// SPDX-License-Identifier: GPL-3.0-or-later
/**
Author: CoFiX Core, https://cofix.io
Commit hash: v0.9.5-1-g7141c43
Repository: https://github.com/Computable-Finance/CoFiX
Issues: https://github.com/Computable-Finance/CoFiX/issues
*/
pragma solidity 0.6.12;
//
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
//
/*
* ABDK Math 64.64 Smart Contract Library. Copyright © 2019 by ABDK Consulting.
* Author: Mikhail Vladimirov <mikhail.vladimirov@gmail.com>
*/
/**
* Smart contract library of mathematical functions operating with signed
* 64.64-bit fixed point numbers. Signed 64.64-bit fixed point number is
* basically a simple fraction whose numerator is signed 128-bit integer and
* denominator is 2^64. As long as denominator is always the same, there is no
* need to store it, thus in Solidity signed 64.64-bit fixed point numbers are
* represented by int128 type holding only the numerator.
*/
library ABDKMath64x64 {
/**
* @dev Minimum value signed 64.64-bit fixed point number may have.
*/
int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;
/**
* @dev Maximum value signed 64.64-bit fixed point number may have.
*/
int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
/**
* Convert signed 256-bit integer number into signed 64.64-bit fixed point
* number. Revert on overflow.
*
* @param x signed 256-bit integer number
* @return signed 64.64-bit fixed point number
*/
function fromInt (int256 x) internal pure returns (int128) {
require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
return int128 (x << 64);
}
/**
* Convert signed 64.64 fixed point number into signed 64-bit integer number
* rounding down.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64-bit integer number
*/
function toInt (int128 x) internal pure returns (int64) {
return int64 (x >> 64);
}
/**
* Convert unsigned 256-bit integer number into signed 64.64-bit fixed point
* number. Revert on overflow.
*
* @param x unsigned 256-bit integer number
* @return signed 64.64-bit fixed point number
*/
function fromUInt (uint256 x) internal pure returns (int128) {
require (x <= 0x7FFFFFFFFFFFFFFF);
return int128 (x << 64);
}
/**
* Convert signed 64.64 fixed point number into unsigned 64-bit integer
* number rounding down. Revert on underflow.
*
* @param x signed 64.64-bit fixed point number
* @return unsigned 64-bit integer number
*/
function toUInt (int128 x) internal pure returns (uint64) {
require (x >= 0);
return uint64 (x >> 64);
}
/**
* Convert signed 128.128 fixed point number into signed 64.64-bit fixed point
* number rounding down. Revert on overflow.
*
* @param x signed 128.128-bin fixed point number
* @return signed 64.64-bit fixed point number
*/
function from128x128 (int256 x) internal pure returns (int128) {
int256 result = x >> 64;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
/**
* Convert signed 64.64 fixed point number into signed 128.128 fixed point
* number.
*
* @param x signed 64.64-bit fixed point number
* @return signed 128.128 fixed point number
*/
function to128x128 (int128 x) internal pure returns (int256) {
return int256 (x) << 64;
}
/**
* Calculate x + y. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @param y signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function add (int128 x, int128 y) internal pure returns (int128) {
int256 result = int256(x) + y;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
/**
* Calculate x - y. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @param y signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function sub (int128 x, int128 y) internal pure returns (int128) {
int256 result = int256(x) - y;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
/**
* Calculate x * y rounding down. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @param y signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function mul (int128 x, int128 y) internal pure returns (int128) {
int256 result = int256(x) * y >> 64;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
/**
* Calculate x * y rounding towards zero, where x is signed 64.64 fixed point
* number and y is signed 256-bit integer number. Revert on overflow.
*
* @param x signed 64.64 fixed point number
* @param y signed 256-bit integer number
* @return signed 256-bit integer number
*/
function muli (int128 x, int256 y) internal pure returns (int256) {
if (x == MIN_64x64) {
require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
y <= 0x1000000000000000000000000000000000000000000000000);
return -y << 63;
} else {
bool negativeResult = false;
if (x < 0) {
x = -x;
negativeResult = true;
}
if (y < 0) {
y = -y; // We rely on overflow behavior here
negativeResult = !negativeResult;
}
uint256 absoluteResult = mulu (x, uint256 (y));
if (negativeResult) {
require (absoluteResult <=
0x8000000000000000000000000000000000000000000000000000000000000000);
return -int256 (absoluteResult); // We rely on overflow behavior here
} else {
require (absoluteResult <=
0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int256 (absoluteResult);
}
}
}
/**
* Calculate x * y rounding down, where x is signed 64.64 fixed point number
* and y is unsigned 256-bit integer number. Revert on overflow.
*
* @param x signed 64.64 fixed point number
* @param y unsigned 256-bit integer number
* @return unsigned 256-bit integer number
*/
function mulu (int128 x, uint256 y) internal pure returns (uint256) {
if (y == 0) return 0;
require (x >= 0);
uint256 lo = (uint256 (x) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
uint256 hi = uint256 (x) * (y >> 128);
require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
hi <<= 64;
require (hi <=
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
return hi + lo;
}
/**
* Calculate x / y rounding towards zero. Revert on overflow or when y is
* zero.
*
* @param x signed 64.64-bit fixed point number
* @param y signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function div (int128 x, int128 y) internal pure returns (int128) {
require (y != 0);
int256 result = (int256 (x) << 64) / y;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
/**
* Calculate x / y rounding towards zero, where x and y are signed 256-bit
* integer numbers. Revert on overflow or when y is zero.
