pragma solidity 0.4.25;
import "./RefundableCrowdsale.sol";
import "./IERC20.sol";
import "./ERC20Burnable.sol";
import "./ERC20Detailed.sol";
import "./Ownable.sol";
contract BitbookCrowdsale is Ownable, RefundableCrowdsale {
// amount of tokens sold
uint256 private _totalTokensSold;
////////////////////////////////////
// DATES AND LIMITS
////////////////////////////////////
mapping (uint8 => uint256) private _hardcaps;
mapping (uint8 => uint256) private _minInvestments;
mapping (uint8 => uint8) private _bonuses;
mapping (uint8 => uint256) private _tokensSold;
// private sale timestamps
// uint256 private _privateSaleStartTime; -> openingTime()
uint256 private _privateSaleEndTime = 1548979200;
// pre-sale timestamps
// uint256 private _preSaleStartTime = 1543336832; -> _privateSaleEndTime
uint256 private _preSaleEndTime = 1550275200;
// main-sale timestamps
// uint256 private _mainSaleStartTime = 1543337132; not used
// uint256 private _mainSaleEndTime; -> closingTime()
// END OF DATES AND LIMITS
constructor (uint256 rate, address wallet, IERC20 tokenAddress) public
Crowdsale(rate, wallet, tokenAddress)
TimedCrowdsale(1547553600, 1554076800)
RefundableCrowdsale(60 * 10 ** 6 * (10 ** 18))
{
_hardcaps[0] = 120 * 10 ** 6 * (10 ** uint256(ERC20Detailed(token()).decimals()));
_hardcaps[1] = 80 * 10 ** 6 * (10 ** uint256(ERC20Detailed(token()).decimals()));
_hardcaps[2] = 220 * 10 ** 6 * (10 ** uint256(ERC20Detailed(token()).decimals()));
_minInvestments[0] = 1 * 10 ** 6 * (10 ** uint256(ERC20Detailed(token()).decimals()));
_minInvestments[1] = 2 * 10 ** 4 * (10 ** uint256(ERC20Detailed(token()).decimals()));
//_minInvestments[0] = 10000;
//_minInvestments[1] = 20000;
// _minInvestments[2] = 0;
_bonuses[0] = 0;
_bonuses[1] = 0;
_bonuses[2] = 0;
}
/**
* @return current stag.
*/
function getStage() public view onlyWhileOpen returns (uint8) {
uint256 currentTime = block.timestamp;
if (currentTime >= openingTime() && currentTime <= _privateSaleEndTime) {
// private sale
return 0;
}
else if (currentTime > _privateSaleEndTime && currentTime < _preSaleEndTime) {
// pre-sale
return 1;
}
else {
// no condition needed because end of crowdsale checks in onlyWhileOpen modifier
// main sale
return 2;
}
}
/**
* @return the amount of tokens sold.
*/
function totalTokensSold() public view returns (uint256) {
return _totalTokensSold;
}
/**
* @return the amount of tokens sold on current stage.
*/
function tokensSoldOnCurrentStage() public view returns (uint256) {
return _tokensSold[getStage()];
}
/**
* @return hardcap on current stage.
*/
function hardcapOnCurrentStage() public view returns (uint256) {
return _hardcaps[getStage()];
}
/**
* @return minimum amount of tokens to be sold
*/
function goal() public view returns (uint256) {
return 60 * 10 ** 6 * (10 ** uint256(ERC20Detailed(token()).decimals()));
}
/**
* @dev Checks whether tokens sold goal was reached.
* @return Whether tokens sold goal was reached
*/
function goalReached() public view returns (bool) {
return totalTokensSold() >= goal();
}
/**
* @dev Set new rate.
*/
function setRate(uint256 rate) external onlyOwner {
require(rate != 0);
_rate = rate;
}
/**
* @dev escrow finalization task, called when finalize() is called
*/
function _finalization() internal {
super._finalization();
ERC20Burnable(token()).burn(token().balanceOf(address(this)));
}
/**
* @dev Increase amount of tokens sold by value, which beneficiary will get.
