// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
assembly {
size := extcodesize(account)
}
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
import {Vault} from "../libraries/Vault.sol";
interface IRibbonThetaVault {
function currentOption() external view returns (address);
function nextOption() external view returns (address);
function vaultParams() external view returns (Vault.VaultParams memory);
function vaultState() external view returns (Vault.VaultState memory);
function optionState() external view returns (Vault.OptionState memory);
function optionAuctionID() external view returns (uint256);
function pricePerShare() external view returns (uint256);
function roundPricePerShare(uint256) external view returns (uint256);
function depositFor(uint256 amount, address creditor) external;
function initiateWithdraw(uint256 numShares) external;
function completeWithdraw() external;
function maxRedeem() external;
function depositYieldTokenFor(uint256 amount, address creditor) external;
function symbol() external view returns (string calldata);
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
interface IVaultPauser {
/// @notice pause vault position of an account with max amount
/// @param _account the address of user
/// @param _amount amount of shares
function pausePosition(address _account, uint256 _amount) external;
/// @notice resume vault position of an account with max amount
/// @param _vaultAddress the address of vault
function resumePosition(address _vaultAddress) external;
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
interface IWETH {
function deposit() external payable;
function withdraw(uint256) external;
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount)
external
returns (bool);
function allowance(address owner, address spender)
external
view
returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
function decimals() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_setOwner(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_setOwner(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_setOwner(newOwner);
}
function _setOwner(address newOwner) private {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {
SafeERC20
} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {IVaultPauser} from "../../interfaces/IVaultPauser.sol";
import {Vault} from "../../libraries/Vault.sol";
import {IRibbonThetaVault} from "../../interfaces/IRibbonThetaVault.sol";
import {IWETH} from "../../interfaces/IWETH.sol";
import {ShareMath} from "../../libraries/ShareMath.sol";
contract RibbonVaultPauser is Ownable, IVaultPauser {
using SafeERC20 for IERC20;
/************************************************
* NON UPGRADEABLE STORAGE
***********************************************/
/// @notice Stores all the vault's paused positions
struct PauseReceipt {
uint16 round;
uint128 shares;
}
mapping(address => mapping(address => PauseReceipt)) public pausedPositions;
mapping(address => bool) private registeredVaults;
/************************************************
* IMMUTABLES & CONSTANTS
***********************************************/
/// @notice WETH9 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2
address public immutable WETH;
address public immutable STETH;
address public immutable STETH_VAULT;
address public keeper;
/************************************************
* EVENTS
***********************************************/
event Pause(
address indexed account,
address indexed vaultAddress,
uint256 share,
uint256 round
);
event Resume(
address indexed account,
address indexed vaultAddress,
uint256 withdrawAmount
);
event ProcessWithdrawal(address indexed vaultAddress, uint256 round);
/************************************************
* CONSTRUCTOR & INITIALIZATION
***********************************************/
/**
* @notice Initializes the contract with immutable variables
*/
constructor(
address _keeper,
address _weth,
address _steth,
address _steth_vault
) {
require(_keeper != address(0), "!_keeper");
require(_weth != address(0), "!_weth");
require(_steth != address(0), "!_steth");
require(_steth_vault != address(0), "!_steth_vault");
keeper = _keeper;
WETH = _weth;
STETH = _steth;
STETH_VAULT = _steth_vault;
}
/**
* @dev Throws if called by any account other than the keeper.
*/
modifier onlyKeeper() {
require(msg.sender == keeper, "!keeper");
_;
}
/************************************************
* GETTERS
***********************************************/
function getPausePosition(address _vaultAddress, address _userAddress)
external
view
returns (PauseReceipt memory)
{
return pausedPositions[_vaultAddress][_userAddress];
}
/************************************************
* SETTERS
***********************************************/
/**
* @notice Sets the new keeper
* @param _newKeeper is the address of the new keeper
*/
function setNewKeeper(address _newKeeper) external onlyOwner {
require(_newKeeper != address(0), "!newKeeper");