*
* @param x signed 256-bit integer number
* @param y signed 256-bit integer number
* @return signed 64.64-bit fixed point number
*/
function divi (int256 x, int256 y) internal pure returns (int128) {
require (y != 0);
bool negativeResult = false;
if (x < 0) {
x = -x; // We rely on overflow behavior here
negativeResult = true;
}
if (y < 0) {
y = -y; // We rely on overflow behavior here
negativeResult = !negativeResult;
}
uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
if (negativeResult) {
require (absoluteResult <= 0x80000000000000000000000000000000);
return -int128 (absoluteResult); // We rely on overflow behavior here
} else {
require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int128 (absoluteResult); // We rely on overflow behavior here
}
}
/**
* Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
* integer numbers. Revert on overflow or when y is zero.
*
* @param x unsigned 256-bit integer number
* @param y unsigned 256-bit integer number
* @return signed 64.64-bit fixed point number
*/
function divu (uint256 x, uint256 y) internal pure returns (int128) {
require (y != 0);
uint128 result = divuu (x, y);
require (result <= uint128 (MAX_64x64));
return int128 (result);
}
/**
* Calculate -x. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function neg (int128 x) internal pure returns (int128) {
require (x != MIN_64x64);
return -x;
}
/**
* Calculate |x|. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function abs (int128 x) internal pure returns (int128) {
require (x != MIN_64x64);
return x < 0 ? -x : x;
}
/**
* Calculate 1 / x rounding towards zero. Revert on overflow or when x is
* zero.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function inv (int128 x) internal pure returns (int128) {
require (x != 0);
int256 result = int256 (0x100000000000000000000000000000000) / x;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
/**
* Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down.
*
* @param x signed 64.64-bit fixed point number
* @param y signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function avg (int128 x, int128 y) internal pure returns (int128) {
return int128 ((int256 (x) + int256 (y)) >> 1);
}
/**
* Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down.
* Revert on overflow or in case x * y is negative.
*
* @param x signed 64.64-bit fixed point number
* @param y signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function gavg (int128 x, int128 y) internal pure returns (int128) {
int256 m = int256 (x) * int256 (y);
require (m >= 0);
require (m <
0x4000000000000000000000000000000000000000000000000000000000000000);
return int128 (sqrtu (uint256 (m), uint256 (x) + uint256 (y) >> 1));
}
/**
* Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number
* and y is unsigned 256-bit integer number. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @param y uint256 value
* @return signed 64.64-bit fixed point number
*/
function pow (int128 x, uint256 y) internal pure returns (int128) {
uint256 absoluteResult;
bool negativeResult = false;
if (x >= 0) {
absoluteResult = powu (uint256 (x) << 63, y);
} else {
// We rely on overflow behavior here
absoluteResult = powu (uint256 (uint128 (-x)) << 63, y);
negativeResult = y & 1 > 0;
}
absoluteResult >>= 63;
if (negativeResult) {
require (absoluteResult <= 0x80000000000000000000000000000000);
return -int128 (absoluteResult); // We rely on overflow behavior here
} else {
require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int128 (absoluteResult); // We rely on overflow behavior here
}
}
/**
* Calculate sqrt (x) rounding down. Revert if x < 0.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function sqrt (int128 x) internal pure returns (int128) {
require (x >= 0);
return int128 (sqrtu (uint256 (x) << 64, 0x10000000000000000));
}
/**
* Calculate binary logarithm of x. Revert if x <= 0.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function log_2 (int128 x) internal pure returns (int128) {
require (x > 0);
int256 msb = 0;
int256 xc = x;
if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
if (xc >= 0x10000) { xc >>= 16; msb += 16; }
if (xc >= 0x100) { xc >>= 8; msb += 8; }
if (xc >= 0x10) { xc >>= 4; msb += 4; }
if (xc >= 0x4) { xc >>= 2; msb += 2; }
if (xc >= 0x2) msb += 1; // No need to shift xc anymore
int256 result = msb - 64 << 64;
uint256 ux = uint256 (x) << 127 - msb;
for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
ux *= ux;
uint256 b = ux >> 255;
ux >>= 127 + b;
result += bit * int256 (b);
}
return int128 (result);
}
/**
* Calculate natural logarithm of x. Revert if x <= 0.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function ln (int128 x) internal pure returns (int128) {
require (x > 0);
return int128 (
uint256 (log_2 (x)) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128);
}
/**
* Calculate binary exponent of x. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function exp_2 (int128 x) internal pure returns (int128) {
require (x < 0x400000000000000000); // Overflow
if (x < -0x400000000000000000) return 0; // Underflow
uint256 result = 0x80000000000000000000000000000000;
if (x & 0x8000000000000000 > 0)
result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
if (x & 0x4000000000000000 > 0)
result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
if (x & 0x2000000000000000 > 0)
result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
if (x & 0x1000000000000000 > 0)
result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
if (x & 0x800000000000000 > 0)
result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
if (x & 0x400000000000000 > 0)
result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
if (x & 0x200000000000000 > 0)
result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
if (x & 0x100000000000000 > 0)
result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
if (x & 0x80000000000000 > 0)
result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
if (x & 0x40000000000000 > 0)
result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
if (x & 0x20000000000000 > 0)
result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
if (x & 0x10000000000000 > 0)
result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
if (x & 0x8000000000000 > 0)
result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
if (x & 0x4000000000000 > 0)
result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
if (x & 0x2000000000000 > 0)
result = result * 0x1000162E525EE054754457D5995292026 >> 128;
if (x & 0x1000000000000 > 0)
result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
if (x & 0x800000000000 > 0)
result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
if (x & 0x400000000000 > 0)
result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
if (x & 0x200000000000 > 0)
result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
if (x & 0x100000000000 > 0)
result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
if (x & 0x80000000000 > 0)
