTransferFrom}.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) public virtual {
address sender = _msgSender();
if (from != sender && !isApprovedForAll(from, sender)) {
revert ERC1155MissingApprovalForAll(sender, from);
}
_safeBatchTransferFrom(from, to, ids, values, data);
}
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from`
* (or `to`) is the zero address.
*
* Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received}
* or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value.
* - `ids` and `values` must have the same length.
*
* NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead.
*/
function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual {
if (ids.length != values.length) {
revert ERC1155InvalidArrayLength(ids.length, values.length);
}
address operator = _msgSender();
for (uint256 i = 0; i < ids.length; ++i) {
uint256 id = ids.unsafeMemoryAccess(i);
uint256 value = values.unsafeMemoryAccess(i);
if (from != address(0)) {
uint256 fromBalance = _balances[id][from];
if (fromBalance < value) {
revert ERC1155InsufficientBalance(from, fromBalance, value, id);
}
unchecked {
// Overflow not possible: value <= fromBalance
_balances[id][from] = fromBalance - value;
}
}
if (to != address(0)) {
_balances[id][to] += value;
}
}
if (ids.length == 1) {
uint256 id = ids.unsafeMemoryAccess(0);
uint256 value = values.unsafeMemoryAccess(0);
emit TransferSingle(operator, from, to, id, value);
} else {
emit TransferBatch(operator, from, to, ids, values);
}
}
/**
* @dev Version of {_update} that performs the token acceptance check by calling
* {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it
* contains code (eg. is a smart contract at the moment of execution).
*
* IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any
* update to the contract state after this function would break the check-effect-interaction pattern. Consider
* overriding {_update} instead.
*/
function _updateWithAcceptanceCheck(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal virtual {
_update(from, to, ids, values);
if (to != address(0)) {
address operator = _msgSender();
if (ids.length == 1) {
uint256 id = ids.unsafeMemoryAccess(0);
uint256 value = values.unsafeMemoryAccess(0);
_doSafeTransferAcceptanceCheck(operator, from, to, id, value, data);
} else {
_doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, values, data);
}
}
}
/**
* @dev Transfers a `value` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(from, to, ids, values, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
* - `ids` and `values` must have the same length.
*/
function _safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
_updateWithAcceptanceCheck(from, to, ids, values, data);
}
/**
* @dev Sets a new URI for all token types, by relying on the token type ID
* substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
*
* By this mechanism, any occurrence of the `\{id\}` substring in either the
* URI or any of the values in the JSON file at said URI will be replaced by
* clients with the token type ID.
*
* For example, the `https://token-cdn-domain/\{id\}.json` URI would be
* interpreted by clients as
* `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
* for token type ID 0x4cce0.
*
* See {uri}.
*
* Because these URIs cannot be meaningfully represented by the {URI} event,
* this function emits no events.
*/
function _setURI(string memory newuri) internal virtual {
_uri = newuri;
}
/**
* @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _mint(address to, uint256 id, uint256 value, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(address(0), to, ids, values, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function _mintBatch(address to, uint256[] memory ids, uint256[] memory values, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
_updateWithAcceptanceCheck(address(0), to, ids, values, data);
}
/**
* @dev Destroys a `value` amount of tokens of type `id` from `from`
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `value` amount of tokens of type `id`.
*/
function _burn(address from, uint256 id, uint256 value) internal {
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(from, address(0), ids, values, "");
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `value` amount of tokens of type `id`.
* - `ids` and `values` must have the same length.
*/
function _burnBatch(address from, uint256[] memory ids, uint256[] memory values) internal {
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
_updateWithAcceptanceCheck(from, address(0), ids, values, "");
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the zero address.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
if (operator == address(0)) {
revert ERC1155InvalidOperator(address(0));
}
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Performs an acceptance check by calling {IERC1155-onERC1155Received} on the `to` address
* if it contains code at the moment of execution.
*/
function _doSafeTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256 id,
uint256 value,
bytes memory data
) private {
if (to.code.length > 0) {
try IERC1155Receiver(to).onERC1155Received(operator, from, id, value, data) returns (bytes4 response) {
if (response != IERC1155Receiver.onERC1155Received.selector) {
// Tokens rejected
revert ERC1155InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-ERC1155Receiver implementer
revert ERC1155InvalidReceiver(to);
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
}
}
/**
* @dev Performs a batch acceptance check by calling {IERC1155-onERC1155BatchReceived} on the `to` address
* if it contains code at the moment of execution.
*/
function _doSafeBatchTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) private {
if (to.code.length > 0) {
try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, values, data) returns (
bytes4 response
) {
if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
// Tokens rejected
revert ERC1155InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-ERC1155Receiver implementer
revert ERC1155InvalidReceiver(to);
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
}
}
/**
* @dev Creates an array in memory with only one value for each of the elements provided.
*/
function _asSingletonArrays(
uint256 element1,
uint256 element2
) private pure returns (uint256[] memory array1, uint256[] memory array2) {
/// @solidity memory-safe-assembly
assembly {
// Load the free memory pointer
array1 := mload(0x40)
// Set array length to 1
mstore(array1, 1)
// Store the single element at the next word after the length (where content starts)
mstore(add(array1, 0x20), element1)
// Repeat for next array locating it right after the first array
array2 := add(array1, 0x40)
mstore(array2, 1)
mstore(add(array2, 0x20), element2)
// Update the free memory pointer by pointing after the second array
mstore(0x40, add(array2, 0x40))
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
* ```
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The operation failed, as the output exceeds the maximum value of uint256.
error ExpOverflow();
/// @dev The operation failed, as the output exceeds the maximum value of uint256.
error FactorialOverflow();
/// @dev The operation failed, due to an overflow.
error RPowOverflow();
/// @dev The mantissa is too big to fit.
error MantissaOverflow();
/// @dev The operation failed, due to an multiplication overflow.
error MulWadFailed();
/// @dev The operation failed, due to an multiplication overflow.
error SMulWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error DivWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error SDivWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error MulDivFailed();
/// @dev The division failed, as the denominator is zero.
error DivFailed();
/// @dev The full precision multiply-divide operation failed, either due
/// to the result being larger than 256 bits, or a division by a zero.
error FullMulDivFailed();
/// @dev The output is undefined, as the input is less-than-or-equal to zero.
error LnWadUndefined();
/// @dev The input outside the acceptable domain.
error OutOfDomain();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The scalar of ETH and most ERC20s.
uint256 internal constant WAD = 1e18;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* SIMPLIFIED FIXED POINT OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Equivalent to `(x * y) / WAD` rounded down.
function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
if mul(y, gt(x, div(not(0), y))) {
mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
revert(0x1c, 0x04)
}
z := div(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down.
function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
revert(0x1c, 0x04)
}
z := sdiv(z, WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded up.
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
if mul(y, gt(x, div(not(0), y))) {
mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down.
function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
revert(0x1c, 0x04)
}
z := div(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down.
function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, WAD)
// Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
if iszero(and(iszero(iszero(y)), eq(sdiv(z, WAD), x))) {
mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
revert(0x1c, 0x04)
}
z := sdiv(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded up.
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
}
}
/// @dev Equivalent to `x` to the power of `y`.
/// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
/// Note: This function is an approximation.
function powWad(int256 x, int256 y) internal pure returns (int256) {
// Using `ln(x)` means `x` must be greater than 0.
return expWad((lnWad(x) * y) / int256(WAD));
}
/// @dev Returns `exp(x)`, denominated in `WAD`.
/// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
/// Note: This function is an approximation. Monotonically increasing.
function expWad(int256 x) internal pure returns (int256 r) {
unchecked {
// When the result is less than 0.5 we return zero.
// This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
if (x <= -41446531673892822313) return r;
/// @solidity memory-safe-assembly
assembly {
// When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
// an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
if iszero(slt(x, 135305999368893231589)) {
mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
revert(0x1c, 0x04)
}
}
// `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
// for more intermediate precision and a binary basis. This base conversion
// is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
x = (x << 78) / 5 ** 18;
// Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
// of two such that exp(x) = exp(x') * 2**k, where k is an integer.
// Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
x = x - k * 54916777467707473351141471128;
// `k` is in the range `[-61, 195]`.
// Evaluate using a (6, 7)-term rational approximation.
// `p` is made monic, we'll multiply by a scale factor later.
int256 y = x + 1346386616545796478920950773328;
y = ((y * x) >> 96) + 57155421227552351082224309758442;
int256 p = y + x - 94201549194550492254356042504812;
p = ((p * y) >> 96) + 28719021644029726153956944680412240;
p = p * x + (4385272521454847904659076985693276 << 96);
// We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
int256 q = x - 2855989394907223263936484059900;
q = ((q * x) >> 96) + 50020603652535783019961831881945;
q = ((q * x) >> 96) - 533845033583426703283633433725380;
q = ((q * x) >> 96) + 3604857256930695427073651918091429;
q = ((q * x) >> 96) - 14423608567350463180887372962807573;
q = ((q * x) >> 96) + 26449188498355588339934803723976023;
/// @solidity memory-safe-assembly
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial won't have zeros in the domain as all its roots are complex.
// No scaling is necessary because p is already `2**96` too large.
r := sdiv(p, q)
}
// r should be in the range `(0.09, 0.25) * 2**96`.
// We now need to multiply r by:
// - The scale factor `s ≈ 6.031367120`.
// - The `2**k` factor from the range reduction.
// - The `1e18 / 2**96` factor for base conversion.
// We do this all at once, with an intermediate result in `2**213`
// basis, so the final right shift is always by a positive amount.
r = int256(
(uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
);
}
}
/// @dev Returns `ln(x)`, denominated in `WAD`.
/// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
/// Note: This function is an approximation. Monotonically increasing.
function lnWad(int256 x) internal pure returns (int256 r) {
/// @solidity memory-safe-assembly
assembly {
// We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
// We do this by multiplying by `2**96 / 10**18`. But since
// `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
// and add `ln(2**96 / 10**18)` at the end.
// Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// We place the check here for more optimal stack operations.
if iszero(sgt(x, 0)) {
mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
revert(0x1c, 0x04)
}
// forgefmt: disable-next-item
r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))
// Reduce range of x to (1, 2) * 2**96
// ln(2^k * x) = k * ln(2) + ln(x)
x := shr(159, shl(r, x))
// Evaluate using a (8, 8)-term rational approximation.
// `p` is made monic, we will multiply by a scale factor later.
// forgefmt: disable-next-item
let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
sar(96, mul(add(43456485725739037958740375743393,
sar(96, mul(add(24828157081833163892658089445524,
sar(96, mul(add(3273285459638523848632254066296,
x), x))), x))), x)), 11111509109440967052023855526967)
p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
// We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
// `q` is monic by convention.
let q := add(5573035233440673466300451813936, x)
q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
q := add(909429971244387300277376558375, sar(96, mul(x, q)))
// `p / q` is in the range `(0, 0.125) * 2**96`.
// Finalization, we need to:
// - Multiply by the scale factor `s = 5.549…`.
// - Add `ln(2**96 / 10**18)`.
// - Add `k * ln(2)`.
// - Multiply by `10**18 / 2**96 = 5**18 >> 78`.
// The q polynomial is known not to have zeros in the domain.
// No scaling required because p is already `2**96` too large.
p := sdiv(p, q)
// Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
p := mul(1677202110996718588342820967067443963516166, p)
// Add `ln(2) * k * 5**18 * 2**192`.
// forgefmt: disable-next-item
p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
// Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
// Base conversion: mul `2**18 / 2**192`.
r := sar(174, p)
}
}
/// @dev Returns `W_0(x)`, denominated in `WAD`.
/// See: https://en.wikipedia.org/wiki/Lambert_W_function
/// a.k.a. Product log function. This is an approximation of the principal branch.
/// Note: This function is an approximation. Monotonically increasing.
function lambertW0Wad(int256 x) internal pure returns (int256 w) {
// forgefmt: disable-next-item
unchecked {
if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
int256 wad = int256(WAD);
int256 p = x;
uint256 c; // Whether we need to avoid catastrophic cancellation.
uint256 i = 4; // Number of iterations.
if (w <= 0x1ffffffffffff) {
if (-0x4000000000000 <= w) {
i = 1; // Inputs near zero only take one step to converge.
} else if (w <= -0x3ffffffffffffff) {
i = 32; // Inputs near `-1/e` take very long to converge.