* Also increase amount of tokens sold in current stage
* @param beneficiary Address performing the token purchase
* @param tokenAmount Number of tokens to be emitted
*/
function _deliverTokens(address beneficiary, uint256 tokenAmount) internal {
super._deliverTokens(beneficiary, tokenAmount);
_totalTokensSold = _totalTokensSold.add(tokenAmount);
uint8 stage = getStage();
_tokensSold[stage] = _tokensSold[stage].add(tokenAmount);
}
/**
* @dev Revert if purchased tokens amount is less then minimum investment.
*/
function _validateMinInvestment(uint256 tokenAmount, uint8 stage) internal view {
require(tokenAmount >= _minInvestments[stage]);
}
/**
* @dev Revert if hardcap is reached.
*/
function _validateCap(uint256 tokenAmount, uint8 stage) internal view {
require(_tokensSold[stage] + tokenAmount <= _hardcaps[stage]);
}
/**
* @dev Calculate bonus and validate purchased and received tokens amount.
* @param weiAmount Value in wei to be converted into tokens
* @return Number of tokens that can be purchased with the specified _weiAmount
*/
function _getTokenAmount(uint256 weiAmount) internal view returns (uint256) {
uint256 tokenAmount = super._getTokenAmount(weiAmount);
uint8 stage = getStage();
_validateMinInvestment(tokenAmount, stage);
uint256 purchaseBonus = 0;
if (_bonuses[stage] != 0) {
purchaseBonus = tokenAmount.mul(_bonuses[stage]).div(100);
}
tokenAmount = tokenAmount.add(purchaseBonus);
_validateCap(tokenAmount, stage);
return tokenAmount;
}
/**
* @dev Externally token purchase (for beneficiaries who will pay through PayPal or BTC)
* @param beneficiary Recipient of the token purchase
* @param tokenAmount Number of tokens to be emitted
*/
function buyTokensExternally(address beneficiary, uint256 tokenAmount) external onlyOwner onlyWhileOpen {
require(! finalized());
uint8 stage = getStage();
_validateMinInvestment(tokenAmount, stage);
_validateCap(tokenAmount, stage);
_deliverTokens(beneficiary, tokenAmount);
emit TokensPurchased(beneficiary, beneficiary, 0, tokenAmount);
}
}
pragma solidity 0.4.25;
import "./ERC20Burnable.sol";
import "./ERC20Detailed.sol";
import "./ERC20.sol";
import "./SafeMath.sol";
contract BitbookToken is ERC20Detailed, ERC20Burnable {
/**
* @dev Constructor, takes TokenLocker address as owner of all tockens address.
*/
constructor(address tokensOwner) public ERC20Detailed("Bitbook Gambling", "BXK", 18) {
_mint(tokensOwner, 750 * 10 ** 6 * (10 ** uint256(decimals()))); // 750M Tokens
}
}
pragma solidity ^0.4.25;
import "./Escrow.sol";
/**
* @title ConditionalEscrow
* @dev Base abstract escrow to only allow withdrawal if a condition is met.
* @dev Intended usage: See Escrow.sol. Same usage guidelines apply here.
*/
contract ConditionalEscrow is Escrow {
/**
* @dev Returns whether an address is allowed to withdraw their funds. To be
* implemented by derived contracts.
* @param payee The destination address of the funds.
*/
function withdrawalAllowed(address payee) public view returns (bool);
function withdraw(address payee) public {
require(withdrawalAllowed(payee));
super.withdraw(payee);
}
}
pragma solidity ^0.4.25;
import "./IERC20.sol";
import "./SafeMath.sol";
import "./SafeERC20.sol";
import "./ReentrancyGuard.sol";
/**
* @title Crowdsale
* @dev Crowdsale is a base contract for managing a token crowdsale,
* allowing investors to purchase tokens with ether. This contract implements
* such functionality in its most fundamental form and can be extended to provide additional
* functionality and/or custom behavior.
* The external interface represents the basic interface for purchasing tokens, and conform
* the base architecture for crowdsales. They are *not* intended to be modified / overridden.
* The internal interface conforms the extensible and modifiable surface of crowdsales. Override
* the methods to add functionality. Consider using 'super' where appropriate to concatenate
* behavior.
*/
contract Crowdsale is ReentrancyGuard {
using SafeMath for uint256;
using SafeERC20 for IERC20;
// The token being sold
IERC20 private _token;
// Address where funds are collected
address private _wallet;
// How many token units a buyer gets per wei.
// The rate is the conversion between wei and the smallest and indivisible token unit.