result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
if (x & 0x40000000000 > 0)
result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
if (x & 0x20000000000 > 0)
result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
if (x & 0x10000000000 > 0)
result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
if (x & 0x8000000000 > 0)
result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
if (x & 0x4000000000 > 0)
result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
if (x & 0x2000000000 > 0)
result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
if (x & 0x1000000000 > 0)
result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
if (x & 0x800000000 > 0)
result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
if (x & 0x400000000 > 0)
result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
if (x & 0x200000000 > 0)
result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
if (x & 0x100000000 > 0)
result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
if (x & 0x80000000 > 0)
result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
if (x & 0x40000000 > 0)
result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
if (x & 0x20000000 > 0)
result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
if (x & 0x10000000 > 0)
result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
if (x & 0x8000000 > 0)
result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
if (x & 0x4000000 > 0)
result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
if (x & 0x2000000 > 0)
result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
if (x & 0x1000000 > 0)
result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
if (x & 0x800000 > 0)
result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
if (x & 0x400000 > 0)
result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
if (x & 0x200000 > 0)
result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
if (x & 0x100000 > 0)
result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
if (x & 0x80000 > 0)
result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
if (x & 0x40000 > 0)
result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
if (x & 0x20000 > 0)
result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
if (x & 0x10000 > 0)
result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
if (x & 0x8000 > 0)
result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
if (x & 0x4000 > 0)
result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
if (x & 0x2000 > 0)
result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
if (x & 0x1000 > 0)
result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
if (x & 0x800 > 0)
result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
if (x & 0x400 > 0)
result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
if (x & 0x200 > 0)
result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
if (x & 0x100 > 0)
result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
if (x & 0x80 > 0)
result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
if (x & 0x40 > 0)
result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
if (x & 0x20 > 0)
result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
if (x & 0x10 > 0)
result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
if (x & 0x8 > 0)
result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
if (x & 0x4 > 0)
result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
if (x & 0x2 > 0)
result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
if (x & 0x1 > 0)
result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;
result >>= 63 - (x >> 64);
require (result <= uint256 (MAX_64x64));
return int128 (result);
}
/**
* Calculate natural exponent of x. Revert on overflow.
*
* @param x signed 64.64-bit fixed point number
* @return signed 64.64-bit fixed point number
*/
function exp (int128 x) internal pure returns (int128) {
require (x < 0x400000000000000000); // Overflow
if (x < -0x400000000000000000) return 0; // Underflow
return exp_2 (
int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
}
/**
* Calculate x / y rounding towards zero, where x and y are unsigned 256-bit
* integer numbers. Revert on overflow or when y is zero.
*
* @param x unsigned 256-bit integer number
* @param y unsigned 256-bit integer number
* @return unsigned 64.64-bit fixed point number
*/
function divuu (uint256 x, uint256 y) private pure returns (uint128) {
require (y != 0);
uint256 result;
if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
result = (x << 64) / y;
else {
uint256 msb = 192;
uint256 xc = x >> 192;
if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
if (xc >= 0x10000) { xc >>= 16; msb += 16; }
if (xc >= 0x100) { xc >>= 8; msb += 8; }
if (xc >= 0x10) { xc >>= 4; msb += 4; }
if (xc >= 0x4) { xc >>= 2; msb += 2; }
if (xc >= 0x2) msb += 1; // No need to shift xc anymore
result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
uint256 hi = result * (y >> 128);
uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
uint256 xh = x >> 192;
uint256 xl = x << 64;
if (xl < lo) xh -= 1;
xl -= lo; // We rely on overflow behavior here
lo = hi << 128;
if (xl < lo) xh -= 1;
xl -= lo; // We rely on overflow behavior here
assert (xh == hi >> 128);
result += xl / y;
}
require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return uint128 (result);
}
/**
* Calculate x^y assuming 0^0 is 1, where x is unsigned 129.127 fixed point
* number and y is unsigned 256-bit integer number. Revert on overflow.
*
* @param x unsigned 129.127-bit fixed point number
* @param y uint256 value
* @return unsigned 129.127-bit fixed point number
*/
function powu (uint256 x, uint256 y) private pure returns (uint256) {
if (y == 0) return 0x80000000000000000000000000000000;
else if (x == 0) return 0;
else {
int256 msb = 0;
uint256 xc = x;
if (xc >= 0x100000000000000000000000000000000) { xc >>= 128; msb += 128; }
if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
if (xc >= 0x10000) { xc >>= 16; msb += 16; }
if (xc >= 0x100) { xc >>= 8; msb += 8; }
if (xc >= 0x10) { xc >>= 4; msb += 4; }
if (xc >= 0x4) { xc >>= 2; msb += 2; }
if (xc >= 0x2) msb += 1; // No need to shift xc anymore
int256 xe = msb - 127;
if (xe > 0) x >>= xe;
else x <<= -xe;
uint256 result = 0x80000000000000000000000000000000;
int256 re = 0;
while (y > 0) {
if (y & 1 > 0) {
result = result * x;
y -= 1;
re += xe;
if (result >=
0x8000000000000000000000000000000000000000000000000000000000000000) {
result >>= 128;
re += 1;
} else result >>= 127;
if (re < -127) return 0; // Underflow
require (re < 128); // Overflow
} else {
x = x * x;
y >>= 1;
xe <<= 1;
if (x >=
0x8000000000000000000000000000000000000000000000000000000000000000) {
x >>= 128;
xe += 1;
} else x >>= 127;
if (xe < -127) return 0; // Underflow
require (xe < 128); // Overflow
}
}
if (re > 0) result <<= re;
else if (re < 0) result >>= -re;
return result;
}
}
/**
* Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer
* number.