}
} else if (uint256(w >> 63) == uint256(0)) {
/// @solidity memory-safe-assembly
assembly {
// Inline log2 for more performance, since the range is small.
let v := shr(49, w)
let l := shl(3, lt(0xff, v))
l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
c := gt(l, 60)
i := add(2, add(gt(l, 53), c))
}
} else {
int256 ll = lnWad(w = lnWad(w));
/// @solidity memory-safe-assembly
assembly {
// `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
i := add(3, iszero(shr(68, x)))
c := iszero(shr(143, x))
}
if (c == uint256(0)) {
do { // If `x` is big, use Newton's so that intermediate values won't overflow.
int256 e = expWad(w);
/// @solidity memory-safe-assembly
assembly {
let t := mul(w, div(e, wad))
w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
}
if (p <= w) break;
p = w;
} while (--i != uint256(0));
/// @solidity memory-safe-assembly
assembly {
w := sub(w, sgt(w, 2))
}
return w;
}
}
do { // Otherwise, use Halley's for faster convergence.
int256 e = expWad(w);
/// @solidity memory-safe-assembly
assembly {
let t := add(w, wad)
let s := sub(mul(w, e), mul(x, wad))
w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
}
if (p <= w) break;
p = w;
} while (--i != c);
/// @solidity memory-safe-assembly
assembly {
w := sub(w, sgt(w, 2))
}
// For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
// R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
if (c == uint256(0)) return w;
int256 t = w | 1;
/// @solidity memory-safe-assembly
assembly {
x := sdiv(mul(x, wad), t)
}
x = (t * (wad + lnWad(x)));
/// @solidity memory-safe-assembly
assembly {
w := sdiv(x, add(wad, t))
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* GENERAL NUMBER UTILITIES */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Calculates `floor(x * y / d)` with full precision.
/// Throws if result overflows a uint256 or when `d` is zero.
/// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
// 512-bit multiply `[p1 p0] = x * y`.
// Compute the product mod `2**256` and mod `2**256 - 1`
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that `product = p1 * 2**256 + p0`.
// Temporarily use `result` as `p0` to save gas.
result := mul(x, y) // Lower 256 bits of `x * y`.
for {} 1 {} {
// If overflows.
if iszero(mul(or(iszero(x), eq(div(result, x), y)), d)) {
let mm := mulmod(x, y, not(0))
let p1 := sub(mm, add(result, lt(mm, result))) // Upper 256 bits of `x * y`.
/*------------------- 512 by 256 division --------------------*/
// Make division exact by subtracting the remainder from `[p1 p0]`.
let r := mulmod(x, y, d) // Compute remainder using mulmod.
let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
// Make sure the result is less than `2**256`. Also prevents `d == 0`.
// Placing the check here seems to give more optimal stack operations.
if iszero(gt(d, p1)) {
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
d := div(d, t) // Divide `d` by `t`, which is a power of two.
// Invert `d mod 2**256`
// Now that `d` is an odd number, it has an inverse
// modulo `2**256` such that `d * inv = 1 mod 2**256`.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, `d * inv = 1 mod 2**4`.
let inv := xor(2, mul(3, d))
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
result :=
mul(
// Divide [p1 p0] by the factors of two.
// Shift in bits from `p1` into `p0`. For this we need
// to flip `t` such that it is `2**256 / t`.
or(
mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)),
div(sub(result, r), t)
),
mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
)
break
}
result := div(result, d)
break
}
}
}
/// @dev Calculates `floor(x * y / d)` with full precision.
/// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
/// Performs the full 512 bit calculation regardless.
function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
result := mul(x, y)
let mm := mulmod(x, y, not(0))
let p1 := sub(mm, add(result, lt(mm, result)))
let t := and(d, sub(0, d))
let r := mulmod(x, y, d)
d := div(d, t)
let inv := xor(2, mul(3, d))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
result :=
mul(
or(mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)), div(sub(result, r), t)),
mul(sub(2, mul(d, inv)), inv)
)
}
}
/// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
/// Throws if result overflows a uint256 or when `d` is zero.
/// Credit to Uniswap-v3-core under MIT license:
/// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
result = fullMulDiv(x, y, d);
/// @solidity memory-safe-assembly
assembly {
if mulmod(x, y, d) {
result := add(result, 1)
if iszero(result) {
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
}
}
}
/// @dev Returns `floor(x * y / d)`.
/// Reverts if `x * y` overflows, or `d` is zero.
function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
mstore(0x00, 0xad251c27) // `MulDivFailed()`.
revert(0x1c, 0x04)
}
z := div(z, d)
}
}
/// @dev Returns `ceil(x * y / d)`.
/// Reverts if `x * y` overflows, or `d` is zero.
function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
mstore(0x00, 0xad251c27) // `MulDivFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(z, d))), div(z, d))
}
}
/// @dev Returns `ceil(x / d)`.
/// Reverts if `d` is zero.
function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
if iszero(d) {
mstore(0x00, 0x65244e4e) // `DivFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(x, d))), div(x, d))
}
}
/// @dev Returns `max(0, x - y)`.
function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(gt(x, y), sub(x, y))
}
}
/// @dev Returns `condition ? x : y`, without branching.
function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
result := xor(x, mul(xor(x, y), iszero(condition)))
}
}
/// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
/// Reverts if the computation overflows.
function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
if x {
z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
let half := shr(1, b) // Divide `b` by 2.
// Divide `y` by 2 every iteration.
for { y := shr(1, y) } y { y := shr(1, y) } {
let xx := mul(x, x) // Store x squared.
let xxRound := add(xx, half) // Round to the nearest number.
// Revert if `xx + half` overflowed, or if `x ** 2` overflows.
if or(lt(xxRound, xx), shr(128, x)) {
mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
revert(0x1c, 0x04)
}
x := div(xxRound, b) // Set `x` to scaled `xxRound`.
// If `y` is odd:
if and(y, 1) {
let zx := mul(z, x) // Compute `z * x`.
let zxRound := add(zx, half) // Round to the nearest number.
// If `z * x` overflowed or `zx + half` overflowed:
if or(xor(div(zx, x), z), lt(zxRound, zx)) {
// Revert if `x` is non-zero.
if x {
mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
revert(0x1c, 0x04)
}
}
z := div(zxRound, b) // Return properly scaled `zxRound`.
}
}
}
}
}
/// @dev Returns the square root of `x`, rounded down.
function sqrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
// but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffffff, shr(r, x))))
z := shl(shr(1, r), z)
// Goal was to get `z*z*y` within a small factor of `x`. More iterations could
// get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
// We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
// That's not possible if `x < 256` but we can just verify those cases exhaustively.
// Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
// Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
// Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.
// For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
// is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
// with largest error when `s = 1` and when `s = 256` or `1/256`.
// Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
// Then we can estimate `sqrt(y)` using
// `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.
// There is no overflow risk here since `y < 2**136` after the first branch above.
z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If `x+1` is a perfect square, the Babylonian method cycles between
// `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
z := sub(z, lt(div(x, z), z))
}
}
/// @dev Returns the cube root of `x`, rounded down.
/// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
/// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
function cbrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := sub(z, lt(div(x, mul(z, z)), z))
}
}
/// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
function sqrtWad(uint256 x) internal pure returns (uint256 z) {
unchecked {
if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
z = (1 + sqrt(x)) * 10 ** 9;
z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
}
/// @solidity memory-safe-assembly
assembly {
z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1)))
}
}
/// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
function cbrtWad(uint256 x) internal pure returns (uint256 z) {
unchecked {
if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
z = (1 + cbrt(x)) * 10 ** 12;
z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
x = fullMulDivUnchecked(x, 10 ** 36, z * z);
}
/// @solidity memory-safe-assembly
assembly {
z := sub(z, lt(x, z))
}
}
/// @dev Returns the factorial of `x`.
function factorial(uint256 x) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
result := 1
if iszero(lt(x, 58)) {
mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
revert(0x1c, 0x04)
}
for {} x { x := sub(x, 1) } { result := mul(result, x) }
}
}
/// @dev Returns the log2 of `x`.
/// Equivalent to computing the index of the most significant bit (MSB) of `x`.
/// Returns 0 if `x` is zero.
function log2(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0x0706060506020504060203020504030106050205030304010505030400000000))
}
}
/// @dev Returns the log2 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log2Up(uint256 x) internal pure returns (uint256 r) {
r = log2(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(shl(r, 1), x))
}
}
/// @dev Returns the log10 of `x`.
/// Returns 0 if `x` is zero.
function log10(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
if iszero(lt(x, 100000000000000000000000000000000000000)) {
x := div(x, 100000000000000000000000000000000000000)
r := 38
}
if iszero(lt(x, 100000000000000000000)) {
x := div(x, 100000000000000000000)
r := add(r, 20)
}
if iszero(lt(x, 10000000000)) {
x := div(x, 10000000000)
r := add(r, 10)
}
if iszero(lt(x, 100000)) {
x := div(x, 100000)
r := add(r, 5)
}
r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
}
}
/// @dev Returns the log10 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log10Up(uint256 x) internal pure returns (uint256 r) {
r = log10(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(exp(10, r), x))
}
}
/// @dev Returns the log256 of `x`.
/// Returns 0 if `x` is zero.
function log256(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(shr(3, r), lt(0xff, shr(r, x)))
}
}
/// @dev Returns the log256 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log256Up(uint256 x) internal pure returns (uint256 r) {
r = log256(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(shl(shl(3, r), 1), x))
}
}
/// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
/// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
/// @solidity memory-safe-assembly
assembly {
mantissa := x
if mantissa {
if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
mantissa := div(mantissa, 1000000000000000000000000000000000)
exponent := 33
}
if iszero(mod(mantissa, 10000000000000000000)) {
mantissa := div(mantissa, 10000000000000000000)
exponent := add(exponent, 19)
}
if iszero(mod(mantissa, 1000000000000)) {
mantissa := div(mantissa, 1000000000000)
exponent := add(exponent, 12)
}
if iszero(mod(mantissa, 1000000)) {
mantissa := div(mantissa, 1000000)
exponent := add(exponent, 6)
}
if iszero(mod(mantissa, 10000)) {
mantissa := div(mantissa, 10000)
exponent := add(exponent, 4)
}
if iszero(mod(mantissa, 100)) {
mantissa := div(mantissa, 100)
exponent := add(exponent, 2)
}
if iszero(mod(mantissa, 10)) {
mantissa := div(mantissa, 10)
exponent := add(exponent, 1)
}
}
}
}
/// @dev Convenience function for packing `x` into a smaller number using `sci`.
/// The `mantissa` will be in bits [7..255] (the upper 249 bits).
/// The `exponent` will be in bits [0..6] (the lower 7 bits).
/// Use `SafeCastLib` to safely ensure that the `packed` number is small
/// enough to fit in the desired unsigned integer type:
/// ```
/// uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
/// ```
function packSci(uint256 x) internal pure returns (uint256 packed) {
(x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
/// @solidity memory-safe-assembly
assembly {
if shr(249, x) {
mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
revert(0x1c, 0x04)
}
packed := or(shl(7, x), packed)
}
}
/// @dev Convenience function for unpacking a packed number from `packSci`.
function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
unchecked {
unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
}
}
/// @dev Returns the average of `x` and `y`. Rounds towards zero.
function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = (x & y) + ((x ^ y) >> 1);
}
}
/// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
function avg(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = (x >> 1) + (y >> 1) + (x & y & 1);
}
}
/// @dev Returns the absolute value of `x`.
function abs(int256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(sar(255, x), add(sar(255, x), x))
}
}
/// @dev Returns the absolute distance between `x` and `y`.
function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(mul(xor(sub(y, x), sub(x, y)), gt(x, y)), sub(y, x))
}
}
/// @dev Returns the absolute distance between `x` and `y`.
function dist(int256 x, int256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(mul(xor(sub(y, x), sub(x, y)), sgt(x, y)), sub(y, x))
}
}
/// @dev Returns the minimum of `x` and `y`.
function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), lt(y, x)))
}
}
/// @dev Returns the minimum of `x` and `y`.
function min(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), slt(y, x)))
}
}
/// @dev Returns the maximum of `x` and `y`.
function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), gt(y, x)))
}
}
/// @dev Returns the maximum of `x` and `y`.
function max(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), sgt(y, x)))
}
}
/// @dev Returns `x`, bounded to `minValue` and `maxValue`.
function clamp(uint256 x, uint256 minValue, uint256 maxValue)
internal
pure
returns (uint256 z)
{
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
}
}
/// @dev Returns `x`, bounded to `minValue` and `maxValue`.
function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
}
}
/// @dev Returns greatest common divisor of `x` and `y`.
function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
for { z := x } y {} {
let t := y
y := mod(z, y)
z := t
}
}
}
/// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
/// with `t` clamped between `begin` and `end` (inclusive).
/// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
/// If `begins == end`, returns `t <= begin ? a : b`.
function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
internal
pure
returns (uint256)
{
if (begin > end) {
t = ~t;
begin = ~begin;
end = ~end;
}
if (t <= begin) return a;
if (t >= end) return b;
unchecked {
if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
return a - fullMulDiv(a - b, t - begin, end - begin);
}
}
/// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
/// with `t` clamped between `begin` and `end` (inclusive).
/// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
/// If `begins == end`, returns `t <= begin ? a : b`.
function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
internal
pure
returns (int256)
{
if (begin > end) {
t = int256(~uint256(t));
begin = int256(~uint256(begin));
end = int256(~uint256(end));
}
if (t <= begin) return a;
if (t >= end) return b;
// forgefmt: disable-next-item
unchecked {
if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b) - uint256(a),
uint256(t) - uint256(begin), uint256(end) - uint256(begin)));
return int256(uint256(a) - fullMulDiv(uint256(a) - uint256(b),
uint256(t) - uint256(begin), uint256(end) - uint256(begin)));
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RAW NUMBER OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns `x + y`, without checking for overflow.
function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x + y;
}
}
/// @dev Returns `x + y`, without checking for overflow.
function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x + y;
}
}
/// @dev Returns `x - y`, without checking for underflow.
function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x - y;
}
}
/// @dev Returns `x - y`, without checking for underflow.
function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x - y;
}
}
/// @dev Returns `x * y`, without checking for overflow.
function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x * y;
}
}
/// @dev Returns `x * y`, without checking for overflow.
function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x * y;
}
}
/// @dev Returns `x / y`, returning 0 if `y` is zero.
function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(x, y)
}
}
/// @dev Returns `x / y`, returning 0 if `y` is zero.
function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(x, y)
}
}
/// @dev Returns `x % y`, returning 0 if `y` is zero.
function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mod(x, y)
}
}
/// @dev Returns `x % y`, returning 0 if `y` is zero.
function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := smod(x, y)
}
}
/// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := addmod(x, y, d)
}
}
/// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mulmod(x, y, d)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (token/ERC1155/IERC1155.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[EIP].
*/
interface IERC1155 is IERC165 {
/**
* @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] values
);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(address indexed account, address indexed operator, bool approved);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the value of tokens of token type `id` owned by `account`.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function balanceOf(address account, uint256 id) external view returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] calldata accounts,
uint256[] calldata ids
) external view returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the caller.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator) external view returns (bool);
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {onERC1155Received} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)
pragma solidity ^0.8.20;
import {IERC1155} from "../IERC1155.sol";
/**
* @dev Interface of the optional ERC1155MetadataExtension interface, as defined
* in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[EIP].
*/
interface IERC1155MetadataURI is IERC1155 {
/**
* @dev Returns the URI for token type `id`.
*
* If the `\{id\}` substring is present in the URI, it must be replaced by
* clients with the actual token type ID.
*/
function uri(uint256 id) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Interface that must be implemented by smart contracts in order to receive
* ERC-1155 token transfers.
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* _ _ _ _ _
* / \ | | | _(_)_ __ ___ (_)_ _ __ _
* / _ \ | | |/ / | '_ ` _ \| | | | |/ _` |
* / ___ \| | <| | | | | | | | |_| | (_| |
* /_/_ \_\_|_|\_\_|_| |_| |_|_|\__, |\__,_|
* |_ _|_ __ __| | _____ __ |___/
* | || '_ \ / _` |/ _ \ \/ /
* | || | | | (_| | __/> <
* |___|_| |_|\__,_|\___/_/\_\
*/
/// @title Silica Index Protocol
/// @author Alkimiya
/// @notice Required methods for a contract to provide an index to Silica Pools
interface ISilicaIndex {
/// @return A name suitable for display as a page title or heading.
/// @custom:example "Bitcoin Mining Yield"
/// @custom:example "Lido Staked Ethereum Yield"
/// @custom:example "Gas Costs"
/// @custom:since 0.1.0
function name() external view returns (string memory);
/// @return Short name of the display units of `shares()`.
/// @custom:example "PH/s"
/// @custom:example "ystETH"
/// @custom:example "kgas"
/// @custom:since 0.1.0
function symbol() external view returns (string memory);
/// @return Decimal offset of `symbol()` vs indivisible units of `shares()`.
/// @custom:example If 1 `symbol()` (e.g. "PH/s") represents
/// 1e15 `shares()` (e.g. H/s)
/// then `decimals()` should return 15.
/// @custom:example If 1 `symbol()` (e.g. "ystETH") represents
/// 1e18 `shares()` (e.g. wei)
/// then `decimals()` should return 18.
/// @custom:example If 1 `symbol()` (e.g. "kgas") represents
/// 1e6 `shares()` (e.g. milligas per block)
/// then `decimals()` should return 6.
/// @custom:since 0.1.0
function decimals() external view returns (uint256);
/// @notice Size of the position tracked by this index.
/// Clients SHOULD NOT assume that this value is constant.
/// Clients SHOULD denominate pool shares in the same denomination
/// as `ISilicaIndex.shares()` (see: `symbol()`, `decimals()`).
/// @custom:example 1e15 H/s.
/// @custom:example `ILido.getPooledEthByShares(1 ether)` stETH wei.
/// @custom:example 1e3 milligas per block
/// @custom:since 0.1.0
function shares() external view returns (uint256);
/// @notice Clients MAY transact in any token which is pegged to
/// `balanceToken()`, as long as the `decimals()` match.
/// Clients SHOULD NOT transact in a token which is not pegged to
/// `balanceToken()`; the resulting financial contract will not
/// make sense.
/// @custom:example 0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599 (WBTC on mainnet)
/// @custom:example 0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84 (stETH on mainnet)
/// @custom:example 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2 (WETH on mainnet)
/// @custom:since 0.1.0
function balanceToken() external view returns (address);
/// @return Tracks the balance accumulated by the `shares()`.
/// @notice This is not required to increase over time.
/// Clients SHOULD have defensive programming against underflow
/// when taking `balance() - initialBalance`.
/// @custom:example WBTC earned per PH/s since Jan 1, 2023.
/// @custom:example `ILido.getPooledEthByShares(1 ether)` stETH.
/// @custom:example Running cost to transact 1 gas every block since Jan 1, 2023.
/// @custom:since 0.1.0
function balance() external view returns (uint256);
}
///// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* _ _ _ _ _
* / \ | | | _(_)_ __ ___ (_)_ _ __ _
* / _ \ | | |/ / | '_ ` _ \| | | | |/ _` |
* / ___ \| | <| | | | | | | | |_| | (_| |
* /_/__ \_\_|_|\_\_|_| |_| |_|_|\__, |\__,_|_
* / ___|(_) (_) ___ __ _ | _ \|___/ ___ | |___
* \___ \| | | |/ __/ _` | | |_) / _ \ / _ \| / __|
* ___) | | | | (_| (_| | | __/ (_) | (_) | \__ \
* |____/|_|_|_|\___\__,_| |_| \___/ \___/|_|___/
*/
import {IERC20} from "@openzeppelin/token/ERC20/IERC20.sol";
import {IERC1155} from "@openzeppelin/token/ERC1155/IERC1155.sol";
import {ISilicaIndex} from "./ISilicaIndex.sol";
/// @title Silica Pools Protocol
/// @author Alkimiya
/// @notice Protocol for allocating tokens into pools which track
/// a balance change over a specified period and pay out
/// accordingly: https://www.investopedia.com/terms/v/verticalspread.asp
/// @custom:example If a pool specifies strikes of 100-200 DAI per share
/// over a 1 year term, and the balance change over the term
/// is 160 DAI per share, then at the end of the pool's term,
/// 60 DAI per share (160 - 100) is paid out to
/// holders of long shares, and 40 DAI per share (200 - 160)
/// is paid out to holders of short shares.
interface ISilicaPools is IERC1155 {
event SilicaPools__FillFeeChanged(uint256 newFeeBps);
event SilicaPools__GracePeriodChanged(uint256 newGracePeriod);
event SilicaPools__BountyIncreaseRateChanged(uint256 newRate);
event SilicaPools__MaxBountyFractionChanged(uint256 newMaxFraction);
event SilicaPools__TreasuryAddressChanged(address newTreasuryAddress);
event SilicaPools__PauseProtocol();
event SilicaPools__UnpauseProtocol();
event SilicaPools__OrderCancelled(bytes32 indexed orderHash);
event SilicaPools__PoolStarted(
bytes32 indexed poolHash,
uint128 floor,
uint128 cap,
uint48 targetStartTime,
uint48 targetEndTime,
address indexed index,
address indexed payoutToken,
uint128 indexShares,
uint128 indexInitialBalance
);
event SilicaPools__BountyPaid(bytes32 indexed poolHash, uint256 bountyAmount, address receiver);
event SilicaPools__PoolEnded(bytes32 indexed poolHash, uint256 endingIndexBalance, uint128 balanceChangePerShare);
event SilicaPools__CollateralizedMint(
bytes32 indexed poolHash,
bytes32 indexed orderHash,
address shortRecipient,
address longRecipient,
address indexed payer,
address payoutToken,
uint256 sharesMinted,
uint256 collateralAmount
);
event SilicaPools__FillFeePaid(
address indexed payer,
bytes32 indexed poolHash,
bytes32 indexed orderHash,
uint256 tokenId,
address tokenPaid,
uint256 amount
);
event SilicaPools__SharesRefunded(
bytes32 indexed poolHash,
address indexed recipient,
address indexed payoutToken,
uint256 sharesRefunded,
uint256 payoutTokenAmount
);
event SilicaPools__SharesRedeemed(
bytes32 indexed poolHash,
address indexed recipient,
address indexed payoutToken,
uint256 tokenId,
uint256 sharesRedeemed,
uint256 payoutTokenAmount
);
event SilicaPools__TradeHistoryEvent(
bytes32 indexed orderHash,
address indexed maker,
address indexed taker,
bytes32 offeredPoolHash,
bytes32 requestedPoolHash,
address offeredIndex,
address requestedIndex,
uint256 filledFraction,
uint256 remainingFraction
); // Needed if supporting client-side mutation
event SilicaPools__VolumeAccountingEvent(
bytes32 indexed orderHash,
bytes32 poolHash,
address indexed index,
address payoutToken,
uint256 capMinusFloor,
uint256 sharesMinted,
uint256 sharesTransferred,
address indexed upfrontTokenAddr,
uint256 upfrontTokenAmount
);
// Thrown when two input arrays have different lengths
error SilicaPools__ArrayLengthMismatch();
// Thrown when the signature of an order is invalid
error SilicaPools__InvalidSignature(bytes signature);
// Thrown when ending a pool that has already finished
error SilicaPools__PoolAlreadyEnded(bytes32 poolHash);
// Thrown when starting a pool that has already begun
error SilicaPools__PoolAlreadyStarted(bytes32 poolHash);
// Thrown when trying to redeem before pool end
error SilicaPools__PoolNotEnded(bytes32 poolHash);
// Thrown when interacting with a cancelled order
error SilicaPools__OrderIsCancelled(bytes32 orderHash);
// Thrown when filling an order partially
error SilicaPools__PartialOrdersNotSupported(bytes32 orderHash);
// Thrown when filling an order that is expired
error SilicaPools__OrderExpired(uint256 expiry, uint256 blockTimestamp);
// Thrown when a caller who is not the maker tries to update an order
error SilicaPools__InvalidCaller(address caller, address expectedCaller);
// Thrown when starting a pool before its target start time
error SilicaPools__TooEarlyToStart(uint256 attemptedTimestamp, uint256 targetTimestamp);
// Thrown when ending a pool before its target end time
error SilicaPools__TooEarlyToEnd(uint256 attemptedTimestamp, uint256 targetTimestamp);
// Thrown when filling an order with protocol that is paused
error SilicaPools__Paused();
struct PoolParams {
// 3 storage slots
/// @notice The "balance change per share" below which
/// long shares pay out 0, and short shares pay out the maximum:
/// (cap - floor) * shares
uint128 floor;
/// @notice The "balance change per share" above which
/// short shares pay out 0, and long shares pay out the maximum:
/// (cap - floor) * shares
uint128 cap;
/// @notice The address of the contract which reports the tracked balance
/// @custom:see ISilicaIndex
address index;
/// @notice The timestamp (in UNIX seconds) after which the pool may be started
uint48 targetStartTimestamp;
/// @notice The timestamp (in UNIX seconds) after which the pool may be ended
uint48 targetEndTimestamp;
/// @notice Address of the token in which the payout is denominated
address payoutToken;
}
struct PoolState {
// 3 storage slots
/// @notice The amount of collateral minted for this pool
/// denominated in `SilicaPool.payoutToken`
/// @notice Increases on mints
/// @notice Decreases on bounty payouts
/// @notice Decreases on collateral refunds
/// @notice Does *not* decrease on shares redeemed
/// @dev MUST update at mint, refund, bounty payout
uint128 collateralMinted;
/// @notice The amount of tokens/shares that have minted for this pool
/// @notice Increases on mints
/// @notice Decreases on collateral refunds
/// @notice Does *not* decrease on shares redeemed
/// @dev MUST update at mint, refund
uint128 sharesMinted;
/// @notice The number of shares the `index` represents,
/// as of the pool actual start
/// @dev MUST record at pool actual start
uint128 indexShares;
/// @dev MUST record at pool actual start
uint128 indexInitialBalance;
/// @notice The timestamp (in UNIX seconds) after which the pool was started
/// @dev MUST record at pool actual start
uint48 actualStartTimestamp;
/// @notice The timestamp (in UNIX seconds) after which the pool was ended
/// @dev MUST record at pool actual end
uint48 actualEndTimestamp;
/// @dev MUST record at pool actual end. MUST be pro-rated from
/// `actualEndTimestamp - actualStartTimestamp` to
/// `targetStartTimestamp - targetStartTimestamp`,
/// since the target time range is what the users are buying.
/// MUST be clamped between `floor` and `cap`.