// So, if you are using a rate of 1 with a ERC20Detailed token with 3 decimals called TOK
// 1 wei will give you 1 unit, or 0.001 TOK.
uint256 internal _rate;
// Amount of wei raised
uint256 private _weiRaised;
/**
* Event for token purchase logging
* @param purchaser who paid for the tokens
* @param beneficiary who got the tokens
* @param value weis paid for purchase
* @param amount amount of tokens purchased
*/
event TokensPurchased(address indexed purchaser, address indexed beneficiary, uint256 value, uint256 amount);
/**
* @param rate Number of token units a buyer gets per wei
* @dev The rate is the conversion between wei and the smallest and indivisible
* token unit. So, if you are using a rate of 1 with a ERC20Detailed token
* with 3 decimals called TOK, 1 wei will give you 1 unit, or 0.001 TOK.
* @param wallet Address where collected funds will be forwarded to
* @param token Address of the token being sold
*/
constructor (uint256 rate, address wallet, IERC20 token) internal {
require(rate > 0);
require(wallet != address(0));
require(token != address(0));
_rate = rate;
_wallet = wallet;
_token = token;
}
// -----------------------------------------
// Crowdsale external interface
// -----------------------------------------
/**
* @dev fallback function ***DO NOT OVERRIDE***
* Note that other contracts will transfer fund with a base gas stipend
* of 2300, which is not enough to call buyTokens. Consider calling
* buyTokens directly when purchasing tokens from a contract.
*/
function () external payable {
buyTokens(msg.sender);
}
/**
* @return the token being sold.
*/
function token() public view returns (IERC20) {
return _token;
}
/**
* @return the address where funds are collected.
*/
function wallet() public view returns (address) {
return _wallet;
}
/**
* @return the number of token units a buyer gets per wei.
*/
function rate() public view returns (uint256) {
return _rate;
}
/**
* @return the amount of wei raised.
*/
function weiRaised() public view returns (uint256) {
return _weiRaised;
}
/**
* @dev low level token purchase ***DO NOT OVERRIDE***
* This function has a non-reentrancy guard, so it shouldn't be called by
* another `nonReentrant` function.
* @param beneficiary Recipient of the token purchase
*/
function buyTokens(address beneficiary) public nonReentrant payable {
uint256 weiAmount = msg.value;
_preValidatePurchase(beneficiary, weiAmount);
// calculate token amount to be created
uint256 tokens = _getTokenAmount(weiAmount);
// update state
_weiRaised = _weiRaised.add(weiAmount);
_processPurchase(beneficiary, tokens);
emit TokensPurchased(msg.sender, beneficiary, weiAmount, tokens);
_updatePurchasingState(beneficiary, weiAmount);
_forwardFunds();
_postValidatePurchase(beneficiary, weiAmount);
}
// -----------------------------------------
// Internal interface (extensible)
// -----------------------------------------
/**
* @dev Validation of an incoming purchase. Use require statements to revert state when conditions are not met. Use `super` in contracts that inherit from Crowdsale to extend their validations.
* Example from CappedCrowdsale.sol's _preValidatePurchase method:
* super._preValidatePurchase(beneficiary, weiAmount);
* require(weiRaised().add(weiAmount) <= cap);
* @param beneficiary Address performing the token purchase
* @param weiAmount Value in wei involved in the purchase
*/
function _preValidatePurchase(address beneficiary, uint256 weiAmount) internal view {
require(beneficiary != address(0));
require(weiAmount != 0);
}
/**
* @dev Validation of an executed purchase. Observe state and use revert statements to undo rollback when valid conditions are not met.
* @param beneficiary Address performing the token purchase
* @param weiAmount Value in wei involved in the purchase
*/
function _postValidatePurchase(address beneficiary, uint256 weiAmount) internal view {
// optional override
}
/**
* @dev Source of tokens. Override this method to modify the way in which the crowdsale ultimately gets and sends its tokens.
* @param beneficiary Address performing the token purchase
* @param tokenAmount Number of tokens to be emitted
*/
function _deliverTokens(address beneficiary, uint256 tokenAmount) internal {
_token.safeTransfer(beneficiary, tokenAmount);
}
/**
* @dev Executed when a purchase has been validated and is ready to be executed. Doesn't necessarily emit/send tokens.