*
* @param x unsigned 256-bit integer number
* @return unsigned 128-bit integer number
*/
function sqrtu (uint256 x, uint256 r) private pure returns (uint128) {
if (x == 0) return 0;
else {
require (r > 0);
while (true) {
uint256 rr = x / r;
if (r == rr || r + 1 == rr) return uint128 (r);
else if (r == rr + 1) return uint128 (rr);
r = r + rr + 1 >> 1;
}
}
}
}
//
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
//
interface ICoFiXVaultForTrader {
event RouterAllowed(address router);
event RouterDisallowed(address router);
event ClearPendingRewardOfCNode(uint256 pendingAmount);
event ClearPendingRewardOfLP(uint256 pendingAmount);
function setGovernance(address gov) external;
function setExpectedYieldRatio(uint256 r) external;
function setLRatio(uint256 lRatio) external;
function setTheta(uint256 theta) external;
function allowRouter(address router) external;
function disallowRouter(address router) external;
function calcCoFiRate(uint256 bt_phi, uint256 xt, uint256 np) external view returns (uint256 at);
function currentCoFiRate(address pair, uint256 np) external view returns (uint256);
function currentThreshold(address pair, uint256 np, uint256 cofiRate) external view returns (uint256);
function stdMiningRateAndAmount(address pair, uint256 np, uint256 thetaFee) external view returns (uint256 cofiRate, uint256 stdAmount);
function calcDensity(uint256 _stdAmount) external view returns (uint256);
function calcLambda(uint256 x, uint256 y) external pure returns (uint256);
function actualMiningAmountAndDensity(address pair, uint256 thetaFee, uint256 x, uint256 y, uint256 np) external view returns (uint256 amount, uint256 density, uint256 cofiRate);
function distributeReward(address pair, uint256 thetaFee, uint256 x, uint256 y, uint256 np, address rewardTo) external;
function clearPendingRewardOfCNode() external;
function clearPendingRewardOfLP(address pair) external;
function getPendingRewardOfCNode() external view returns (uint256);
function getPendingRewardOfLP(address pair) external view returns (uint256);
function getCoFiRateCache(address pair) external view returns (uint256 cofiRate, uint256 updatedBlock);
}
//
interface ICoFiToken is IERC20 {
/// @dev An event thats emitted when a new governance account is set
/// @param _new The new governance address
event NewGovernance(address _new);
/// @dev An event thats emitted when a new minter account is added
/// @param _minter The new minter address added
event MinterAdded(address _minter);
/// @dev An event thats emitted when a minter account is removed
/// @param _minter The minter address removed
event MinterRemoved(address _minter);
/// @dev Set governance address of CoFi token. Only governance has the right to execute.
/// @param _new The new governance address
function setGovernance(address _new) external;
/// @dev Add a new minter account to CoFi token, who can mint tokens. Only governance has the right to execute.
/// @param _minter The new minter address
function addMinter(address _minter) external;
/// @dev Remove a minter account from CoFi token, who can mint tokens. Only governance has the right to execute.
/// @param _minter The minter address removed
function removeMinter(address _minter) external;
/// @dev mint is used to distribute CoFi token to users, minters are CoFi mining pools
/// @param _to The receiver address
/// @param _amount The amount of tokens minted
function mint(address _to, uint256 _amount) external;
}
//
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor () internal {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
//
interface ICoFiXFactory {
// All pairs: {ETH <-> ERC20 Token}
event PairCreated(address indexed token, address pair, uint256);
event NewGovernance(address _new);
event NewController(address _new);
event NewFeeReceiver(address _new);
event NewFeeVaultForLP(address token, address feeVault);
event NewVaultForLP(address _new);
event NewVaultForTrader(address _new);
event NewVaultForCNode(address _new);
/// @dev Create a new token pair for trading
/// @param token the address of token to trade
/// @return pair the address of new token pair
function createPair(
address token
)
external
returns (address pair);
function getPair(address token) external view returns (address pair);
function allPairs(uint256) external view returns (address pair);
function allPairsLength() external view returns (uint256);
function getTradeMiningStatus(address token) external view returns (bool status);
function setTradeMiningStatus(address token, bool status) external;
function getFeeVaultForLP(address token) external view returns (address feeVault); // for LPs
function setFeeVaultForLP(address token, address feeVault) external;
function setGovernance(address _new) external;
function setController(address _new) external;
function setFeeReceiver(address _new) external;
function setVaultForLP(address _new) external;
function setVaultForTrader(address _new) external;
function setVaultForCNode(address _new) external;
function getController() external view returns (address controller);
function getFeeReceiver() external view returns (address feeReceiver); // For CoFi Holders
function getVaultForLP() external view returns (address vaultForLP);
function getVaultForTrader() external view returns (address vaultForTrader);
function getVaultForCNode() external view returns (address vaultForCNode);
}
//
interface ICoFiXVaultForLP {
enum POOL_STATE {INVALID, ENABLED, DISABLED}
event NewPoolAdded(address pool, uint256 index);
event PoolEnabled(address pool);
event PoolDisabled(address pool);
function setGovernance(address _new) external;