/// @notice Clients SHOULD program defensively in case this failed to be
/// clamped between `floor` and `cap`
uint128 balanceChangePerShare;
}
/// @notice !TRADE OFFER!
/// i receive: requested long shares, requested upfront amount.
/// you receive: offered long shares, offered upfront amount.
/// `SilicaOrder` may not be used to offer/request short shares,
/// since you can offer short shares by requesting long shares,
/// and you can request short shares by offering long shares.
/// @custom:example To sell stETH yield for upfront USDC, set
/// `offeredIndex` to stETH index and
/// `requestedUpfrontToken` to USDC.
/// Set `requestedIndex` and `offeredUpfrontToken` to 0x0.
/// @custom:example To buy stETH yield with upfront USDC, set
/// `requestedIndex` to stETH index
/// and `offeredUpfrontToken` to USDC.
/// Set `offeredIndex` and `requestedUpfrontToken` to 0x0.
/// @custom:example To do a "float-to-float" trade, set both `offeredIndex`
/// and `requestedIndex`. If the `offeredLongShares` is a greater
/// exposure than the `requestedLongShares`, then the
/// `requestedUpfrontAmount` should compensate, and vice versa.
/// @custom:example To "deleverage", i.e. sell the full balance change without
/// subtracting the `floor`: set both `offeredIndex`
/// and `offeredUpfrontToken`. Set `offeredUpfrontAmount` to
/// `offeredfloor * offeredLongShares`.
/// @custom:example For a deleveraged float-to-float trade, set all 4 fields:
/// `offeredIndex`, `offeredUpfrontToken`,
/// `requestedIndex`, `requestedUpfrontToken`.
struct SilicaOrder {
/// @notice The wallet which created and signed the order,
/// i.e. `ecrecover` must return this address.
/// Assets are `offered` from the `maker` to takers,
/// and `requested` by the `maker` from takers.
address maker;
/// @notice If this is 0x0, anyone may fill this order.
/// Otherwise, this is a private order and
/// only `taker` may fill it.
address taker; // 0x0 if public order
uint48 expiry; // UNIX seconds
/// @notice 0x0 if no upfront amount offered
address offeredUpfrontToken;
uint128 offeredUpfrontAmount;
/// @notice 0x0 if no long shares offered
PoolParams offeredLongSharesParams;
uint128 offeredLongShares;
/// @notice 0x0 if no upfront amount requested
address requestedUpfrontToken;
uint128 requestedUpfrontAmount;
/// @notice 0x0 if no long shares requested
PoolParams requestedLongSharesParams;
uint128 requestedLongShares;
}
/// @notice Domain separator for EIP-712.
function domainSeparatorV4() external view returns (bytes32);
/// @notice The fee, in basis points, for minting long and short shares
function fillFeeBps() external returns (uint256);
/// @notice Only callable by owner
/// @dev MUST emit `SilicaPools__MintFeeChanged`
/// @param newFeeBps The new fee, in basis points
function setFillFeeBps(uint256 newFeeBps) external;
/// @notice The address which receives the mint fees
function treasuryAddress() external view returns (address);
/// @notice Only callable by owner
/// @dev MUST emit `SilicaPools__TreasuryAddressChanged`
/// @param newTreasury The new address which receives the mint fees
function setTreasuryAddress(address newTreasury) external;
/// @notice The grace period, in seconds, after the pool's target start & end times during which no bounties are paid
function bountyGracePeriod() external view returns (uint256);
/// @notice Only callable by owner
/// @dev MUST emit `SilicaPools__GracePeriodChanged`
/// @param newGracePeriod The new grace period, in seconds
function setBountyGracePeriod(uint256 newGracePeriod) external;
/// @notice The maximum bounty, as a fraction of the pool's collateral, that can be paid out
function maxBountyFraction() external view returns (uint256);
/// @notice Only callable by owner
/// @dev MUST emit `SilicaPools__MaxBountyFractionChanged`
/// @param newMaxFraction The new maximum bounty, as a fraction of the pool's collateral
function setMaxBountyFraction(uint256 newMaxFraction) external;
/// @notice The rate at which the bounty as a fraction of collateral increases per second
function bountyFractionIncreasePerSecond() external view returns (uint256);
/// @notice Only callable by owner
/// @dev MUST emit `SilicaPools__BountyIncreaseRateChanged`
/// @param newIncreaseAmount The new rate at which the bounty as a fraction of collateral increases per second
function setBountyFractionIncreasePerSecond(uint256 newIncreaseAmount) external;
/// @notice Pause the protocol. Only callable by owner
/// @dev MUST emit `SilicaPools__PauseProtocol`
function pause() external;
/// @notice Unpause the protocol. Only callable by owner
/// @dev MUST emit `SilicaPools__UnpauseProtocol`
function unpause() external;
/// @notice Returns PoolState struct that matched the input hash
/// @param poolHash The hash of the pool
/// @return PoolState struct that matched the input hash
function poolState(bytes32 poolHash) external view returns (PoolState memory);
/// @notice Indicates if a given order has been cancelled
/// @param orderHash The hash of the order
/// @return True if the order has been cancelled, false otherwise
function orderCancelled(bytes32 orderHash) external view returns (bool);
/// @notice Takes collateral from the caller, equal to the maximum payout:
/// (cap - floor) * shares
/// denominated in `SilicaPool.payoutToken`
/// @notice The caller must have approved this contract to transfer `SilicaPool.payoutToken`.
/// @dev MUST emit `SilicaPools__CollateralizedMint`
/// @param poolParams The pool to mint shares from.
/// @param shares The number of long and short shares to mint.
/// @param longRecipient Who should receive the long shares
/// (if 0x0, then `msg.sender` receives)
/// @param shortRecipient Who should receive the short shares
/// (if 0x0, then `msg.sender` receives)
function collateralizedMint(
PoolParams calldata poolParams,
bytes32 orderHash,
uint256 shares,
address longRecipient,
address shortRecipient
) external;
/// @notice Refunds mint collateral to the caller.
/// @notice The caller must have approved this contract to transfer their long and short shares.
/// @dev MUST emit `SilicaPools__SharesRefunded`
/// @param poolParams The pool to refund from.
/// @param shares Burn this many long shares and short shares.
function collateralRefund(PoolParams[] calldata poolParams, uint256[] calldata shares) external;
/// @notice Refunds mint collateral to the caller from the given pool.
/// @notice The caller must have approved this contract to transfer long and short shares.
/// @dev MUST emit `SilicaPools__SharesRefunded`
/// @param poolParams The pool to refund from.
function maxCollateralRefund(PoolParams[] calldata poolParams) external;
/// @notice Transfers all `offeredLongShares`, `offeredUpfrontAmount`,
/// `requestedLongShares`, `requestedUpfrontAmount` from/to
/// the appropriate parties
/// (`offered` should go from `order.maker` to `msg.sender`,
/// `requested` should go from `msg.sender` to `order.maker`).
/// If `order.taker != 0x0` the order is only fillable by `order.taker`.
/// This function SHOULD revert if any fill fails.
/// `UpfrontAmount`s SHOULD be transferred before any `LongShares` are minted,
/// to reduce the required allowance for minting `LongShares`.
/// @notice The caller must have approved this contract to transfer `requestedUpfrontToken`.
/// @notice If the order is private, the caller must be the taker.
/// @notice The input arrays must match in length.
/// @dev MUST emit `SilicaPools__TradeHistoryEvent`
/// @dev MUST emit `SilicaPools__VolumeAccountingEvent`
/// @param orders The orders to fill.
/// @param signatures The signature of the order maker.
/// @param fractions Pass 1e18 to fill 100% of the order.
function fillOrders(SilicaOrder[] calldata orders, bytes[] calldata signatures, uint256[] calldata fractions)
external;
/// @notice Cancels the given orders.
/// @notice The caller must be the maker of each order.
/// @dev MUST emit `SilicaPools__OrderCancelled`
/// @param orders The orders to cancel.
function cancelOrders(SilicaOrder[] calldata orders) external;
/// @notice View function to estimate bounty for timely initialization of index tracking.
/// @return If any of the pools are already started, then returns 0 for all bounties. Otherwise returns each bounty, quoted in the `payoutToken` of the pool.
/// @dev uncappedBountyFraction = block.timestamp > targetEndTimestamp + gracePeriod ? (block.timestamp - targetEndTimestamp - gracePeriod) * bountyFractionIncreasePerSecond : 0;
/// @dev bountyFraction = max(uncappedBountyFraction, maxBountyFraction)
/// @dev bounty = bountyFraction * collateral / 10**18;
function startBounty(PoolParams[] calldata poolParams) external view returns (uint256[] memory);
/// @notice Records the starting `ISilicaIndex` state for any of
/// the specified pools which have not already been started.
/// Caller will be paid a bounty for each pool which was not
/// already started if called after the grace period.
/// @notice Can only be called after pool's target start time.
/// @dev Search `SilicaPool` for "MUST record at pool actual start".
/// @dev MUST emit `SilicaPools__PoolStarted`
/// @param poolParams The pools to start.
function startPools(PoolParams[] calldata poolParams) external;
/// @notice View function to estimate bounty for timely finalization of index tracking.
/// @return If any of the pools are already ended, then returns 0 for all bounties. Otherwise returns each bounty, quoted in the `payoutToken` of the pool.
/// @dev uncappedBountyFraction = block.timestamp > targetEndTimestamp + gracePeriod ? (block.timestamp - targetEndTimestamp - gracePeriod) * bountyFractionIncreasePerSecond : 0;
/// @dev bountyFraction = max(uncappedBountyFraction, maxBountyFraction)
/// @dev bounty = bountyFraction * collateral / 10**18;
function endBounty(PoolParams[] calldata poolParams) external view returns (uint256[] memory);
/// @notice Records the ending `ISilicaIndex` state for any of
/// the specified pools which have not already been ended.
/// Caller will be paid a bounty for each pool which was not
/// already ended if called after the grace period.
/// @notice Can only be called after pool's target end time.
/// @dev Search `SilicaPool` for "MUST record at pool actual end"
/// @dev MUST emit `SilicaPools__PoolEnded`
function endPools(PoolParams[] calldata poolParams) external;
/// @notice Redeems shares for the payout token.
/// @notice The caller must have approved this contract to transfer their long and short shares.
/// @dev MUST emit `SilicaPools__SharesRedeemed`
/// @param longPoolParams The pools to redeem long shares from.
/// @param shortPoolParams The pools to redeem short shares from.
function redeem(PoolParams[] calldata longPoolParams, PoolParams[] calldata shortPoolParams) external;
/// @notice View function to preview the amount that would be returned for calling `redeemShort()` function.
/// @param shortParams The paramters of the pool to redeem short positions from.
/// @param account The address to redeem on behalf of.
/// @return expectedPayout The amount to be redeemed, denoted in the pool's payoutToken.
function viewRedeemShort(PoolParams calldata shortParams, address account)
external
view
returns (uint256 expectedPayout);
/// @notice View function to preview the amount that would be returned for calling `redeemLong()` function.
/// @param longParams The paramters of the pool to redeem long positions from.
/// @param account The addresses to redeem on behalf of.
/// @return expectedPayout The amount to be redeemed, denoted in the pool's payoutToken.
function viewRedeemLong(PoolParams calldata longParams, address account)
external
view
returns (uint256 expectedPayout);
/// @notice View function to preview the amount that would be returned for calling `collateralRefund()` function.
/// @param poolParams The pool to refund from.
/// @param shares The amount of long and short shares to be burnt.
/// @return expectedRefunds The amount to be refunded, denoted in the pool's payoutToken.
function viewCollateralRefund(PoolParams[] calldata poolParams, uint256[] calldata shares)
external
view
returns (uint256[] memory expectedRefunds);
/// @notice View function to preview the amount that would be returned for calling `maxCollateralRefund()` function
/// @param poolparams The pool to refund from.
/// @param accounts The accounts to refund on behalf of.
/// @return expectedRefund The amount to be refunded, denoted in the pool's payoutToken.
function viewMaxCollateralRefund(PoolParams[] calldata poolparams, address[] calldata accounts)
external
view
returns (uint256[] memory expectedRefund);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an EIP-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {ISilicaPools} from "../interfaces/ISilicaPools.sol";
import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
/**
* _ _ _ _ _
* / \ | | | _(_)_ __ ___ (_)_ _ __ _
* / _ \ | | |/ / | '_ ` _ \| | | | |/ _` |
* / ___ \| | <| | | | | | | | |_| | (_| |
* /_/ \_\_|_|\_\_|_| |_| |_|_|\__, |\__,_|
* ____ _ __ __ |___/_ _
* | _ \ ___ ___ | | | \/ | __ _| |_| |__ ___
* | |_) / _ \ / _ \| | | |\/| |/ _` | __| '_ \/ __|
* | __/ (_) | (_) | | | | | | (_| | |_| | | \__ \
* |_| \___/ \___/|_| |_| |_|\__,_|\__|_| |_|___/
*/
library PoolMaths {
/// @notice Calculate the collateral required for a given floor, cap, shares, and shareDecimals.
/// @param floor The predetermined lower bound on the Pool’s payout.