* @param beneficiary Address receiving the tokens
* @param tokenAmount Number of tokens to be purchased
*/
function _processPurchase(address beneficiary, uint256 tokenAmount) internal {
_deliverTokens(beneficiary, tokenAmount);
}
/**
* @dev Override for extensions that require an internal state to check for validity (current user contributions, etc.)
* @param beneficiary Address receiving the tokens
* @param weiAmount Value in wei involved in the purchase
*/
function _updatePurchasingState(address beneficiary, uint256 weiAmount) internal {
// optional override
}
/**
* @dev Override to extend the way in which ether is converted to tokens.
* @param weiAmount Value in wei to be converted into tokens
* @return Number of tokens that can be purchased with the specified _weiAmount
*/
function _getTokenAmount(uint256 weiAmount) internal view returns (uint256) {
return weiAmount.mul(_rate);
}
/**
* @dev Determines how ETH is stored/forwarded on purchases.
*/
function _forwardFunds() internal {
_wallet.transfer(msg.value);
}
}
pragma solidity ^0.4.25;
import "./IERC20.sol";
import "./SafeMath.sol";
/**
* @title Standard ERC20 token
*
* @dev Implementation of the basic standard token.
* https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
* Originally based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
*/
contract ERC20 is IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowed;
uint256 private _totalSupply;
/**
* @dev Total number of tokens in existence
*/
function totalSupply() public view returns (uint256) {
return _totalSupply;
}
/**
* @dev Gets the balance of the specified address.
* @param owner The address to query the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address owner) public view returns (uint256) {
return _balances[owner];
}
/**
* @dev Function to check the amount of tokens that an owner allowed to a spender.
* @param owner address The address which owns the funds.
* @param spender address The address which will spend the funds.
* @return A uint256 specifying the amount of tokens still available for the spender.
*/
function allowance(address owner, address spender) public view returns (uint256) {
return _allowed[owner][spender];
}
/**
* @dev Transfer token for a specified address
* @param to The address to transfer to.
* @param value The amount to be transferred.
*/
function transfer(address to, uint256 value) public returns (bool) {
_transfer(msg.sender, to, value);
return true;
}
/**
* @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
* Beware that changing an allowance with this method brings the risk that someone may use both the old
* and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
* race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
*/
function approve(address spender, uint256 value) public returns (bool) {
require(spender != address(0));
_allowed[msg.sender][spender] = value;
emit Approval(msg.sender, spender, value);
return true;
}
/**
* @dev Transfer tokens from one address to another
* @param from address The address which you want to send tokens from
* @param to address The address which you want to transfer to
* @param value uint256 the amount of tokens to be transferred
*/
function transferFrom(address from, address to, uint256 value) public returns (bool) {
_allowed[from][msg.sender] = _allowed[from][msg.sender].sub(value);
_transfer(from, to, value);
return true;
}
/**
* @dev Increase the amount of tokens that an owner allowed to a spender.
* approve should be called when allowed_[_spender] == 0. To increment
* allowed value is better to use this function to avoid 2 calls (and wait until
* the first transaction is mined)
* From MonolithDAO Token.sol
* @param spender The address which will spend the funds.
* @param addedValue The amount of tokens to increase the allowance by.
*/
function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
require(spender != address(0));
_allowed[msg.sender][spender] = _allowed[msg.sender][spender].add(addedValue);
emit Approval(msg.sender, spender, _allowed[msg.sender][spender]);
return true;
}
/**
* @dev Decrease the amount of tokens that an owner allowed to a spender.
* approve should be called when allowed_[_spender] == 0. To decrement
* allowed value is better to use this function to avoid 2 calls (and wait until
* the first transaction is mined)
* From MonolithDAO Token.sol
* @param spender The address which will spend the funds.
* @param subtractedValue The amount of tokens to decrease the allowance by.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
require(spender != address(0));
_allowed[msg.sender][spender] = _allowed[msg.sender][spender].sub(subtractedValue);
emit Approval(msg.sender, spender, _allowed[msg.sender][spender]);
return true;
}
/**
* @dev Transfer token for a specified addresses
* @param from The address to transfer from.
* @param to The address to transfer to.
* @param value The amount to be transferred.