function setInitCoFiRate(uint256 _new) external;
function setDecayPeriod(uint256 _new) external;
function setDecayRate(uint256 _new) external;
function addPool(address pool) external;
function enablePool(address pool) external;
function disablePool(address pool) external;
function setPoolWeight(address pool, uint256 weight) external;
function batchSetPoolWeight(address[] memory pools, uint256[] memory weights) external;
function distributeReward(address to, uint256 amount) external;
function getPendingRewardOfLP(address pair) external view returns (uint256);
function currentPeriod() external view returns (uint256);
function currentCoFiRate() external view returns (uint256);
function currentPoolRate(address pool) external view returns (uint256 poolRate);
function currentPoolRateByPair(address pair) external view returns (uint256 poolRate);
/// @dev Get the award staking pool address of pair (XToken)
/// @param pair The address of XToken(pair) contract
/// @return pool The pool address
function stakingPoolForPair(address pair) external view returns (address pool);
function getPoolInfo(address pool) external view returns (POOL_STATE state, uint256 weight);
function getPoolInfoByPair(address pair) external view returns (POOL_STATE state, uint256 weight);
function getEnabledPoolCnt() external view returns (uint256);
function getCoFiStakingPool() external view returns (address pool);
}
//
interface ICoFiXStakingRewards {
// Views
/// @dev The rewards vault contract address set in factory contract
/// @return Returns the vault address
function rewardsVault() external view returns (address);
/// @dev The lastBlock reward applicable
/// @return Returns the latest block.number on-chain
function lastBlockRewardApplicable() external view returns (uint256);
/// @dev Reward amount represents by per staking token
function rewardPerToken() external view returns (uint256);
/// @dev How many reward tokens a user has earned but not claimed at present
/// @param account The target account
/// @return The amount of reward tokens a user earned
function earned(address account) external view returns (uint256);
/// @dev How many reward tokens accrued recently
/// @return The amount of reward tokens accrued recently
function accrued() external view returns (uint256);
/// @dev Get the latest reward rate of this mining pool (tokens amount per block)
/// @return The latest reward rate
function rewardRate() external view returns (uint256);
/// @dev How many stakingToken (XToken) deposited into to this reward pool (mining pool)
/// @return The total amount of XTokens deposited in this mining pool
function totalSupply() external view returns (uint256);
/// @dev How many stakingToken (XToken) deposited by the target account
/// @param account The target account
/// @return The total amount of XToken deposited in this mining pool
function balanceOf(address account) external view returns (uint256);
/// @dev Get the address of token for staking in this mining pool
/// @return The staking token address
function stakingToken() external view returns (address);
/// @dev Get the address of token for rewards in this mining pool
/// @return The rewards token address
function rewardsToken() external view returns (address);
// Mutative
/// @dev Stake/Deposit into the reward pool (mining pool)
/// @param amount The target amount
function stake(uint256 amount) external;
/// @dev Stake/Deposit into the reward pool (mining pool) for other account
/// @param other The target account
/// @param amount The target amount
function stakeForOther(address other, uint256 amount) external;
/// @dev Withdraw from the reward pool (mining pool), get the original tokens back
/// @param amount The target amount
function withdraw(uint256 amount) external;
/// @dev Withdraw without caring about rewards. EMERGENCY ONLY.
function emergencyWithdraw() external;
/// @dev Claim the reward the user earned
function getReward() external;
function getRewardAndStake() external;
/// @dev User exit the reward pool, it's actually withdraw and getReward
function exit() external;
/// @dev Add reward to the mining pool
function addReward(uint256 amount) external;
// Events
event RewardAdded(address sender, uint256 reward);
event Staked(address indexed user, uint256 amount);
event StakedForOther(address indexed user, address indexed other, uint256 amount);
event Withdrawn(address indexed user, uint256 amount);
event EmergencyWithdraw(address indexed user, uint256 amount);
event RewardPaid(address indexed user, uint256 reward);
}
//
interface ICoFiXERC20 {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
// function name() external pure returns (string memory);
// function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
}
//
interface ICoFiXPair is ICoFiXERC20 {
struct OraclePrice {
uint256 ethAmount;
uint256 erc20Amount;
uint256 blockNum;
uint256 K;
uint256 theta;
}
// All pairs: {ETH <-> ERC20 Token}
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, address outToken, uint outAmount, address indexed to);
event Swap(
address indexed sender,
uint amountIn,
uint amountOut,
address outToken,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1);
function mint(address to) external payable returns (uint liquidity, uint oracleFeeChange);
function burn(address outToken, address to) external payable returns (uint amountOut, uint oracleFeeChange);
function swapWithExact(address outToken, address to) external payable returns (uint amountIn, uint amountOut, uint oracleFeeChange, uint256[4] memory tradeInfo);