keeper = _newKeeper;
}
/**
* @notice add vault into registered vaults
* @param _vaultAddress is the address of the new vault to be registered
*/
function addVault(address _vaultAddress) external onlyOwner {
registeredVaults[_vaultAddress] = true;
}
/************************************************
* VAULT OPERATIONS
***********************************************/
/**
* @notice pause position from vault by redeem all the shares from vault to Pauser
* @param _account user's address
* @param _amount the amount of shares
*/
function pausePosition(address _account, uint256 _amount)
external
override
{
address currentVaultAddress = msg.sender;
IRibbonThetaVault currentVault = IRibbonThetaVault(currentVaultAddress);
// check if vault is registered
require(
registeredVaults[currentVaultAddress],
"Vault is not registered"
);
PauseReceipt storage pausedPosition =
pausedPositions[currentVaultAddress][_account];
// check if position is paused
require(
pausedPosition.shares == 0 && pausedPosition.round == 0,
"Position is paused"
);
uint16 round = currentVault.vaultState().round;
require(_amount < type(uint128).max, "_amount overflow");
pausedPositions[currentVaultAddress][_account] = PauseReceipt({
round: round,
shares: uint128(_amount)
});
emit Pause(_account, currentVaultAddress, _amount, round);
// transfer from user to pauser
IERC20(currentVaultAddress).safeTransferFrom(
_account,
address(this),
_amount
);
currentVault.initiateWithdraw(_amount);
}
/**
* @notice resume user's position into vault by making a deposit
* @param _vaultAddress vault's address
*/
function resumePosition(address _vaultAddress) external override {
IRibbonThetaVault currentVault = IRibbonThetaVault(_vaultAddress);
// check if vault is registered
require(registeredVaults[_vaultAddress], "Vault is not registered");
// get params and round
Vault.VaultParams memory currentParams = currentVault.vaultParams();
uint256 round = currentVault.vaultState().round;
PauseReceipt storage pauseReceipt =
pausedPositions[_vaultAddress][msg.sender];
uint256 pauseReceiptRound = pauseReceipt.round;
// check if roun is closed before resuming position
require(pauseReceiptRound < round, "Round not closed yet");
uint256 totalWithdrawAmount =
ShareMath.sharesToAsset(
pauseReceipt.shares,
currentVault.roundPricePerShare(pauseReceiptRound),
currentParams.decimals
);
// delete position once transfer (revert to zero)
delete pausedPositions[_vaultAddress][msg.sender];
// stETH transfers suffer from an off-by-1 error
// since we received STETH , we shall deposit using STETH instead of ETH
if (_vaultAddress == STETH_VAULT) {
totalWithdrawAmount = totalWithdrawAmount - 3;
emit Resume(msg.sender, _vaultAddress, totalWithdrawAmount - 1);
IERC20(STETH).safeApprove(_vaultAddress, totalWithdrawAmount);
currentVault.depositYieldTokenFor(totalWithdrawAmount, msg.sender);
} else {
emit Resume(msg.sender, _vaultAddress, totalWithdrawAmount);
// if asset is ETH, we will convert it into WETH before depositing
if (currentParams.asset == WETH) {
IWETH(WETH).deposit{value: totalWithdrawAmount}();
}
IERC20(currentParams.asset).safeApprove(
_vaultAddress,
totalWithdrawAmount
);
currentVault.depositFor(totalWithdrawAmount, msg.sender);
}
}
/**
* @notice process withdrawals by completing in a batch
* @param _vaultAddress vault's address to be processed
*/
function processWithdrawal(address _vaultAddress) external onlyKeeper {
IRibbonThetaVault currentVault = IRibbonThetaVault(_vaultAddress);
// we can only process withdrawal after closing the previous round
// hence round should be - 1
emit ProcessWithdrawal(
_vaultAddress,
currentVault.vaultState().round - 1
);
currentVault.completeWithdraw();
}
fallback() external payable {}
receive() external payable {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is no longer needed starting with Solidity 0.8. The compiler
* now has built in overflow checking.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
import {SafeMath} from "@openzeppelin/contracts/utils/math/SafeMath.sol";
import {Vault} from "./Vault.sol";
library ShareMath {
using SafeMath for uint256;
uint256 internal constant PLACEHOLDER_UINT = 1;
function assetToShares(
uint256 assetAmount,
uint256 assetPerShare,
uint256 decimals
) internal pure returns (uint256) {
// If this throws, it means that vault's roundPricePerShare[currentRound] has not been set yet
// which should never happen.
// Has to be larger than 1 because `1` is used in `initRoundPricePerShares` to prevent cold writes.
require(assetPerShare > PLACEHOLDER_UINT, "Invalid assetPerShare");
return assetAmount.mul(10**decimals).div(assetPerShare);
}
function sharesToAsset(
uint256 shares,
uint256 assetPerShare,
uint256 decimals
) internal pure returns (uint256) {
// If this throws, it means that vault's roundPricePerShare[currentRound] has not been set yet
// which should never happen.
// Has to be larger than 1 because `1` is used in `initRoundPricePerShares` to prevent cold writes.