/// @param cap The predetermined upper bound on the Pool’s payout.
/// @param shares The number of short and long shares to be minted by the Pool.
/// @param shareDecimals The number of decimal places in the shares.
/// @return The collateral required to cover the Pool's payout for the associated amount of shares.
function collateral(bool isRoundUp, uint128 floor, uint128 cap, uint256 shares, uint256 shareDecimals)
internal
pure
returns (uint256)
{
uint256 intermediateValue = (cap - floor) * shares;
return isRoundUp
? FixedPointMathLib.divUp(intermediateValue, 10 ** shareDecimals)
: intermediateValue / 10 ** shareDecimals;
}
/// @notice Function to calculate the short payout when a user calls redeem based on their shares
/// @param shortParams The PoolParams for pool being redeemed from
/// @param sState The PoolState for that pool
/// @param shortSharesBalance The users balance of short shares
/// @return payout The payout for the user
function shortPayout(
ISilicaPools.PoolParams memory shortParams,
ISilicaPools.PoolState memory sState,
uint256 shortSharesBalance
) internal pure returns (uint256 payout) {
// Short payouts pay (cap - balanceChangePerShare) * collateralMinted / (cap - floor) * shortSharesBalance / totalSharesMinted
payout = (
(
(uint256(shortParams.cap - sState.balanceChangePerShare) * uint256(sState.collateralMinted))
/ uint256(shortParams.cap - shortParams.floor)
) * uint256(shortSharesBalance)
) / uint256(sState.sharesMinted);
}
/// @notice Function to calculate the long payout when a user calls redeem based on their shares
/// @param longParams The PoolParams for pool being redeemed from
/// @param sState The PoolState for that pool
/// @param longSharesBalance The users balance of long shares
/// @return payout The payout for the user
function longPayout(
ISilicaPools.PoolParams calldata longParams,
ISilicaPools.PoolState memory sState,
uint256 longSharesBalance
) internal pure returns (uint256 payout) {
// Long payouts pay ((balanceChangePerShare - floor) * collateralMinted) / ((cap - floor) * longSharesBalance) / totalSharesMinted)
payout = (
(
(uint256(sState.balanceChangePerShare - longParams.floor) * uint256(sState.collateralMinted))
/ uint256(longParams.cap - longParams.floor)
) * uint256(longSharesBalance)
) / uint256(sState.sharesMinted);
}
/// @notice Function to calculate grossBalanceChangePerShare
/// @param indexBalance The current balance of the index. The Index is a time-varying benchmark value that reflects market dynamics.
/// @param indexInitialBalance The initial balance of the index.
/// @param indexShares The number of shares of the index.
/// @param indexDecimals The number of decimal places in the index.
/// @return The gross balance change per share.
function grossBalanceChangePerShare(
uint256 indexBalance,
uint256 indexInitialBalance,
uint256 indexShares,
uint256 indexDecimals
) internal pure returns (uint256) {
require(indexShares > 0, "Index shares must be greater than zero");
require(
indexBalance >= indexInitialBalance, "Index balance must be greater than or equal to the initial balance"
);
return ((indexBalance - indexInitialBalance) * 10 ** indexDecimals) / indexShares;
}
/// @notice Function to calculate the balance change per share
/// @param floor The predetermined lower bound on the Pool’s payout.
/// @param cap The predetermined upper bound on the Pool’s payout.
/// @param grossBalanceChangePerShare The gross balance change per share.
/// @return The balance change per share.
function _balanceChangePerShare(uint256 floor, uint256 cap, uint256 grossBalanceChangePerShare)
internal
pure
returns (uint256)
{
return max(floor, min(cap, grossBalanceChangePerShare));
}
// diff
function balanceChangePerShare(
uint256 indexBalance,
uint128 indexInitialBalance,
uint128 indexShares,
uint256 indexDecimals,
uint128 floor,
uint128 cap
) internal pure returns (uint256) {
return _balanceChangePerShare(
floor, cap, grossBalanceChangePerShare(indexBalance, indexInitialBalance, indexShares, indexDecimals)
);
}
// Helper function for min
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
// Helper function for max
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* _ _ _ _ _
* / \ | | | _(_)_ __ ___ (_)_ _ __ _
* / _ \ | | |/ / | '_ ` _ \| | | | |/ _` |
* / ___ \| | <| | | | | | | | |_| | (_| |
* /_/__ \_\_|_|\_\_|_| |_| |_|_|\__, |\__,_|_
* / ___|(_) (_) ___ __ _ | _ \|___/ ___ | |___
* \___ \| | | |/ __/ _` | | |_) / _ \ / _ \| / __|
* ___) | | | | (_| (_| | | __/ (_) | (_) | \__ \
* |____/|_|_|_|\___\__,_| |_| \___/ \___/|_|___/
*/
import {Ownable} from "@openzeppelin/access/Ownable.sol";
import {ERC20} from "@openzeppelin/token/ERC20/ERC20.sol";
import {IERC20} from "@openzeppelin/token/ERC20/IERC20.sol";
import {SafeCast} from "@openzeppelin/utils/math/SafeCast.sol";
import {ERC1155} from "@openzeppelin/token/ERC1155/ERC1155.sol";
import {ECDSA} from "@openzeppelin/utils/cryptography/ECDSA.sol";
import {EIP712} from "@openzeppelin/utils/cryptography/EIP712.sol";
import {Ownable2Step} from "@openzeppelin/access/Ownable2Step.sol";
import {ReentrancyGuard} from "@openzeppelin/utils/ReentrancyGuard.sol";
import {SafeERC20} from "@openzeppelin/token/ERC20/utils/SafeERC20.sol";
import {MessageHashUtils} from "@openzeppelin/utils/cryptography/MessageHashUtils.sol";
import {PoolMaths} from "../libraries/PoolMaths.sol";
import {ISilicaPools} from "../interfaces/ISilicaPools.sol";
import {ISilicaIndex} from "../interfaces/ISilicaIndex.sol";
contract SilicaPools is ISilicaPools, ERC1155, EIP712, Ownable2Step, ReentrancyGuard {
using SafeCast for uint256;
using SafeCast for uint128;
using SafeERC20 for IERC20;
/*//////////////////////////////////////////////////////////////
STATE VARIABLES
//////////////////////////////////////////////////////////////*/
bytes32 constant SILICA_POOL_TYPEHASH = keccak256(
"PoolParams(uint128 floor,uint128 cap,address index,uint48 targetStartTimestamp,uint48 targetEndTimestamp,address payoutToken)"
); // The typehash for the PoolParams struct
bytes32 constant SILICA_ORDER_TYPEHASH = keccak256(
"SilicaOrder(address maker,address taker,uint48 expiry,address offeredUpfrontToken,uint128 offeredUpfrontAmount,uint128 offeredLongShares,PoolParams offeredLongSharesParams,address requestedUpfrontToken,uint128 requestedUpfrontAmount,uint128 requestedLongShares,PoolParams requestedLongSharesParams)PoolParams(uint128 floor,uint128 cap,address index,uint48 targetStartTimestamp,uint48 targetEndTimestamp,address payoutToken)"
); // The typehash for the SilicaOrder struct
bytes32 public constant TOKENID_SALT = bytes32(uint256(0xAC1D));
// The salt for token ID derivation
// Mint fee = mintFeeBps / INVERSE_BASIS_POINT
// 1 basis point = 0.01% of the collateral
// 10_000 basis points make up 100%
uint256 public constant INVERSE_BASIS_POINT = 10_000;
uint256 private sFillFeeBps; // The fee in basis points for minting long and short tokens
uint256 public constant MAX_FILL_FEE_BPS = 1000; // 10%
address private sAlkimiyaTreasury; // The address to which mint fees are sent
mapping(bytes32 poolHash => PoolState state) private sPoolState;
mapping(bytes32 orderHash => bool isCancelled) private sOrderCancelled;
mapping(bytes32 orderHash => uint256 fraction) private sFilledFraction;
uint256 public sBountyGracePeriod; // The grace period before bounties are paid out, in seconds
uint256 public sMaxBountyFraction; // The maximum fraction of collateral that can be paid out as a bounty
uint256 public sBountyFractionIncreasePerSecond; // The rate at which the bounty fraction increases per second, until it reached sMaxBountyFraction.
bool public paused;
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(
uint256 startFeeBps,
address initialOwner,
address alkimiyaTreasury,
uint256 gracePeriod,
uint256 maxBountyFrac,
uint256 bountyIncreasePerSecond
) ERC1155("") Ownable(initialOwner) EIP712("SilicaPools", "1") {
assert(alkimiyaTreasury != address(0));
sAlkimiyaTreasury = alkimiyaTreasury;
assert(startFeeBps <= MAX_FILL_FEE_BPS);
sFillFeeBps = startFeeBps;
sBountyGracePeriod = gracePeriod;
sMaxBountyFraction = maxBountyFrac;
sBountyFractionIncreasePerSecond = bountyIncreasePerSecond;
emit SilicaPools__FillFeeChanged(startFeeBps);
emit SilicaPools__GracePeriodChanged(sBountyGracePeriod);
emit SilicaPools__TreasuryAddressChanged(alkimiyaTreasury);
emit SilicaPools__MaxBountyFractionChanged(sMaxBountyFraction);
emit SilicaPools__BountyIncreaseRateChanged(sBountyFractionIncreasePerSecond);
}
/*//////////////////////////////////////////////////////////////
OWNER FUNCTIONS
//////////////////////////////////////////////////////////////*/
/// @inheritdoc ISilicaPools
function setFillFeeBps(uint256 newFillFeeBps) external onlyOwner {
if (newFillFeeBps > MAX_FILL_FEE_BPS) {
revert("Cannot exceed max fee BPS");
}
sFillFeeBps = newFillFeeBps;
emit SilicaPools__FillFeeChanged(newFillFeeBps);
}
/// @inheritdoc ISilicaPools
function setTreasuryAddress(address newTreasury) external onlyOwner {
assert(newTreasury != address(0));
sAlkimiyaTreasury = newTreasury;
emit SilicaPools__TreasuryAddressChanged(newTreasury);
}
/// @inheritdoc ISilicaPools
function setBountyGracePeriod(uint256 newGracePeriod) external onlyOwner {
sBountyGracePeriod = newGracePeriod;
emit SilicaPools__GracePeriodChanged(sBountyGracePeriod);
}
/// @inheritdoc ISilicaPools
function setMaxBountyFraction(uint256 newMaxFraction) external onlyOwner {
sMaxBountyFraction = newMaxFraction;
emit SilicaPools__MaxBountyFractionChanged(sMaxBountyFraction);
}
/// @inheritdoc ISilicaPools
function setBountyFractionIncreasePerSecond(uint256 newIncreaseAmount) external onlyOwner {
sBountyFractionIncreasePerSecond = newIncreaseAmount;
emit SilicaPools__BountyIncreaseRateChanged(sBountyFractionIncreasePerSecond);
}
/// @inheritdoc ISilicaPools
function pause() external onlyOwner {
paused = true;
emit SilicaPools__PauseProtocol();
}
/// @inheritdoc ISilicaPools
function unpause() external onlyOwner {
paused = false;
emit SilicaPools__UnpauseProtocol();
}
/*//////////////////////////////////////////////////////////////
EXTERNAL FUNCTIONS
//////////////////////////////////////////////////////////////*/
/// @inheritdoc ISilicaPools
function startPools(PoolParams[] calldata poolParams) external {
for (uint256 i = 0; i < poolParams.length; ++i) {
startPool(poolParams[i]);
}
}
/// @dev calls `_collateralizedMint` with `msg.sender` as `payer`
/// @inheritdoc ISilicaPools