function swapForExact(address outToken, uint amountOutExact, address to) external payable returns (uint amountIn, uint amountOut, uint oracleFeeChange, uint256[4] memory tradeInfo);
function skim(address to) external;
function sync() external;
function initialize(address, address, string memory, string memory) external;
/// @dev get Net Asset Value Per Share
/// @param ethAmount ETH side of Oracle price {ETH <-> ERC20 Token}
/// @param erc20Amount Token side of Oracle price {ETH <-> ERC20 Token}
/// @return navps The Net Asset Value Per Share (liquidity) represents
function getNAVPerShare(uint256 ethAmount, uint256 erc20Amount) external view returns (uint256 navps);
}
//
// Reward Pool Controller for Trader
// Trade to earn CoFi Token
contract CoFiXVaultForTrader is ICoFiXVaultForTrader, ReentrancyGuard {
using SafeMath for uint256;
struct CoFiRateCache {
uint128 cofiRate;
uint128 updatedBlock;
}
uint256 public constant RATE_BASE = 1e18;
uint256 public constant LAMBDA_BASE = 100;
uint256 public constant RECENT_RANGE = 300;
uint256 public constant SHARE_BASE = 100;
uint256 public constant SHARE_FOR_TRADER = 80;
uint256 public constant SHARE_FOR_LP = 10;
uint256 public constant SHARE_FOR_CNODE = 10;
uint256 public constant NAVPS_BASE = 1E18; // NAVPS (Net Asset Value Per Share), need accuracy
// make all of these constant, so we can reduce gas cost for swap features
uint256 public constant COFI_DECAY_PERIOD = 2400000; // LP pool yield decays for every 2,400,000 blocks
uint256 public constant THETA_FEE_UINIT = 1 ether;
uint256 public constant L_LIMIT = 100 ether;
uint256 public constant COFI_RATE_UPDATE_INTERVAL = 1000;
uint256 public constant EXPECT_YIELD_BASE = 10;
uint256 public constant L_BASE = 1000;
uint256 public constant THETA_BASE = 1000;
address public immutable cofiToken;
address public immutable factory;
// managed by governance
address public governance;
uint256 public EXPECT_YIELD_RATIO = 3; // r, 0.3
uint256 public L_RATIO = 2; // l, 0.002
uint256 public THETA = 2; // 0.002
uint256 public pendingRewardsForCNode;
mapping (address => CoFiRateCache) internal cofiRateCache;
mapping(address => uint256) public pendingRewardsForLP; // pair address to pending rewards amount
mapping (address => bool) public routerAllowed;
uint128 public lastMinedBlock; // last block mined cofi token
uint128 public lastDensity; // last mining density, see currentDensity()
modifier onlyGovernance() {
require(msg.sender == governance, "CVaultForTrader: !governance");
_;
}
constructor(address cofi, address _factory) public {
cofiToken = cofi;
factory = _factory;
governance = msg.sender;
}
/* setters for protocol governance */
function setGovernance(address _new) external override onlyGovernance {
governance = _new;
}
function setExpectedYieldRatio(uint256 r) external override onlyGovernance {
EXPECT_YIELD_RATIO = r;
}
function setLRatio(uint256 lRatio) external override onlyGovernance {
L_RATIO = lRatio;
}
function setTheta(uint256 theta) external override onlyGovernance {
THETA = theta;
}
function allowRouter(address router) external override onlyGovernance {
require(!routerAllowed[router], "CVaultForTrader: router allowed");
routerAllowed[router] = true;
emit RouterAllowed(router);
}
function disallowRouter(address router) external override onlyGovernance {
require(routerAllowed[router], "CVaultForTrader: router disallowed");
routerAllowed[router] = false;
emit RouterDisallowed(router);
}
function calcCoFiRate(uint256 bt_phi, uint256 xt, uint256 np) public override view returns (uint256 at) {
/*
at = (bt*phi)*2400000/(xt*np*0.3)
- at is CoFi yield per unit
- bt is the current CoFi rate of the specific XToken staking rewards pool
- xt is totalSupply of the specific XToken
- np is Net Asset Value Per Share for the specific XToken
- phi is the weight of the specific XToken staking rewards pool (x of 100)
- bt_phi is bt*phi, pool CoFi rate
e.g. (10*100/100) * 2400000 / (20000 * 1 * 0.3) = 4000
take decimal into account: (10*1e18 * 100/100) * 2400000 /( 20000*1e18 * 1e18/1e18 * 0.3 ) * 1e18 = 4000 * 1e18
*/
uint256 tvl = xt.mul(np).div(NAVPS_BASE); // total locked value represent in ETH
if (tvl < 20000 ether) {
tvl = 20000 ether; // minimum total locked value requirement
}
uint256 numerator = bt_phi.mul(COFI_DECAY_PERIOD).mul(1e18).mul(EXPECT_YIELD_BASE);
at = numerator.div(EXPECT_YIELD_RATIO).div(tvl);
}
// np need price, must be a param passing in
function currentCoFiRate(address pair, uint256 np) public override view returns (uint256) {
// get np from router
// get bt*phi from CoFiXVaultForLP: poolRate
// get q from CoFiXVaultForLP: poolCnt
// get xt from XToken.totalSupply: totalSupply
uint256 updatedBlock = cofiRateCache[pair].updatedBlock;
if (block.number.sub(updatedBlock) < COFI_RATE_UPDATE_INTERVAL && updatedBlock != 0) {
return cofiRateCache[pair].cofiRate;
}
address vaultForLP = ICoFiXFactory(factory).getVaultForLP();
require(vaultForLP != address(0), "CVaultForTrader: vaultForLP not set");
uint256 poolRate = ICoFiXVaultForLP(vaultForLP).currentPoolRateByPair(pair);
uint256 totalSupply = ICoFiXPair(pair).totalSupply();
return calcCoFiRate(poolRate, totalSupply, np);
}
// th = L * theta * at
function currentThreshold(address pair, uint256 np, uint256 cofiRate) public override view returns (uint256) {
// L = xt * np * (2/1000)
// - xt is totalSupply of the specific XToken
// - np is Net Asset Value Per Share for the specific XToken
// could use cache here but would need one more sload
uint256 totalSupply = ICoFiXPair(pair).totalSupply(); // nt, introduce one more call here
uint256 L = totalSupply.mul(np).mul(L_RATIO).div(L_BASE).div(NAVPS_BASE); // L = xt*np*(2/1000)