*/
function _transfer(address from, address to, uint256 value) internal {
require(to != address(0));
_balances[from] = _balances[from].sub(value);
_balances[to] = _balances[to].add(value);
emit Transfer(from, to, value);
}
/**
* @dev Internal function that mints an amount of the token and assigns it to
* an account. This encapsulates the modification of balances such that the
* proper events are emitted.
* @param account The account that will receive the created tokens.
* @param value The amount that will be created.
*/
function _mint(address account, uint256 value) internal {
require(account != address(0));
_totalSupply = _totalSupply.add(value);
_balances[account] = _balances[account].add(value);
emit Transfer(address(0), account, value);
}
/**
* @dev Internal function that burns an amount of the token of a given
* account.
* @param account The account whose tokens will be burnt.
* @param value The amount that will be burnt.
*/
function _burn(address account, uint256 value) internal {
require(account != address(0));
_totalSupply = _totalSupply.sub(value);
_balances[account] = _balances[account].sub(value);
emit Transfer(account, address(0), value);
}
/**
* @dev Internal function that burns an amount of the token of a given
* account, deducting from the sender's allowance for said account. Uses the
* internal burn function.
* @param account The account whose tokens will be burnt.
* @param value The amount that will be burnt.
*/
function _burnFrom(address account, uint256 value) internal {
// Should https://github.com/OpenZeppelin/zeppelin-solidity/issues/707 be accepted,
// this function needs to emit an event with the updated approval.
_allowed[account][msg.sender] = _allowed[account][msg.sender].sub(value);
_burn(account, value);
}
}
pragma solidity ^0.4.25;
import "./ERC20.sol";
/**
* @title Burnable Token
* @dev Token that can be irreversibly burned (destroyed).
*/
contract ERC20Burnable is ERC20 {
/**
* @dev Burns a specific amount of tokens.
* @param value The amount of token to be burned.
*/
function burn(uint256 value) public {
_burn(msg.sender, value);
}
/**
* @dev Burns a specific amount of tokens from the target address and decrements allowance
* @param from address The address which you want to send tokens from
* @param value uint256 The amount of token to be burned
*/
function burnFrom(address from, uint256 value) public {
_burnFrom(from, value);
}
}
pragma solidity 0.4.25;
import "./IERC20.sol";
/**
* @title ERC20Detailed token
* @dev The decimals are only for visualization purposes.
* All the operations are done using the smallest and indivisible token unit,
* just as on Ethereum all the operations are done in wei.
*/
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor (string name, string symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
/**
* @return the name of the token.
*/
function name() public view returns (string) {
return _name;
}
/**
* @return the symbol of the token.
*/
function symbol() public view returns (string) {
return _symbol;
}
/**
* @return the number of decimals of the token.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
}
pragma solidity ^0.4.25;
import "./SafeMath.sol";
import "./Secondary.sol";
/**
* @title Escrow
* @dev Base escrow contract, holds funds designated for a payee until they
* withdraw them.
* @dev Intended usage: This contract (and derived escrow contracts) should be a
* standalone contract, that only interacts with the contract that instantiated
* it. That way, it is guaranteed that all Ether will be handled according to
* the Escrow rules, and there is no need to check for payable functions or
* transfers in the inheritance tree. The contract that uses the escrow as its
* payment method should be its primary, and provide public methods redirecting
* to the escrow's deposit and withdraw.
*/
contract Escrow is Secondary {
using SafeMath for uint256;
event Deposited(address indexed payee, uint256 weiAmount);
event Withdrawn(address indexed payee, uint256 weiAmount);
mapping(address => uint256) private _deposits;
function depositsOf(address payee) public view returns (uint256) {
return _deposits[payee];
}
/**
* @dev Stores the sent amount as credit to be withdrawn.
* @param payee The destination address of the funds.
*/
function deposit(address payee) public onlyPrimary payable {
uint256 amount = msg.value;
_deposits[payee] = _deposits[payee].add(amount);
emit Deposited(payee, amount);
}
/**
* @dev Withdraw accumulated balance for a payee.
* @param payee The address whose funds will be withdrawn and transferred to.
*/
function withdraw(address payee) public onlyPrimary {
uint256 payment = _deposits[payee];
_deposits[payee] = 0;
payee.transfer(payment);
emit Withdrawn(payee, payment);
}
}
pragma solidity ^0.4.25;
import "./SafeMath.sol";
import "./TimedCrowdsale.sol";
/**
* @title FinalizableCrowdsale
* @dev Extension of Crowdsale with a one-off finalization action, where one
* can do extra work after finishing.