require(assetPerShare > PLACEHOLDER_UINT, "Invalid assetPerShare");
return shares.mul(assetPerShare).div(10**decimals);
}
/**
* @notice Returns the shares unredeemed by the user given their DepositReceipt
* @param depositReceipt is the user's deposit receipt
* @param currentRound is the `round` stored on the vault
* @param assetPerShare is the price in asset per share
* @param decimals is the number of decimals the asset/shares use
* @return unredeemedShares is the user's virtual balance of shares that are owed
*/
function getSharesFromReceipt(
Vault.DepositReceipt memory depositReceipt,
uint256 currentRound,
uint256 assetPerShare,
uint256 decimals
) internal pure returns (uint256 unredeemedShares) {
if (depositReceipt.round > 0 && depositReceipt.round < currentRound) {
uint256 sharesFromRound =
assetToShares(depositReceipt.amount, assetPerShare, decimals);
return
uint256(depositReceipt.unredeemedShares).add(sharesFromRound);
}
return depositReceipt.unredeemedShares;
}
function pricePerShare(
uint256 totalSupply,
uint256 totalBalance,
uint256 pendingAmount,
uint256 decimals
) internal pure returns (uint256) {
uint256 singleShare = 10**decimals;
return
totalSupply > 0
? singleShare.mul(totalBalance.sub(pendingAmount)).div(
totalSupply
)
: singleShare;
}
/************************************************
* HELPERS
***********************************************/
function assertUint104(uint256 num) internal pure {
require(num <= type(uint104).max, "Overflow uint104");
}
function assertUint128(uint256 num) internal pure {
require(num <= type(uint128).max, "Overflow uint128");
}
}
// SPDX-License-Identifier: MIT
pragma solidity =0.8.4;
library Vault {
/************************************************
* IMMUTABLES & CONSTANTS
***********************************************/
// Fees are 6-decimal places. For example: 20 * 10**6 = 20%
uint256 internal constant FEE_MULTIPLIER = 10**6;
// Premium discount has 1-decimal place. For example: 80 * 10**1 = 80%. Which represents a 20% discount.
uint256 internal constant PREMIUM_DISCOUNT_MULTIPLIER = 10;
// Otokens have 8 decimal places.
uint256 internal constant OTOKEN_DECIMALS = 8;
// Percentage of funds allocated to options is 2 decimal places. 10 * 10**2 = 10%
uint256 internal constant OPTION_ALLOCATION_MULTIPLIER = 10**2;
// Placeholder uint value to prevent cold writes
uint256 internal constant PLACEHOLDER_UINT = 1;
struct VaultParams {
// Option type the vault is selling
bool isPut;
// Token decimals for vault shares
uint8 decimals;
// Asset used in Theta / Delta Vault
address asset;
// Underlying asset of the options sold by vault
address underlying;
// Minimum supply of the vault shares issued, for ETH it's 10**10
uint56 minimumSupply;
// Vault cap
uint104 cap;
}
struct OptionState {
// Option that the vault is shorting / longing in the next cycle
address nextOption;
// Option that the vault is currently shorting / longing
address currentOption;
// The timestamp when the `nextOption` can be used by the vault
uint32 nextOptionReadyAt;
}
struct VaultState {
// 32 byte slot 1
// Current round number. `round` represents the number of `period`s elapsed.
uint16 round;
// Amount that is currently locked for selling options
uint104 lockedAmount;
// Amount that was locked for selling options in the previous round
// used for calculating performance fee deduction
uint104 lastLockedAmount;
// 32 byte slot 2
// Stores the total tally of how much of `asset` there is
// to be used to mint rTHETA tokens
uint128 totalPending;
// Total amount of queued withdrawal shares from previous rounds (doesn't include the current round)
uint128 queuedWithdrawShares;
}
struct DepositReceipt {
// Maximum of 65535 rounds. Assuming 1 round is 7 days, maximum is 1256 years.
uint16 round;
// Deposit amount, max 20,282,409,603,651 or 20 trillion ETH deposit
uint104 amount;
// Unredeemed shares balance
uint128 unredeemedShares;
}
struct Withdrawal {
// Maximum of 65535 rounds. Assuming 1 round is 7 days, maximum is 1256 years.
uint16 round;
// Number of shares withdrawn
uint128 shares;
}
struct AuctionSellOrder {
// Amount of `asset` token offered in auction
uint96 sellAmount;
// Amount of oToken requested in auction
uint96 buyAmount;
// User Id of delta vault in latest gnosis auction
uint64 userId;
}
}
{
"compilationTarget": {
"contracts/vaults/VaultPauser/RibbonVaultPauser.sol": "RibbonVaultPauser"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_keeper","type":"address"},{"internalType":"address","name":"_weth","type":"address"},{"internalType":"address","name":"_steth","type":"address"},{"internalType":"address","name":"_steth_vault","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"vaultAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"share","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"round","type":"uint256"}],"name":"Pause","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vaultAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"round","type":"uint256"}],"name":"ProcessWithdrawal","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"vaultAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"withdrawAmount","type":"uint256"}],"name":"Resume","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"STETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"STETH_VAULT","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_vaultAddress","type":"address"}],"name":"addVault","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_vaultAddress","type":"address"},{"internalType":"address","name":"_userAddress","type":"address"}],"name":"getPausePosition","outputs":[{"components":[{"internalType":"uint16","name":"round","type":"uint16"},{"internalType":"uint128","name":"shares","type":"uint128"}],"internalType":"struct RibbonVaultPauser.PauseReceipt","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"keeper","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_account","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"pausePosition","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"pausedPositions","outputs":[{"internalType":"uint16","name":"round","type":"uint16"},{"internalType":"uint128","name":"shares","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_vaultAddress","type":"address"}],"name":"processWithdrawal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_vaultAddress","type":"address"}],"name":"resumePosition","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newKeeper","type":"address"}],"name":"setNewKeeper","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]