// L*theta*at is (L * theta * cofiRate), theta is 0.002, mul(2).div(1000)
// we may have different theta for different pairs in the future, but just use the constant here for gas reason
if (L < L_LIMIT) { // minimum L
L = L_LIMIT; // 100 ether * 0.002 = 0.2 ether
}
return L.mul(cofiRate).mul(THETA).div(THETA_BASE).div(THETA_FEE_UINIT);
}
function stdMiningRateAndAmount(
address pair,
uint256 np,
uint256 thetaFee
) public override view returns (
uint256 cofiRate,
uint256 stdAmount
) {
// thetaFee / THETA_FEE_UINIT * currentCoFiRate
cofiRate = currentCoFiRate(pair, np);
stdAmount = thetaFee.mul(cofiRate).div(THETA_FEE_UINIT);
return (cofiRate, stdAmount);
}
// s >= 300: f_t = yt * at, (yt * at is stdMiningAmount)
// s < 300: f_t = f_{t-1} * (300 - s) / 300 + yt * at
function calcDensity(uint256 _stdAmount) public override view returns (uint256) {
uint256 _last = lastMinedBlock;
uint256 _offset = block.number.sub(_last);
if (_offset >= RECENT_RANGE) {
return _stdAmount;
} else {
uint256 _lastDensity = lastDensity;
return _lastDensity.mul(RECENT_RANGE.sub(_offset)).div(RECENT_RANGE).add(_stdAmount);
}
}
function calcLambda(uint256 x, uint256 y) public override pure returns (uint256) {
// (0.1 0.33 3 10) => (10 33 300 1000)
uint256 ratio;
if (y == 0) {
ratio = 1000;
} else {
ratio = x.mul(LAMBDA_BASE).div(y);
}
if (ratio >= 1000) { // x/y >= 10, lambda = 0.25
return 25;
} else if (ratio >= 300) { // 3 <= x/y < 10, lambda = 0.5
return 50;
} else if (ratio >= 33) { // 0.33 <= x/y < 3, lambda = 1
return 100;
} else if (ratio >= 10) { // 0.1 <= x/y < 0.33, lambda = 2
return 200;
} else { // x/y < 0.1, lambda = 4
return 400;
}
}
function actualMiningAmountAndDensity(
address pair,
uint256 thetaFee,
uint256 x,
uint256 y,
uint256 np
) public override view returns (
uint256 amount,
uint256 density,
uint256 cofiRate
) {
uint256 stdAmount;
(cofiRate, stdAmount) = stdMiningRateAndAmount(pair, np, thetaFee);
density = calcDensity(stdAmount); // ft
uint256 lambda = calcLambda(x, y);
uint256 th = currentThreshold(pair, np, cofiRate); // threshold of mining rewards amount, L*theta*at
if (density <= th) {
// ft<=k, yt*at * lambda, yt is thetaFee, at is cofiRate
return (stdAmount.mul(lambda).div(LAMBDA_BASE), density, cofiRate);
}
// ft>=k: yt*at * L*theta*at * (2ft - L*theta*at) * lambda / (ft*ft), yt*at is stdAmount, L*theta*at is threshold
uint256 numerator = stdAmount.mul(th).mul(density.mul(2).sub(th)).mul(lambda);
return (numerator.div(density).div(density).div(LAMBDA_BASE), density, cofiRate);
}
function distributeReward(
address pair,
uint256 thetaFee,
uint256 x,
uint256 y,
uint256 np,
address rewardTo
) external override nonReentrant {
require(routerAllowed[msg.sender], "CVaultForTrader: not allowed router"); // caution: be careful when adding new router
require(pair != address(0), "CVaultForTrader: invalid pair");
require(rewardTo != address(0), "CVaultForTrader: invalid rewardTo");
uint256 amount;
{
uint256 density;
uint256 cofiRate;
(amount, density, cofiRate) = actualMiningAmountAndDensity(pair, thetaFee, x, y, np);
// gas saving, distributeReward is used in router::swap
require(density < 2**128, "CVaultForTrader: density overflow");
lastDensity = uint128(density); // safe convert from uint256 to uint128
lastMinedBlock = uint128(block.number); // uint128 is enough for block.number
uint128 updatedBlock = cofiRateCache[pair].updatedBlock; // sigh, one more sload here
if (block.number.sub(updatedBlock) >= COFI_RATE_UPDATE_INTERVAL || updatedBlock == 0) {
cofiRateCache[pair].updatedBlock = uint128(block.number); // enough for block number
cofiRateCache[pair].cofiRate = uint128(cofiRate); // almost impossible to overflow
}
}
{
uint256 amountForTrader = amount.mul(SHARE_FOR_TRADER).div(SHARE_BASE);
uint256 amountForLP = amount.mul(SHARE_FOR_LP).div(SHARE_BASE);
uint256 amountForCNode = amount.mul(SHARE_FOR_CNODE).div(SHARE_BASE);
ICoFiToken(cofiToken).mint(rewardTo, amountForTrader); // allows zero, send to receiver directly, reduce gas cost
pendingRewardsForLP[pair] = pendingRewardsForLP[pair].add(amountForLP); // possible key: token or pair, we use pair here
pendingRewardsForCNode = pendingRewardsForCNode.add(amountForCNode);
}
}
function clearPendingRewardOfCNode() external override nonReentrant {
address vaultForCNode = ICoFiXFactory(factory).getVaultForCNode();
require(msg.sender == vaultForCNode, "CVaultForTrader: only vaultForCNode"); // caution
// uint256 pending = pendingRewardsForCNode;
emit ClearPendingRewardOfCNode(pendingRewardsForCNode);
pendingRewardsForCNode = 0; // take all, set to 0
// ICoFiToken(cofiToken).mint(msg.sender, pending); // no need to mint from here, we can mint directly in valult
}
// vaultForLP should ensure passing the correct pair address
function clearPendingRewardOfLP(address pair) external override nonReentrant {
address vaultForLP = ICoFiXFactory(factory).getVaultForLP();
require(msg.sender == vaultForLP, "CVaultForTrader: only vaultForLP"); // caution
emit ClearPendingRewardOfLP(pendingRewardsForLP[pair]);
pendingRewardsForLP[pair] = 0; // take all, set to 0
// ICoFiToken(cofiToken).mint(to, pending); // no need to mint from here, we can mint directly in valult
}
function getPendingRewardOfCNode() external override view returns (uint256) {
return pendingRewardsForCNode;
}
function getPendingRewardOfLP(address pair) external override view returns (uint256) {
return pendingRewardsForLP[pair];
}
function getCoFiRateCache(address pair) external override view returns (uint256 cofiRate, uint256 updatedBlock) {
return (cofiRateCache[pair].cofiRate, cofiRateCache[pair].updatedBlock);