function collateralizedMint(
PoolParams calldata poolParams,
bytes32 orderHash,
uint256 shares,
address longRecipient,
address shortRecipient
) external {
_collateralizedMint(poolParams, orderHash, shares, msg.sender, longRecipient, shortRecipient);
}
/// @inheritdoc ISilicaPools
function maxCollateralRefund(PoolParams[] calldata poolParams) external nonReentrant {
for (uint256 i; i < poolParams.length; ++i) {
bytes32 poolHash = hashPool(poolParams[i]);
uint256 longBalance = balanceOf(msg.sender, toLongTokenId(poolHash));
uint256 shortBalance = balanceOf(msg.sender, toShortTokenId(poolHash));
_collateralRefund(poolParams[i], longBalance < shortBalance ? longBalance : shortBalance);
}
}
/// @inheritdoc ISilicaPools
function cancelOrders(SilicaOrder[] calldata orders) external {
for (uint256 i = 0; i < orders.length; ++i) {
SilicaOrder calldata order = orders[i];
if (order.maker != msg.sender) {
revert SilicaPools__InvalidCaller(msg.sender, order.maker);
}
bytes32 orderHash = hashOrder(order, _domainSeparatorV4());
sOrderCancelled[orderHash] = true;
emit SilicaPools__OrderCancelled(orderHash);
}
}
/// @inheritdoc ISilicaPools
function fillOrders(SilicaOrder[] calldata orders, bytes[] calldata signatures, uint256[] calldata fractions)
external
{
if (orders.length != signatures.length || orders.length != fractions.length) {
revert SilicaPools__ArrayLengthMismatch();
}
for (uint256 i = 0; i < orders.length; ++i) {
fillOrder(orders[i], signatures[i], fractions[i]);
}
}
/// @inheritdoc ISilicaPools
function endPools(PoolParams[] calldata poolParams) external {
for (uint256 i = 0; i < poolParams.length; ++i) {
endPool(poolParams[i]);
}
}
/// @inheritdoc ISilicaPools
function redeem(PoolParams[] calldata longPoolParams, PoolParams[] calldata shortPoolParams) external {
for (uint256 i = 0; i < longPoolParams.length; ++i) {
redeemLong(longPoolParams[i]);
}
for (uint256 i = 0; i < shortPoolParams.length; ++i) {
redeemShort(shortPoolParams[i]);
}
}
/*//////////////////////////////////////////////////////////////
EXTERNAL VIEW FUNCTIONS
//////////////////////////////////////////////////////////////*/
/// @inheritdoc ISilicaPools
function poolState(bytes32 poolHash) external view returns (PoolState memory) {
return sPoolState[poolHash];
}
/// @inheritdoc ISilicaPools
function startBounty(PoolParams[] calldata poolParams) external view returns (uint256[] memory) {
uint256[] memory bounties = new uint256[](poolParams.length);
for (uint256 i = 0; i < poolParams.length; ++i) {
bounties[i] = _startBounty(poolParams[i]);
}
return bounties;
}
/// @inheritdoc ISilicaPools
function endBounty(PoolParams[] calldata poolParams) external view returns (uint256[] memory) {
uint256[] memory bounties = new uint256[](poolParams.length);
for (uint256 i = 0; i < poolParams.length; ++i) {
bounties[i] = _endBounty(poolParams[i]);
}
return bounties;
}
/// @inheritdoc ISilicaPools
function viewRedeemShort(PoolParams calldata shortParams, address account)
external
view
returns (uint256 expectedPayout)
{
bytes32 poolHash = hashPool(shortParams);
PoolState storage sState = sPoolState[poolHash];
// Pool not yet ended
if (sState.actualEndTimestamp == 0) {
revert SilicaPools__PoolNotEnded(poolHash);
}
uint256 shortTokenId = toShortTokenId(poolHash);
uint256 shortSharesBalance = balanceOf(account, shortTokenId);
// Short payouts pay ((cap - balanceChangePerShare) * collateralMinted) / ((cap - floor)) * shortSharesBalance) / totalSharesMinted)
expectedPayout = PoolMaths.shortPayout(shortParams, sState, shortSharesBalance);
}
/// @inheritdoc ISilicaPools
function viewRedeemLong(PoolParams calldata longParams, address account)
external
view
returns (uint256 expectedPayout)
{
bytes32 poolHash = hashPool(longParams);
PoolState storage sState = sPoolState[poolHash];
// Pool not yet ended
if (sState.actualEndTimestamp == 0) {
revert SilicaPools__PoolNotEnded(poolHash);
}
uint256 longTokenId = toLongTokenId(poolHash);
uint256 longSharesBalance = balanceOf(account, longTokenId);
// Long payouts pay ((balanceChangePerShare - floor) * collateralMinted) / ((cap - floor) * userLongBalance) / totalSharesMinted)
expectedPayout = PoolMaths.longPayout(longParams, sState, longSharesBalance);
}
/// @inheritdoc ISilicaPools
function viewCollateralRefund(PoolParams[] calldata poolParams, uint256[] calldata shares)
external
view
returns (uint256[] memory expectedRefunds)
{
if (poolParams.length != shares.length) {
revert SilicaPools__ArrayLengthMismatch();
}
expectedRefunds = new uint256[](poolParams.length);
for (uint256 i; i < poolParams.length; ++i) {
bytes32 poolHash = hashPool(poolParams[i]);
ISilicaPools.PoolState storage sState = sPoolState[poolHash];
uint256 refundCollateral = (uint256(sState.collateralMinted) * shares[i]) / uint256(sState.sharesMinted);
expectedRefunds[i] = refundCollateral;
}
}
/// @inheritdoc ISilicaPools
function viewMaxCollateralRefund(PoolParams[] calldata poolParams, address[] calldata accounts)
external
view
returns (uint256[] memory expectedRefund)
{
if (poolParams.length != accounts.length) {
revert SilicaPools__ArrayLengthMismatch();
}
expectedRefund = new uint256[](poolParams.length);
for (uint256 i; i < poolParams.length; ++i) {
bytes32 poolHash = hashPool(poolParams[i]);
uint256 longBalance = balanceOf(msg.sender, toLongTokenId(poolHash));
uint256 shortBalance = balanceOf(msg.sender, toShortTokenId(poolHash));
ISilicaPools.PoolState storage sState = sPoolState[poolHash];
if (longBalance < shortBalance) {
expectedRefund[i] = (uint256(sState.collateralMinted) * longBalance) / uint256(sState.sharesMinted);
} else {
expectedRefund[i] = (uint256(sState.collateralMinted) * shortBalance) / uint256(sState.sharesMinted);
}
}
}
/// @inheritdoc ISilicaPools
function fillFeeBps() external view returns (uint256) {
return sFillFeeBps;
}
/// @inheritdoc ISilicaPools
function treasuryAddress() external view returns (address) {
return sAlkimiyaTreasury;
}
/// @inheritdoc ISilicaPools
function bountyGracePeriod() external view returns (uint256) {
return sBountyGracePeriod;
}
/// @inheritdoc ISilicaPools
function maxBountyFraction() external view returns (uint256) {
return sMaxBountyFraction;
}
/// @inheritdoc ISilicaPools
function bountyFractionIncreasePerSecond() external view returns (uint256) {
return sBountyFractionIncreasePerSecond;
}
/// @inheritdoc ISilicaPools
function domainSeparatorV4() external view returns (bytes32) {
return _domainSeparatorV4();
}
/// @inheritdoc ISilicaPools
function orderCancelled(bytes32 orderHash) external view returns (bool) {
return sOrderCancelled[orderHash];
}
/*//////////////////////////////////////////////////////////////
PUBLIC FUNCTIONS
//////////////////////////////////////////////////////////////*/
/// @notice Starts the pool that matches the given parameters.
/// @notice Records the starting `ISilicaIndex` state for any of
/// the specified pools which have not already been started.
/// Caller will be paid a bounty for each pool which was not
/// already started if called after the grace period.
/// @dev The pool must not have already started.
/// @dev MUST emit a `PoolStarted` event.
/// @dev Can only be called at or after the pools target start timestamp.
/// @param poolParams The paramter struct for the associated pool
function startPool(PoolParams calldata poolParams) public {
bytes32 poolHash = hashPool(poolParams);
PoolState storage sState = sPoolState[poolHash];
ISilicaIndex index = ISilicaIndex(poolParams.index);
if (block.timestamp < poolParams.targetStartTimestamp) {
revert SilicaPools__TooEarlyToStart(block.timestamp, poolParams.targetStartTimestamp);
}
if (sState.actualStartTimestamp != 0) {
revert SilicaPools__PoolAlreadyStarted(poolHash);
}
sState.actualStartTimestamp = uint48(block.timestamp);
sState.indexShares = uint128(index.shares());
sState.indexInitialBalance = uint128(index.balance());
uint256 startBountyAmount = _startBounty(poolParams);
sState.collateralMinted -= uint128(startBountyAmount);
SafeERC20.safeTransfer(IERC20(poolParams.payoutToken), msg.sender, startBountyAmount);
emit SilicaPools__BountyPaid(poolHash, startBountyAmount, msg.sender);
emit SilicaPools__PoolStarted(
poolHash,
poolParams.floor,
poolParams.cap,
poolParams.targetStartTimestamp,
poolParams.targetEndTimestamp,
address(index),
poolParams.payoutToken,
sState.indexShares,
sState.indexInitialBalance
);
}
/// @notice Ends the pool that matches the given parameters.
/// @notice Records the ending `ISilicaIndex` state for the pool.
/// Caller will be paid a bounty for each pool which was not
/// already ended if called after the grace period.
/// @dev The pool must not have already ended.
/// @dev Can only be called at or after the pools target end timestamp.
/// @dev MUST emit a `PoolEnded` event.
/// @param poolParams The paramter struct for the associated pool
function endPool(PoolParams calldata poolParams) public {
bytes32 poolHash = hashPool(poolParams);
PoolState storage sState = sPoolState[poolHash];
ISilicaIndex index = ISilicaIndex(poolParams.index);
if (sState.actualEndTimestamp != 0) {
revert SilicaPools__PoolAlreadyEnded(poolHash);
}
if (block.timestamp < poolParams.targetEndTimestamp) {
revert SilicaPools__TooEarlyToEnd(block.timestamp, poolParams.targetEndTimestamp);
}
uint256 indexBalanceAtEnd = index.balance();
sState.balanceChangePerShare = uint128(
PoolMaths.balanceChangePerShare(
indexBalanceAtEnd,
sState.indexInitialBalance,
sState.indexShares,
index.decimals(),
poolParams.floor,
poolParams.cap
)
);
sState.actualEndTimestamp = uint48(block.timestamp);
uint256 endBountyAmount = _endBounty(poolParams);
sState.collateralMinted -= uint128(endBountyAmount);
SafeERC20.safeTransfer(IERC20(poolParams.payoutToken), msg.sender, endBountyAmount);
emit SilicaPools__BountyPaid(poolHash, endBountyAmount, msg.sender);
emit SilicaPools__PoolEnded(poolHash, indexBalanceAtEnd, sState.balanceChangePerShare);
}
/// @notice Fills the order with the given parameters.
/// @notice Transfers the collateral and mints the long and short tokens
/// @dev Emits a `TradeHistoryEvent` and a `VolumeAccountingEvent`.
/// @dev The order must not have already been filled.
/// @dev The order must not have been cancelled.
/// @dev The order must not have expired.
/// @dev The signature must be valid.
/// @param order The order to fill
/// @param signature The signature of the order
/// @param fraction The fraction of the order to fill. Pass 1e18 to fill 100% of the order.