*/
contract FinalizableCrowdsale is TimedCrowdsale {
using SafeMath for uint256;
bool private _finalized;
event CrowdsaleFinalized();
constructor () internal {
_finalized = false;
}
/**
* @return true if the crowdsale is finalized, false otherwise.
*/
function finalized() public view returns (bool) {
return _finalized;
}
/**
* @dev Must be called after crowdsale ends, to do some extra finalization
* work. Calls the contract's finalization function.
*/
function finalize() public {
require(!_finalized);
require(hasClosed());
_finalized = true;
_finalization();
emit CrowdsaleFinalized();
}
/**
* @dev Can be overridden to add finalization logic. The overriding function
* should call super._finalization() to ensure the chain of finalization is
* executed entirely.
*/
function _finalization() internal {}
}
pragma solidity ^0.4.25;
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address who) external view returns (uint256);
function allowance(address owner, address spender) external view returns (uint256);
function transfer(address to, uint256 value) external returns (bool);
function approve(address spender, uint256 value) external returns (bool);
function transferFrom(address from, address to, uint256 value) external returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
pragma solidity ^0.4.25;
/**
* @title Ownable
* @dev The Ownable contract has an owner address, and provides basic authorization control
* functions, this simplifies the implementation of "user permissions".
*/
contract Ownable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev The Ownable constructor sets the original `owner` of the contract to the sender
* account.
*/
constructor () internal {
_owner = msg.sender;
emit OwnershipTransferred(address(0), _owner);
}
/**
* @return the address of the owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(isOwner());
_;
}
/**
* @return true if `msg.sender` is the owner of the contract.
*/
function isOwner() public view returns (bool) {
return msg.sender == _owner;
}
/**
* @dev Allows the current owner to relinquish control of the contract.
* @notice Renouncing to ownership will leave the contract without an owner.
* It will not be possible to call the functions with the `onlyOwner`
* modifier anymore.
*/
function renounceOwnership() public onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Allows the current owner to transfer control of the contract to a newOwner.
* @param newOwner The address to transfer ownership to.
*/
function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
/**
* @dev Transfers control of the contract to a newOwner.
* @param newOwner The address to transfer ownership to.
*/
function _transferOwnership(address newOwner) internal {
require(newOwner != address(0));
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
pragma solidity ^0.4.25;
/**
* @title Helps contracts guard against reentrancy attacks.
* @author Remco Bloemen <remco@2π.com>, Eenae <alexey@mixbytes.io>
* @dev If you mark a function `nonReentrant`, you should also
* mark it `external`.
*/
contract ReentrancyGuard {
/// @dev counter to allow mutex lock with only one SSTORE operation
uint256 private _guardCounter;
constructor () internal {
// The counter starts at one to prevent changing it from zero to a non-zero
// value, which is a more expensive operation.
_guardCounter = 1;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_guardCounter += 1;
uint256 localCounter = _guardCounter;
_;
require(localCounter == _guardCounter);
}
}
pragma solidity ^0.4.25;
import "./ConditionalEscrow.sol";
/**
* @title RefundEscrow
* @dev Escrow that holds funds for a beneficiary, deposited from multiple
* parties.
* @dev Intended usage: See Escrow.sol. Same usage guidelines apply here.
* @dev The primary account (that is, the contract that instantiates this
* contract) may deposit, close the deposit period, and allow for either
* withdrawal by the beneficiary, or refunds to the depositors. All interactions
* with RefundEscrow will be made through the primary contract. See the
* RefundableCrowdsale contract for an example of RefundEscrow’s use.
*/
contract RefundEscrow is ConditionalEscrow {
enum State { Active, Refunding, Closed }
event RefundsClosed();
event RefundsEnabled();
State private _state;
address private _beneficiary;
/**
* @dev Constructor.
* @param beneficiary The beneficiary of the deposits.
*/
constructor (address beneficiary) public {
require(beneficiary != address(0));
_beneficiary = beneficiary;
_state = State.Active;
}
/**
* @return the current state of the escrow.
*/
function state() public view returns (State) {
return _state;
}
/**
* @return the beneficiary of the escrow.