}
}
{
"compilationTarget": {
"CoFiXVaultForTrader.sol": "CoFiXVaultForTrader"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 6666
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"cofi","type":"address"},{"internalType":"address","name":"_factory","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"pendingAmount","type":"uint256"}],"name":"ClearPendingRewardOfCNode","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"pendingAmount","type":"uint256"}],"name":"ClearPendingRewardOfLP","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"router","type":"address"}],"name":"RouterAllowed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"router","type":"address"}],"name":"RouterDisallowed","type":"event"},{"inputs":[],"name":"COFI_DECAY_PERIOD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"COFI_RATE_UPDATE_INTERVAL","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"EXPECT_YIELD_BASE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"EXPECT_YIELD_RATIO","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"LAMBDA_BASE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"L_BASE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"L_LIMIT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"L_RATIO","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"NAVPS_BASE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RATE_BASE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RECENT_RANGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SHARE_BASE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SHARE_FOR_CNODE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SHARE_FOR_LP","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SHARE_FOR_TRADER","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"THETA","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"THETA_BASE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"THETA_FEE_UINIT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pair","type":"address"},{"internalType":"uint256","name":"thetaFee","type":"uint256"},{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"},{"internalType":"uint256","name":"np","type":"uint256"}],"name":"actualMiningAmountAndDensity","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"density","type":"uint256"},{"internalType":"uint256","name":"cofiRate","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"router","type":"address"}],"name":"allowRouter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"bt_phi","type":"uint256"},{"internalType":"uint256","name":"xt","type":"uint256"},{"internalType":"uint256","name":"np","type":"uint256"}],"name":"calcCoFiRate","outputs":[{"internalType":"uint256","name":"at","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_stdAmount","type":"uint256"}],"name":"calcDensity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"name":"calcLambda","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"clearPendingRewardOfCNode","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"pair","type":"address"}],"name":"clearPendingRewardOfLP","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"cofiToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pair","type":"address"},{"internalType":"uint256","name":"np","type":"uint256"}],"name":"currentCoFiRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pair","type":"address"},{"internalType":"uint256","name":"np","type":"uint256"},{"internalType":"uint256","name":"cofiRate","type":"uint256"}],"name":"currentThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"router","type":"address"}],"name":"disallowRouter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"pair","type":"address"},{"internalType":"uint256","name":"thetaFee","type":"uint256"},{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"},{"internalType":"uint256","name":"np","type":"uint256"},{"internalType":"address","name":"rewardTo","type":"address"}],"name":"distributeReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pair","type":"address"}],"name":"getCoFiRateCache","outputs":[{"internalType":"uint256","name":"cofiRate","type":"uint256"},{"internalType":"uint256","name":"updatedBlock","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPendingRewardOfCNode","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pair","type":"address"}],"name":"getPendingRewardOfLP","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"governance","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastDensity","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastMinedBlock","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingRewardsForCNode","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"pendingRewardsForLP","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"routerAllowed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"r","type":"uint256"}],"name":"setExpectedYieldRatio","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_new","type":"address"}],"name":"setGovernance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"lRatio","type":"uint256"}],"name":"setLRatio","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"theta","type":"uint256"}],"name":"setTheta","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"pair","type":"address"},{"internalType":"uint256","name":"np","type":"uint256"},{"internalType":"uint256","name":"thetaFee","type":"uint256"}],"name":"stdMiningRateAndAmount","outputs":[{"internalType":"uint256","name":"cofiRate","type":"uint256"},{"internalType":"uint256","name":"stdAmount","type":"uint256"}],"stateMutability":"view","type":"function"}]