function fillOrder(SilicaOrder calldata order, bytes calldata signature, uint256 fraction) public nonReentrant {
if (paused) {
revert SilicaPools__Paused();
}
bytes32 orderHash = hashOrder(order, _domainSeparatorV4());
// Order validation
if (fraction != 1e18) {
revert SilicaPools__PartialOrdersNotSupported(orderHash);
}
if (sOrderCancelled[orderHash]) {
revert SilicaPools__OrderIsCancelled(orderHash);
}
if (ECDSA.recover(orderHash, signature) != order.maker) {
revert SilicaPools__InvalidSignature(signature);
}
if (order.taker != address(0) && order.taker != msg.sender) {
revert SilicaPools__InvalidCaller(msg.sender, order.taker);
}
if (order.expiry < block.timestamp) {
revert SilicaPools__OrderExpired(order.expiry, block.timestamp);
}
if (sPoolState[hashPool(order.offeredLongSharesParams)].actualEndTimestamp != 0) {
revert SilicaPools__PoolAlreadyEnded(hashPool(order.offeredLongSharesParams));
}
if (sPoolState[hashPool(order.requestedLongSharesParams)].actualEndTimestamp != 0) {
revert SilicaPools__PoolAlreadyEnded(hashPool(order.requestedLongSharesParams));
}
// Token transfers
// The long side pays the upfront token amount as collateral to the short side
if (order.offeredUpfrontAmount != 0) {
SafeERC20.safeTransferFrom(
IERC20(order.offeredUpfrontToken),
order.maker,
msg.sender,
(uint256(order.offeredUpfrontAmount) * fraction) / 1e18
);
}
if (order.requestedUpfrontAmount != 0) {
SafeERC20.safeTransferFrom(
IERC20(order.requestedUpfrontToken),
msg.sender,
order.maker,
(uint256(order.requestedUpfrontAmount) * fraction) / 1e18
);
}
// Token mints
// The short side pays the entire collateral into the pool
if (order.offeredLongShares != 0) {
// Transfer fees for offered long shares
uint256 indexDecimals = ISilicaIndex(order.offeredLongSharesParams.index).decimals();
uint256 collateral = PoolMaths.collateral(
true,
order.offeredLongSharesParams.floor,
order.offeredLongSharesParams.cap,
(uint256(order.offeredLongShares) * fraction) / 1e18,
indexDecimals
);
// Taker pays the surcharge
uint256 surcharge = (collateral * sFillFeeBps) / INVERSE_BASIS_POINT;
SafeERC20.safeTransferFrom(
IERC20(order.offeredLongSharesParams.payoutToken), msg.sender, sAlkimiyaTreasury, surcharge
);
uint256 tokenId = toShortTokenId(hashPool(order.offeredLongSharesParams));
emit SilicaPools__FillFeePaid(
msg.sender,
hashPool(order.offeredLongSharesParams),
orderHash,
tokenId,
order.offeredLongSharesParams.payoutToken,
surcharge
);
// TODO: SImP 7
_collateralizedMint(
order.offeredLongSharesParams,
orderHash,
(uint256(order.offeredLongShares) * fraction) / 1e18,
order.maker, // maker pays collateral
msg.sender, // e.g. taker = buys yield = longRecipient
order.maker // e.g. maker = sells (offers) yield = shortRecipient
);
}
if (order.requestedLongShares != 0) {
// Transfer fees for requested long shares
uint256 indexDecimals = ISilicaIndex(order.requestedLongSharesParams.index).decimals();
uint256 collateral = PoolMaths.collateral(
true,
order.requestedLongSharesParams.floor,
order.requestedLongSharesParams.cap,
(uint256(order.requestedLongShares) * fraction) / 1e18,
indexDecimals
);
// Taker pays the surcharge
uint256 surcharge = (collateral * sFillFeeBps) / INVERSE_BASIS_POINT;
SafeERC20.safeTransferFrom(
IERC20(order.requestedLongSharesParams.payoutToken), msg.sender, sAlkimiyaTreasury, surcharge
);
uint256 tokenId = toLongTokenId(hashPool(order.requestedLongSharesParams));
emit SilicaPools__FillFeePaid(
msg.sender,
hashPool(order.requestedLongSharesParams),
orderHash,
tokenId,
order.requestedLongSharesParams.payoutToken,
surcharge
);
// TODO: SImP 7
_collateralizedMint(
order.requestedLongSharesParams,
orderHash,
(uint256(order.requestedLongShares) * fraction) / 1e18,
msg.sender, // taker pays collateral
order.maker, // e.g. maker = buys (requests) yield = longRecipient
msg.sender // e.g. taker = sells yield = shortRecipient
);
}
{
uint256 newFilledFraction = sFilledFraction[orderHash] + fraction;
sFilledFraction[orderHash] = newFilledFraction;
emit SilicaPools__TradeHistoryEvent(
orderHash,
order.maker,
msg.sender,
hashPool(order.offeredLongSharesParams),
hashPool(order.requestedLongSharesParams),
order.offeredLongSharesParams.index,
order.requestedLongSharesParams.index,
fraction,
1e18 - newFilledFraction
);
}
if (order.offeredLongShares > 0 || order.requestedUpfrontAmount > 0) {
emit SilicaPools__VolumeAccountingEvent(
orderHash,
hashPool(order.offeredLongSharesParams),
order.offeredLongSharesParams.index,
order.offeredLongSharesParams.payoutToken,
order.offeredLongSharesParams.cap - order.offeredLongSharesParams.floor,
(order.offeredLongShares * fraction) / 1e18,
(order.offeredLongShares * fraction) / 1e18,
order.requestedUpfrontToken,
(order.requestedUpfrontAmount * fraction) / 1e18
);
}
if (order.requestedLongShares > 0 || order.offeredUpfrontAmount > 0) {
emit SilicaPools__VolumeAccountingEvent(
orderHash,
hashPool(order.requestedLongSharesParams),
order.requestedLongSharesParams.index,
order.requestedLongSharesParams.payoutToken,
order.requestedLongSharesParams.cap - order.requestedLongSharesParams.floor,
(order.requestedLongShares * fraction) / 1e18,
(order.requestedLongShares * fraction) / 1e18,
order.offeredUpfrontToken,
(order.offeredUpfrontAmount * fraction) / 1e18
);
}
}
/// @notice Redeems shares for the payout token.
/// @dev MUST emit `SilicaPools__SharesRedeemed`
/// @param longParams The pools to redeem long shares from.
function redeemLong(PoolParams calldata longParams) public {
bytes32 poolHash = hashPool(longParams);
PoolState storage sState = sPoolState[poolHash];
if (sState.actualEndTimestamp == 0) {
revert SilicaPools__PoolNotEnded(poolHash);
}
uint256 longTokenId = toLongTokenId(poolHash);
uint256 longSharesBalance = balanceOf(msg.sender, longTokenId);
// Long payouts pay ((balanceChangePerShare - floor) * collateralMinted) / ((cap - floor) * userLongBalance) / totalSharesMinted)
uint256 payout = PoolMaths.longPayout(longParams, sState, longSharesBalance);
_burn(msg.sender, longTokenId, longSharesBalance);
SafeERC20.safeTransfer(IERC20(longParams.payoutToken), msg.sender, payout);
emit SilicaPools__SharesRedeemed(
poolHash, msg.sender, longParams.payoutToken, longTokenId, longSharesBalance, payout
);
}
/// @notice Redeems shares for the payout token.
/// @dev MUST emit `SilicaPools__SharesRedeemed`
/// @param shortParams The pools to redeem short shares from.
function redeemShort(PoolParams calldata shortParams) public {
bytes32 poolHash = hashPool(shortParams);
PoolState storage sState = sPoolState[poolHash];
if (sState.actualEndTimestamp == 0) {
revert SilicaPools__PoolNotEnded(poolHash);
}
uint256 shortTokenId = toShortTokenId(poolHash);
uint256 shortSharesBalance = balanceOf(msg.sender, shortTokenId);
// Short payouts pay ((cap - balanceChangePerShare) * collateralMinted) / ((cap - floor)) * shortSharesBalance) / totalSharesMinted)
uint256 payout = PoolMaths.shortPayout(shortParams, sState, shortSharesBalance);
_burn(msg.sender, shortTokenId, shortSharesBalance);
SafeERC20.safeTransfer(IERC20(shortParams.payoutToken), msg.sender, payout);
emit SilicaPools__SharesRedeemed(
poolHash, msg.sender, shortParams.payoutToken, shortTokenId, shortSharesBalance, payout
);
}
/// @inheritdoc ISilicaPools
function collateralRefund(PoolParams[] calldata poolParams, uint256[] calldata shares) public nonReentrant {
if (poolParams.length != shares.length) {
revert SilicaPools__ArrayLengthMismatch();
}
for (uint256 i; i < poolParams.length; ++i) {
_collateralRefund(poolParams[i], shares[i]);
}
}
/*//////////////////////////////////////////////////////////////
PUBLIC PURE FUNCTIONS
//////////////////////////////////////////////////////////////*/
/// @notice Converts a pool hash to a long token ID.
/// @param poolHash The hash of the pool.
/// @return The long token ID.
function toLongTokenId(bytes32 poolHash) public pure returns (uint256) {
return uint256(poolHash);
}
/// @notice Converts a pool hash to a short token ID.
/// @param poolHash The hash of the pool.
/// @return The short token ID.
function toShortTokenId(bytes32 poolHash) public pure returns (uint256) {
return uint256(poolHash ^ TOKENID_SALT);
}
/// @notice Converts a long token ID to a pool hash.
/// @param longTokenId The long token ID.
/// @return The pool hash.
function fromLongTokenId(uint256 longTokenId) public pure returns (bytes32) {
return bytes32(longTokenId);
}
/// @notice Converts a short token ID to a pool hash.
/// @param shortTokenId The short token ID.
/// @return The pool hash.
function fromShortTokenId(uint256 shortTokenId) public pure returns (bytes32) {
return bytes32(shortTokenId) ^ TOKENID_SALT;
}
/// @notice Hashes the pool parameters.
/// @param poolParams The pool parameters.
/// @return The hash of the pool parameters.
function hashPool(PoolParams calldata poolParams) public pure returns (bytes32) {
return keccak256(
abi.encodePacked(
poolParams.floor,
poolParams.cap,
poolParams.index,
poolParams.targetStartTimestamp,
poolParams.targetEndTimestamp,
poolParams.payoutToken
)
);
}
/// @notice Hashes the order parameters.
/// @param order The order parameters.
/// @param domainSeparator The EIP-712 domain separator.
/// @return The hash of the order parameters.
function hashOrder(SilicaOrder calldata order, bytes32 domainSeparator) public pure returns (bytes32) {
// Encode in chunks to circumvent "stack too deep" error
bytes32 offeredStructHash = keccak256(abi.encode(SILICA_POOL_TYPEHASH, order.offeredLongSharesParams));
bytes32 requestedStructHash = keccak256(abi.encode(SILICA_POOL_TYPEHASH, order.requestedLongSharesParams));
bytes32 structHash = keccak256(
abi.encode(
SILICA_ORDER_TYPEHASH,
order.maker,
order.taker,
order.expiry,
order.offeredUpfrontToken,
order.offeredUpfrontAmount,
order.offeredLongShares,
offeredStructHash,
order.requestedUpfrontToken,
order.requestedUpfrontAmount,
order.requestedLongShares,
requestedStructHash
)
);
return MessageHashUtils.toTypedDataHash(domainSeparator, structHash);
}
/*//////////////////////////////////////////////////////////////
INTERNAL FUNCTIONS
//////////////////////////////////////////////////////////////*/
/// @notice Internal function to mint long and short tokens for a pool.
/// @dev This is `internal` because it must be approved by the `payer`.
/// Do not call this function otherwise.
/// @param poolParams The paramter struct for the associated pool
/// @param payer The address that will pay the collateral
/// @param longRecipient The address that will receive `shares` long tokens
/// @param shortRecipient The address that will receive `shares` short tokens
function _collateralizedMint(
PoolParams calldata poolParams,
bytes32 orderHash,
uint256 shares,
address payer,
address longRecipient,
address shortRecipient
) internal {
bytes32 poolHash = hashPool(poolParams);
if (sPoolState[poolHash].actualEndTimestamp != 0) {
revert SilicaPools__PoolAlreadyEnded(poolHash);
}
ISilicaIndex index = ISilicaIndex(poolParams.index);
ISilicaPools.PoolState storage sState = sPoolState[poolHash];
uint256 collateral = PoolMaths.collateral(true, poolParams.floor, poolParams.cap, shares, index.decimals());
sState.collateralMinted += uint128(collateral);
SafeERC20.safeTransferFrom(IERC20(poolParams.payoutToken), payer, address(this), collateral);
if (longRecipient == address(0)) {
longRecipient = msg.sender;
}
if (shortRecipient == address(0)) {
shortRecipient = msg.sender;
}
sState.sharesMinted += uint128(shares);
_mint(longRecipient, toLongTokenId(poolHash), shares, "");
_mint(shortRecipient, toShortTokenId(poolHash), shares, "");
emit SilicaPools__CollateralizedMint(
poolHash, orderHash, shortRecipient, longRecipient, payer, poolParams.payoutToken, shares, collateral
);
}
/// @notice Internal calculator to determine bounty value for calling startPool()
/// @param poolParams The paramter struct for the associated pool
/// @return bounty The uint256 amount of bounty associated with that pool's collateral
function _startBounty(PoolParams calldata poolParams) internal view returns (uint256 bounty) {
bytes32 poolHash = hashPool(poolParams);
ISilicaPools.PoolState storage sState = sPoolState[poolHash];
uint256 collateral = sState.collateralMinted;
uint256 uncappedBountyFraction = block.timestamp > poolParams.targetStartTimestamp + sBountyGracePeriod
? uint256(block.timestamp - poolParams.targetStartTimestamp - sBountyGracePeriod)
* sBountyFractionIncreasePerSecond
: 0;
uint256 bountyFraction =
uncappedBountyFraction > sMaxBountyFraction ? sMaxBountyFraction : uncappedBountyFraction;
bounty = (bountyFraction * collateral) / 1e18;
}
/// @notice Internal bounty calculator function
/// @param poolParams: The paramter struct for the associated pool
/// @return bounty The uint256 amount of bounty associated with that pool's collateral
function _endBounty(PoolParams calldata poolParams) internal view returns (uint256 bounty) {
bytes32 poolHash = hashPool(poolParams);
uint256 collateral = sPoolState[poolHash].collateralMinted;
uint256 uncappedBountyFraction = block.timestamp > poolParams.targetEndTimestamp + sBountyGracePeriod
? uint256(block.timestamp - poolParams.targetEndTimestamp - sBountyGracePeriod)
* sBountyFractionIncreasePerSecond
: 0;
uint256 bountyFraction =
uncappedBountyFraction > sMaxBountyFraction ? sMaxBountyFraction : uncappedBountyFraction;
bounty = (bountyFraction * collateral) / 1e18;
}
/// @notice Internal function to refund collateral to the user.
/// @dev This is `internal` because it must be approved by the `payer`.
/// Do not call this function otherwise.
/// @dev Called by `collateralRefund()` and `maxCollateralRefund()` with msg.sender as the recipient.
/// @dev Emits a `SilicaPools__SharesRefunded` event.
/// @param poolParams The paramter struct for the associated pool.