*/
function beneficiary() public view returns (address) {
return _beneficiary;
}
/**
* @dev Stores funds that may later be refunded.
* @param refundee The address funds will be sent to if a refund occurs.
*/
function deposit(address refundee) public payable {
require(_state == State.Active);
super.deposit(refundee);
}
/**
* @dev Allows for the beneficiary to withdraw their funds, rejecting
* further deposits.
*/
function close() public onlyPrimary {
require(_state == State.Active);
_state = State.Closed;
emit RefundsClosed();
}
/**
* @dev Allows for refunds to take place, rejecting further deposits.
*/
function enableRefunds() public onlyPrimary {
require(_state == State.Active);
_state = State.Refunding;
emit RefundsEnabled();
}
/**
* @dev Withdraws the beneficiary's funds.
*/
function beneficiaryWithdraw() public {
require(_state == State.Closed);
_beneficiary.transfer(address(this).balance);
}
/**
* @dev Returns whether refundees can withdraw their deposits (be refunded).
*/
function withdrawalAllowed(address payee) public view returns (bool) {
return _state == State.Refunding;
}
}
pragma solidity ^0.4.25;
import "./SafeMath.sol";
import "./FinalizableCrowdsale.sol";
import "./RefundEscrow.sol";
/**
* @title RefundableCrowdsale
* @dev Extension of Crowdsale contract that adds a funding goal, and
* the possibility of users getting a refund if goal is not met.
* WARNING: note that if you allow tokens to be traded before the goal
* is met, then an attack is possible in which the attacker purchases
* tokens from the crowdsale and when they sees that the goal is
* unlikely to be met, they sell their tokens (possibly at a discount).
* The attacker will be refunded when the crowdsale is finalized, and
* the users that purchased from them will be left with worthless
* tokens. There are many possible ways to avoid this, like making the
* the crowdsale inherit from PostDeliveryCrowdsale, or imposing
* restrictions on token trading until the crowdsale is finalized.
* This is being discussed in
* https://github.com/OpenZeppelin/openzeppelin-solidity/issues/877
* This contract will be updated when we agree on a general solution
* for this problem.
*/
contract RefundableCrowdsale is FinalizableCrowdsale {
using SafeMath for uint256;
// minimum amount of funds to be raised in weis
uint256 private _goal;
// refund escrow used to hold funds while crowdsale is running
RefundEscrow private _escrow;
/**
* @dev Constructor, creates RefundEscrow.
* @param goal Funding goal
*/
constructor (uint256 goal) internal {
require(goal > 0);
_escrow = new RefundEscrow(wallet());
_goal = goal;
}
/**
* @return minimum amount of funds to be raised in wei.
*/
function goal() public view returns (uint256) {
return _goal;
}
/**
* @dev Investors can claim refunds here if crowdsale is unsuccessful
* @param refundee Whose refund will be claimed.
*/
function claimRefund(address refundee) public {
require(finalized());
require(!goalReached());
_escrow.withdraw(refundee);
}
/**
* @dev Checks whether funding goal was reached.
* @return Whether funding goal was reached
*/
function goalReached() public view returns (bool) {
return weiRaised() >= _goal;
}
/**
* @dev escrow finalization task, called when finalize() is called
*/
function _finalization() internal {
if (goalReached()) {
_escrow.close();
_escrow.beneficiaryWithdraw();
} else {
_escrow.enableRefunds();
}
super._finalization();
}
/**
* @dev Overrides Crowdsale fund forwarding, sending funds to escrow.
*/
function _forwardFunds() internal {
_escrow.deposit.value(msg.value)(msg.sender);
}
}
pragma solidity ^0.4.25;
import "./IERC20.sol";
import "./SafeMath.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure.
* To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
require(token.transfer(to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
require(token.transferFrom(from, to, value));
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require((value == 0) || (token.allowance(msg.sender, spender) == 0));
require(token.approve(spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
require(token.approve(spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value);
require(token.approve(spender, newAllowance));
}
}
pragma solidity 0.4.25;
/**
* @title SafeMath
* @dev Math operations with safety checks that revert on error
*/
library SafeMath {
/**
* @dev Multiplies two numbers, reverts on overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b);
return c;
}
/**
* @dev Integer division of two numbers truncating the quotient, reverts on division by zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0); // Solidity only automatically asserts when dividing by 0
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend).
