// SPDX-License-Identifier: MIT
// File: openzeppelin-solidity/contracts/utils/cryptography/MerkleProof.sol
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// File: openzeppelin-solidity/contracts/security/ReentrancyGuard.sol
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// File: openzeppelin-solidity/contracts/utils/Context.sol
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// File: openzeppelin-solidity/contracts/access/Ownable.sol
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File: contracts/JoinZo.sol
pragma solidity ^0.8.0;
interface IERC721Receiver {
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (
bytes4
);
}
contract ERC721A {
function mint(
) public payable {}
function mintGrant(
address[] calldata addresses,
uint256[] calldata amounts
) public {}
function transferFrom(
address from,
address to,
uint256 tokenId
) external {}
function transferOwnership(
address newOwner
) public virtual {}
function balanceOf(
address account
) public view virtual returns (
uint256
) {}
function tokenOfOwnerByIndex(
address owner,
uint256 index
) public view returns (
uint256
) {}
}
contract JoinZo is IERC721Receiver, Ownable {
ERC721A private founderContract;
address private signingWallet;
uint256 private maxMintCount = 1;
uint256 private minTokenId = 789;
uint256 public pricePerMint = 0.25 ether;
uint256 public mintStart;
uint256 public tokenMintStart;
uint256 public publicMintStart;
uint256[321] private availableTokens;
mapping(address => uint256) private mintedCount;
constructor(
address _signingWallet,
address _founderContract
) {
signingWallet = _signingWallet;
founderContract = ERC721A(_founderContract);
}
function available(
) public view returns (
uint256
) {
return founderContract.balanceOf(
address(this)
);
}
function mintsAllowed(
address _addr
) public view returns (
uint256
) {
if (mintedCount[_addr] >= maxMintCount) {
return 0;
} else {
return maxMintCount - mintedCount[_addr];
}
}
function mint(
bytes memory _signature
) external payable {
require(
mintStart > 0,
"mint not started"
);
require(
block.timestamp >= mintStart,
"Mint not started"
);
require(
verifyMessage(_msgSender(), _signature) == signingWallet,
"signature mismatch"
);
uint256 _availableMints = available();
uint256 _tokenId = getRandomToken(_availableMints);
_mint(_tokenId, _availableMints);
}
function mintToken(
uint256 _tokenId,
bytes memory _signature
) external payable {
require(
tokenMintStart > 0,
"mint not started"
);
require(
block.timestamp >= tokenMintStart,
"Mint not started"
);
require(
verifyMessage(_msgSender(), _signature) == signingWallet,
"signature mismatch"
);
_mint(_tokenId, available());
}
function mintPublic(
) external payable {
require(
publicMintStart > 0,
"mint not started"
);
require(
block.timestamp >= publicMintStart,
"Mint not started"
);
uint256 _availableMints = available();
uint256 _tokenId = getRandomToken(_availableMints);
_mint(_tokenId, _availableMints);
}
function setPricePerMint(
uint256 _price
) external onlyOwner {
pricePerMint = _price;
}
function setSigningWallet(
address _addr
) external onlyOwner {
signingWallet = _addr;
}
function setMintTime(
uint256 _timestamp
) external onlyOwner {
mintStart = _timestamp;
}
function setMaxMintCount(
uint256 _maxMint
) external onlyOwner {
maxMintCount = _maxMint;
}
function setMinTokenId(
uint256 _minTokenId
) external onlyOwner {
minTokenId = _minTokenId;
}
function setPublicMintTime(
uint256 _timestamp
) external onlyOwner {
publicMintStart = _timestamp;
}
function setTokenMintTime(
uint256 _timestamp
) external onlyOwner {
tokenMintStart = _timestamp;
}
function onERC721Received(
address,
address,
uint256,
bytes memory
) public virtual override returns (
bytes4
) {
return this.onERC721Received.selector;
}
function withdrawAmount(
address _address
) external onlyOwner {
payable(
_address
).transfer(
address(this).balance
);
}
function withdrawFounder(
uint256 _tokenId,
address _addr
) external onlyOwner {
updateAvailableTokens(_tokenId - minTokenId, available());
founderContract.transferFrom(
address(this),
_addr,
_tokenId
);
}
function withdrawAllFounder(
address _addr
) external onlyOwner {
uint256 _available = available();