/// @param shares The number of shares to refund.
function _collateralRefund(PoolParams calldata poolParams, uint256 shares) internal {
bytes32 poolHash = hashPool(poolParams);
ISilicaPools.PoolState storage sState = sPoolState[poolHash];
uint256 refundCollateral = (uint256(sState.collateralMinted) * shares) / uint256(sState.sharesMinted);
sState.sharesMinted -= uint128(shares);
_burn(msg.sender, toLongTokenId(poolHash), shares);
_burn(msg.sender, toShortTokenId(poolHash), shares);
sState.collateralMinted -= uint128(refundCollateral);
SafeERC20.safeTransfer(IERC20(poolParams.payoutToken), msg.sender, refundCollateral);
emit SilicaPools__SharesRefunded(poolHash, msg.sender, poolParams.payoutToken, shares, refundCollateral);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
{
"compilationTarget": {
"contracts/SilicaPools.sol": "SilicaPools"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":@openzeppelin/=lib/openzeppelin-contracts/contracts/",
":@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
":solady/=lib/solady/src/"
],
"viaIR": true
}
[{"inputs":[{"internalType":"uint256","name":"startFeeBps","type":"uint256"},{"internalType":"address","name":"initialOwner","type":"address"},{"internalType":"address","name":"alkimiyaTreasury","type":"address"},{"internalType":"uint256","name":"gracePeriod","type":"uint256"},{"internalType":"uint256","name":"maxBountyFrac","type":"uint256"},{"internalType":"uint256","name":"bountyIncreasePerSecond","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC1155InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC1155InvalidApprover","type":"error"},{"inputs":[{"internalType":"uint256","name":"idsLength","type":"uint256"},{"internalType":"uint256","name":"valuesLength","type":"uint256"}],"name":"ERC1155InvalidArrayLength","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC1155InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC1155InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC1155InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC1155MissingApprovalForAll","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"SilicaPools__ArrayLengthMismatch","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"address","name":"expectedCaller","type":"address"}],"name":"SilicaPools__InvalidCaller","type":"error"},{"inputs":[{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"SilicaPools__InvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"expiry","type":"uint256"},{"internalType":"uint256","name":"blockTimestamp","type":"uint256"}],"name":"SilicaPools__OrderExpired","type":"error"},{"inputs":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"SilicaPools__OrderIsCancelled","type":"error"},{"inputs":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"SilicaPools__PartialOrdersNotSupported","type":"error"},{"inputs":[],"name":"SilicaPools__Paused","type":"error"},{"inputs":[{"internalType":"bytes32","name":"poolHash","type":"bytes32"}],"name":"SilicaPools__PoolAlreadyEnded","type":"error"},{"inputs":[{"internalType":"bytes32","name":"poolHash","type":"bytes32"}],"name":"SilicaPools__PoolAlreadyStarted","type":"error"},{"inputs":[{"internalType":"bytes32","name":"poolHash","type":"bytes32"}],"name":"SilicaPools__PoolNotEnded","type":"error"},{"inputs":[{"internalType":"uint256","name":"attemptedTimestamp","type":"uint256"},{"internalType":"uint256","name":"targetTimestamp","type":"uint256"}],"name":"SilicaPools__TooEarlyToEnd","type":"error"},{"inputs":[{"internalType":"uint256","name":"attemptedTimestamp","type":"uint256"},{"internalType":"uint256","name":"targetTimestamp","type":"uint256"}],"name":"SilicaPools__TooEarlyToStart","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newRate","type":"uint256"}],"name":"SilicaPools__BountyIncreaseRateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"bountyAmount","type":"uint256"},{"indexed":false,"internalType":"address","name":"receiver","type":"address"}],"name":"SilicaPools__BountyPaid","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"indexed":false,"internalType":"address","name":"shortRecipient","type":"address"},{"indexed":false,"internalType":"address","name":"longRecipient","type":"address"},{"indexed":true,"internalType":"address","name":"payer","type":"address"},{"indexed":false,"internalType":"address","name":"payoutToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"sharesMinted","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"collateralAmount","type":"uint256"}],"name":"SilicaPools__CollateralizedMint","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newFeeBps","type":"uint256"}],"name":"SilicaPools__FillFeeChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"payer","type":"address"},{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"address","name":"tokenPaid","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"SilicaPools__FillFeePaid","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newGracePeriod","type":"uint256"}],"name":"SilicaPools__GracePeriodChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newMaxFraction","type":"uint256"}],"name":"SilicaPools__MaxBountyFractionChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"SilicaPools__OrderCancelled","type":"event"},{"anonymous":false,"inputs":[],"name":"SilicaPools__PauseProtocol","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"endingIndexBalance","type":"uint256"},{"indexed":false,"internalType":"uint128","name":"balanceChangePerShare","type":"uint128"}],"name":"SilicaPools__PoolEnded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":false,"internalType":"uint128","name":"floor","type":"uint128"},{"indexed":false,"internalType":"uint128","name":"cap","type":"uint128"},{"indexed":false,"internalType":"uint48","name":"targetStartTime","type":"uint48"},{"indexed":false,"internalType":"uint48","name":"targetEndTime","type":"uint48"},{"indexed":true,"internalType":"address","name":"index","type":"address"},{"indexed":true,"internalType":"address","name":"payoutToken","type":"address"},{"indexed":false,"internalType":"uint128","name":"indexShares","type":"uint128"},{"indexed":false,"internalType":"uint128","name":"indexInitialBalance","type":"uint128"}],"name":"SilicaPools__PoolStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"address","name":"payoutToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"sharesRedeemed","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"payoutTokenAmount","type":"uint256"}],"name":"SilicaPools__SharesRedeemed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"address","name":"payoutToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"sharesRefunded","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"payoutTokenAmount","type":"uint256"}],"name":"SilicaPools__SharesRefunded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"maker","type":"address"},{"indexed":true,"internalType":"address","name":"taker","type":"address"},{"indexed":false,"internalType":"bytes32","name":"offeredPoolHash","type":"bytes32"},{"indexed":false,"internalType":"bytes32","name":"requestedPoolHash","type":"bytes32"},{"indexed":false,"internalType":"address","name":"offeredIndex","type":"address"},{"indexed":false,"internalType":"address","name":"requestedIndex","type":"address"},{"indexed":false,"internalType":"uint256","name":"filledFraction","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"remainingFraction","type":"uint256"}],"name":"SilicaPools__TradeHistoryEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newTreasuryAddress","type":"address"}],"name":"SilicaPools__TreasuryAddressChanged","type":"event"},{"anonymous":false,"inputs":[],"name":"SilicaPools__UnpauseProtocol","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"indexed":false,"internalType":"bytes32","name":"poolHash","type":"bytes32"},{"indexed":true,"internalType":"address","name":"index","type":"address"},{"indexed":false,"internalType":"address","name":"payoutToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"capMinusFloor","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"sharesMinted","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"sharesTransferred","type":"uint256"},{"indexed":true,"internalType":"address","name":"upfrontTokenAddr","type":"address"},{"indexed":false,"internalType":"uint256","name":"upfrontTokenAmount","type":"uint256"}],"name":"SilicaPools__VolumeAccountingEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"inputs":[],"name":"INVERSE_BASIS_POINT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_FILL_FEE_BPS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TOKENID_SALT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bountyFractionIncreasePerSecond","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bountyGracePeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"maker","type":"address"},{"internalType":"address","name":"taker","type":"address"},{"internalType":"uint48","name":"expiry","type":"uint48"},{"internalType":"address","name":"offeredUpfrontToken","type":"address"},{"internalType":"uint128","name":"offeredUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"offeredLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"offeredLongShares","type":"uint128"},{"internalType":"address","name":"requestedUpfrontToken","type":"address"},{"internalType":"uint128","name":"requestedUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"requestedLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"requestedLongShares","type":"uint128"}],"internalType":"struct ISilicaPools.SilicaOrder[]","name":"orders","type":"tuple[]"}],"name":"cancelOrders","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"},{"internalType":"uint256[]","name":"shares","type":"uint256[]"}],"name":"collateralRefund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"poolParams","type":"tuple"},{"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"longRecipient","type":"address"},{"internalType":"address","name":"shortRecipient","type":"address"}],"name":"collateralizedMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"domainSeparatorV4","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"}],"name":"endBounty","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"poolParams","type":"tuple"}],"name":"endPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"}],"name":"endPools","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"fillFeeBps","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"maker","type":"address"},{"internalType":"address","name":"taker","type":"address"},{"internalType":"uint48","name":"expiry","type":"uint48"},{"internalType":"address","name":"offeredUpfrontToken","type":"address"},{"internalType":"uint128","name":"offeredUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"offeredLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"offeredLongShares","type":"uint128"},{"internalType":"address","name":"requestedUpfrontToken","type":"address"},{"internalType":"uint128","name":"requestedUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"requestedLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"requestedLongShares","type":"uint128"}],"internalType":"struct ISilicaPools.SilicaOrder","name":"order","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"uint256","name":"fraction","type":"uint256"}],"name":"fillOrder","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"maker","type":"address"},{"internalType":"address","name":"taker","type":"address"},{"internalType":"uint48","name":"expiry","type":"uint48"},{"internalType":"address","name":"offeredUpfrontToken","type":"address"},{"internalType":"uint128","name":"offeredUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"offeredLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"offeredLongShares","type":"uint128"},{"internalType":"address","name":"requestedUpfrontToken","type":"address"},{"internalType":"uint128","name":"requestedUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"requestedLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"requestedLongShares","type":"uint128"}],"internalType":"struct ISilicaPools.SilicaOrder[]","name":"orders","type":"tuple[]"},{"internalType":"bytes[]","name":"signatures","type":"bytes[]"},{"internalType":"uint256[]","name":"fractions","type":"uint256[]"}],"name":"fillOrders","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"longTokenId","type":"uint256"}],"name":"fromLongTokenId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"shortTokenId","type":"uint256"}],"name":"fromShortTokenId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"maker","type":"address"},{"internalType":"address","name":"taker","type":"address"},{"internalType":"uint48","name":"expiry","type":"uint48"},{"internalType":"address","name":"offeredUpfrontToken","type":"address"},{"internalType":"uint128","name":"offeredUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"offeredLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"offeredLongShares","type":"uint128"},{"internalType":"address","name":"requestedUpfrontToken","type":"address"},{"internalType":"uint128","name":"requestedUpfrontAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"requestedLongSharesParams","type":"tuple"},{"internalType":"uint128","name":"requestedLongShares","type":"uint128"}],"internalType":"struct ISilicaPools.SilicaOrder","name":"order","type":"tuple"},{"internalType":"bytes32","name":"domainSeparator","type":"bytes32"}],"name":"hashOrder","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"poolParams","type":"tuple"}],"name":"hashPool","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxBountyFraction","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"}],"name":"maxCollateralRefund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"orderCancelled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolHash","type":"bytes32"}],"name":"poolState","outputs":[{"components":[{"internalType":"uint128","name":"collateralMinted","type":"uint128"},{"internalType":"uint128","name":"sharesMinted","type":"uint128"},{"internalType":"uint128","name":"indexShares","type":"uint128"},{"internalType":"uint128","name":"indexInitialBalance","type":"uint128"},{"internalType":"uint48","name":"actualStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"actualEndTimestamp","type":"uint48"},{"internalType":"uint128","name":"balanceChangePerShare","type":"uint128"}],"internalType":"struct ISilicaPools.PoolState","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"longPoolParams","type":"tuple[]"},{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"shortPoolParams","type":"tuple[]"}],"name":"redeem","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"longParams","type":"tuple"}],"name":"redeemLong","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"shortParams","type":"tuple"}],"name":"redeemShort","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sBountyFractionIncreasePerSecond","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sBountyGracePeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sMaxBountyFraction","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newIncreaseAmount","type":"uint256"}],"name":"setBountyFractionIncreasePerSecond","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newGracePeriod","type":"uint256"}],"name":"setBountyGracePeriod","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newFillFeeBps","type":"uint256"}],"name":"setFillFeeBps","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newMaxFraction","type":"uint256"}],"name":"setMaxBountyFraction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newTreasury","type":"address"}],"name":"setTreasuryAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"}],"name":"startBounty","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"poolParams","type":"tuple"}],"name":"startPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"}],"name":"startPools","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolHash","type":"bytes32"}],"name":"toLongTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolHash","type":"bytes32"}],"name":"toShortTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasuryAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"},{"internalType":"uint256[]","name":"shares","type":"uint256[]"}],"name":"viewCollateralRefund","outputs":[{"internalType":"uint256[]","name":"expectedRefunds","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams[]","name":"poolParams","type":"tuple[]"},{"internalType":"address[]","name":"accounts","type":"address[]"}],"name":"viewMaxCollateralRefund","outputs":[{"internalType":"uint256[]","name":"expectedRefund","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"longParams","type":"tuple"},{"internalType":"address","name":"account","type":"address"}],"name":"viewRedeemLong","outputs":[{"internalType":"uint256","name":"expectedPayout","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"floor","type":"uint128"},{"internalType":"uint128","name":"cap","type":"uint128"},{"internalType":"address","name":"index","type":"address"},{"internalType":"uint48","name":"targetStartTimestamp","type":"uint48"},{"internalType":"uint48","name":"targetEndTimestamp","type":"uint48"},{"internalType":"address","name":"payoutToken","type":"address"}],"internalType":"struct ISilicaPools.PoolParams","name":"shortParams","type":"tuple"},{"internalType":"address","name":"account","type":"address"}],"name":"viewRedeemShort","outputs":[{"internalType":"uint256","name":"expectedPayout","type":"uint256"}],"stateMutability":"view","type":"function"}]