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a);
uint256 c = a - b;
return c;
}
/**
* @dev Adds two numbers, reverts on overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a);
return c;
}
/**
* @dev Divides two numbers and returns the remainder (unsigned integer modulo),
* reverts when dividing by zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0);
return a % b;
}
}
pragma solidity ^0.4.25;
/**
* @title Secondary
* @dev A Secondary contract can only be used by its primary account (the one that created it)
*/
contract Secondary {
address private _primary;
event PrimaryTransferred(
address recipient
);
/**
* @dev Sets the primary account to the one that is creating the Secondary contract.
*/
constructor () internal {
_primary = msg.sender;
emit PrimaryTransferred(_primary);
}
/**
* @dev Reverts if called from any account other than the primary.
*/
modifier onlyPrimary() {
require(msg.sender == _primary);
_;
}
/**
* @return the address of the primary.
*/
function primary() public view returns (address) {
return _primary;
}
/**
* @dev Transfers contract to a new primary.
* @param recipient The address of new primary.
*/
function transferPrimary(address recipient) public onlyPrimary {
require(recipient != address(0));
_primary = recipient;
emit PrimaryTransferred(_primary);
}
}
pragma solidity ^0.4.25;
import "./SafeMath.sol";
import "./Crowdsale.sol";
/**
* @title TimedCrowdsale
* @dev Crowdsale accepting contributions only within a time frame.
*/
contract TimedCrowdsale is Crowdsale {
using SafeMath for uint256;
uint256 private _openingTime;
uint256 private _closingTime;
/**
* @dev Reverts if not in crowdsale time range.
*/
modifier onlyWhileOpen {
require(isOpen());
_;
}
/**
* @dev Constructor, takes crowdsale opening and closing times.
* @param openingTime Crowdsale opening time
* @param closingTime Crowdsale closing time
*/
constructor (uint256 openingTime, uint256 closingTime) internal {
// solium-disable-next-line security/no-block-members
require(openingTime >= block.timestamp);
require(closingTime > openingTime);
_openingTime = openingTime;
_closingTime = closingTime;
}
/**
* @return the crowdsale opening time.
*/
function openingTime() public view returns (uint256) {
return _openingTime;
}
/**
* @return the crowdsale closing time.
*/
function closingTime() public view returns (uint256) {
return _closingTime;
}
/**
* @return true if the crowdsale is open, false otherwise.
*/
function isOpen() public view returns (bool) {
// solium-disable-next-line security/no-block-members
return block.timestamp >= _openingTime && block.timestamp <= _closingTime;
}
/**
* @dev Checks whether the period in which the crowdsale is open has already elapsed.
* @return Whether crowdsale period has elapsed
*/
function hasClosed() public view returns (bool) {
// solium-disable-next-line security/no-block-members
return block.timestamp > _closingTime;
}
/**
* @dev Extend parent behavior requiring to be within contributing period
* @param beneficiary Token purchaser
* @param weiAmount Amount of wei contributed
*/
function _preValidatePurchase(address beneficiary, uint256 weiAmount) internal onlyWhileOpen view {
super._preValidatePurchase(beneficiary, weiAmount);
}
}
{
"compilationTarget": {
"BitbookToken.sol": "BitbookToken"
},
"evmVersion": "byzantium",
"libraries": {},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"constant":true,"inputs":[],"name":"name","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"spender","type":"address"},{"name":"value","type":"uint256"}],"name":"approve","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"totalSupply","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"from","type":"address"},{"name":"to","type":"address"},{"name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"decimals","outputs":[{"name":"","type":"uint8"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"spender","type":"address"},{"name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"value","type":"uint256"}],"name":"burn","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"from","type":"address"},{"name":"value","type":"uint256"}],"name":"burnFrom","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"symbol","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"spender","type":"address"},{"name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"to","type":"address"},{"name":"value","type":"uint256"}],"name":"transfer","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"name":"owner","type":"address"},{"name":"spender","type":"address"}],"name":"allowance","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[{"name":"tokensOwner","type":"address"}],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"name":"from","type":"address"},{"indexed":true,"name":"to","type":"address"},{"indexed":false,"name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"owner","type":"address"},{"indexed":true,"name":"spender","type":"address"},{"indexed":false,"name":"value","type":"uint256"}],"name":"Approval","type":"event"}]