uint256 tokenId;
for (uint256 i = 0; i < _available; i++) {
if (availableTokens[i] == 0) {
tokenId = i + minTokenId;
} else {
tokenId = availableTokens[i] + minTokenId;
}
founderContract.transferFrom(
address(this),
_addr,
tokenId
);
}
}
function getRandomToken(
uint256 _availableMints
) internal returns (
uint256
) {
uint256 indexToUse = random(_availableMints);
return updateAvailableTokens(indexToUse, _availableMints);
}
function updateAvailableTokens(
uint256 indexToUse,
uint256 _availableMints
) internal returns (
uint256
) {
uint256 lastIndex = _availableMints - 1;
uint256 valAtIndex = availableTokens[indexToUse];
uint256 result;
if (valAtIndex == 0) {
result = indexToUse;
} else {
result = valAtIndex;
}
if (indexToUse != lastIndex) {
uint256 lastValInArray = availableTokens[lastIndex];
if (lastValInArray == 0) {
availableTokens[indexToUse] = lastIndex;
} else {
availableTokens[indexToUse] = lastValInArray;
}
}
return result + minTokenId;
}
function random(
uint256 _maxNum
) internal view returns (
uint256
) {
uint256 randomnumber = uint256(
keccak256(
abi.encodePacked(
_msgSender(),
block.timestamp,
block.number,
block.coinbase,
blockhash(block.number - 1),
_maxNum
)
)
) % _maxNum;
return randomnumber;
}
function splitSignature(
bytes memory _signature
) internal pure returns (bytes32 r, bytes32 s, uint8 v) {
require(_signature.length == 65, "invalid signature length");
assembly {
r := mload(add(_signature, 32))
s := mload(add(_signature, 64))
v := byte(0, mload(add(_signature, 96)))
}
}
function getMessageHash(
address _addr
) public pure returns (bytes32) {
return keccak256(abi.encodePacked(_addr));
}
function verifyMessage(
address _addr,
bytes memory _signature
) internal pure returns (
address
) {
bytes32 prefixedHashMessage = keccak256(
abi.encodePacked(
"\x19Ethereum Signed Message:\n32",
getMessageHash(_addr)
)
);
(bytes32 _r, bytes32 _s, uint8 _v) = splitSignature(_signature);
address signer = ecrecover(
prefixedHashMessage, _v, _r, _s
);
return signer;
}
function _mint(
uint256 _tokenId,
uint256 _availableMints
) internal {
require(
mintsAllowed(_msgSender()) > 0,
"limit reached"
);
require(
_availableMints > 0,
"nothing left"
);
require(
msg.value >= pricePerMint,
"Not enough ETH sent"
);
mintedCount[_msgSender()] += 1;
updateAvailableTokens(_tokenId - minTokenId, _availableMints);
founderContract.transferFrom(
address(this),
_msgSender(),
_tokenId
);
}
}
{
"compilationTarget": {
"JoinZo.sol": "JoinZo"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_signingWallet","type":"address"},{"internalType":"address","name":"_founderContract","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"available","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"getMessageHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"mintPublic","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"mintStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"mintToken","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"mintsAllowed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pricePerMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"publicMintStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_maxMint","type":"uint256"}],"name":"setMaxMintCount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_minTokenId","type":"uint256"}],"name":"setMinTokenId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_timestamp","type":"uint256"}],"name":"setMintTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_price","type":"uint256"}],"name":"setPricePerMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_timestamp","type":"uint256"}],"name":"setPublicMintTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"setSigningWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_timestamp","type":"uint256"}],"name":"setTokenMintTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"tokenMintStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"withdrawAllFounder","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"withdrawAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"address","name":"_addr","type":"address"}],"name":"withdrawFounder","outputs":[],"stateMutability":"nonpayable","type":"function"}]