账户
0xe0...ea79
0xe0...eA79

0xe0...eA79

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.5.17+commit.d19bba13
语言
Solidity
合同源代码
文件 1 的 1:EthCrossChainManager.sol
pragma solidity ^0.5.0;
pragma experimental ABIEncoderV2;

library Utils {

    /* @notice      Convert the bytes array to bytes32 type, the bytes array length must be 32
    *  @param _bs   Source bytes array
    *  @return      bytes32
    */
    function bytesToBytes32(bytes memory _bs) internal pure returns (bytes32 value) {
        require(_bs.length == 32, "bytes length is not 32.");
        assembly {
            // load 32 bytes from memory starting from position _bs + 0x20 since the first 0x20 bytes stores _bs length
            value := mload(add(_bs, 0x20))
        }
    }

    /* @notice      Convert bytes to uint256
    *  @param _b    Source bytes should have length of 32
    *  @return      uint256
    */
    function bytesToUint256(bytes memory _bs) internal pure returns (uint256 value) {
        require(_bs.length == 32, "bytes length is not 32.");
        assembly {
            // load 32 bytes from memory starting from position _bs + 32
            value := mload(add(_bs, 0x20))
        }
        require(value <= 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, "Value exceeds the range");
    }

    /* @notice      Convert uint256 to bytes
    *  @param _b    uint256 that needs to be converted
    *  @return      bytes
    */
    function uint256ToBytes(uint256 _value) internal pure returns (bytes memory bs) {
        require(_value <= 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, "Value exceeds the range");
        assembly {
            // Get a location of some free memory and store it in result as
            // Solidity does for memory variables.
            bs := mload(0x40)
            // Put 0x20 at the first word, the length of bytes for uint256 value
            mstore(bs, 0x20)
            //In the next word, put value in bytes format to the next 32 bytes
            mstore(add(bs, 0x20), _value)
            // Update the free-memory pointer by padding our last write location to 32 bytes
            mstore(0x40, add(bs, 0x40))
        }
    }

    /* @notice      Convert bytes to address
    *  @param _bs   Source bytes: bytes length must be 20
    *  @return      Converted address from source bytes
    */
    function bytesToAddress(bytes memory _bs) internal pure returns (address addr)
    {
        require(_bs.length == 20, "bytes length does not match address");
        assembly {
            // for _bs, first word store _bs.length, second word store _bs.value
            // load 32 bytes from mem[_bs+20], convert it into Uint160, meaning we take last 20 bytes as addr (address).
            addr := mload(add(_bs, 0x14))
        }

    }
    
    /* @notice      Convert address to bytes
    *  @param _addr Address need to be converted
    *  @return      Converted bytes from address
    */
    function addressToBytes(address _addr) internal pure returns (bytes memory bs){
        assembly {
            // Get a location of some free memory and store it in result as
            // Solidity does for memory variables.
            bs := mload(0x40)
            // Put 20 (address byte length) at the first word, the length of bytes for uint256 value
            mstore(bs, 0x14)
            // logical shift left _a by 12 bytes, change _a from right-aligned to left-aligned
            mstore(add(bs, 0x20), shl(96, _addr))
            // Update the free-memory pointer by padding our last write location to 32 bytes
            mstore(0x40, add(bs, 0x40))
       }
    }

    /* @notice          Do hash leaf as the multi-chain does
    *  @param _data     Data in bytes format
    *  @return          Hashed value in bytes32 format
    */
    function hashLeaf(bytes memory _data) internal pure returns (bytes32 result)  {
        result = sha256(abi.encodePacked(byte(0x0), _data));
    }

    /* @notice          Do hash children as the multi-chain does
    *  @param _l        Left node
    *  @param _r        Right node
    *  @return          Hashed value in bytes32 format
    */
    function hashChildren(bytes32 _l, bytes32  _r) internal pure returns (bytes32 result)  {
        result = sha256(abi.encodePacked(bytes1(0x01), _l, _r));
    }

    /* @notice              Compare if two bytes are equal, which are in storage and memory, seperately
                            Refer from https://github.com/summa-tx/bitcoin-spv/blob/master/solidity/contracts/BytesLib.sol#L368
    *  @param _preBytes     The bytes stored in storage
    *  @param _postBytes    The bytes stored in memory
    *  @return              Bool type indicating if they are equal
    */
    function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
        bool success = true;

        assembly {
            // we know _preBytes_offset is 0
            let fslot := sload(_preBytes_slot)
            // Arrays of 31 bytes or less have an even value in their slot,
            // while longer arrays have an odd value. The actual length is
            // the slot divided by two for odd values, and the lowest order
            // byte divided by two for even values.
            // If the slot is even, bitwise and the slot with 255 and divide by
            // two to get the length. If the slot is odd, bitwise and the slot
            // with -1 and divide by two.
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)

            // if lengths don't match the arrays are not equal
            switch eq(slength, mlength)
            case 1 {
                // fslot can contain both the length and contents of the array
                // if slength < 32 bytes so let's prepare for that
                // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                // slength != 0
                if iszero(iszero(slength)) {
                    switch lt(slength, 32)
                    case 1 {
                        // blank the last byte which is the length
                        fslot := mul(div(fslot, 0x100), 0x100)

                        if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                            // unsuccess:
                            success := 0
                        }
                    }
                    default {
                        // cb is a circuit breaker in the for loop since there's
                        //  no said feature for inline assembly loops
                        // cb = 1 - don't breaker
                        // cb = 0 - break
                        let cb := 1

                        // get the keccak hash to get the contents of the array
                        mstore(0x0, _preBytes_slot)
                        let sc := keccak256(0x0, 0x20)

                        let mc := add(_postBytes, 0x20)
                        let end := add(mc, mlength)

                        // the next line is the loop condition:
                        // while(uint(mc < end) + cb == 2)
                        for {} eq(add(lt(mc, end), cb), 2) {
                            sc := add(sc, 1)
                            mc := add(mc, 0x20)
                        } {
                            if iszero(eq(sload(sc), mload(mc))) {
                                // unsuccess:
                                success := 0
                                cb := 0
                            }
                        }
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }

    /* @notice              Slice the _bytes from _start index till the result has length of _length
                            Refer from https://github.com/summa-tx/bitcoin-spv/blob/master/solidity/contracts/BytesLib.sol#L246
    *  @param _bytes        The original bytes needs to be sliced
    *  @param _start        The index of _bytes for the start of sliced bytes
    *  @param _length       The index of _bytes for the end of sliced bytes
    *  @return              The sliced bytes
    */
    function slice(
        bytes memory _bytes,
        uint _start,
        uint _length
    )
        internal
        pure
        returns (bytes memory)
    {
        require(_bytes.length >= (_start + _length));

        bytes memory tempBytes;

        assembly {
            switch iszero(_length)
            case 0 {
                // Get a location of some free memory and store it in tempBytes as
                // Solidity does for memory variables.
                tempBytes := mload(0x40)

                // The first word of the slice result is potentially a partial
                // word read from the original array. To read it, we calculate
                // the length of that partial word and start copying that many
                // bytes into the array. The first word we copy will start with
                // data we don't care about, but the last `lengthmod` bytes will
                // land at the beginning of the contents of the new array. When
                // we're done copying, we overwrite the full first word with
                // the actual length of the slice.
                // lengthmod <= _length % 32
                let lengthmod := and(_length, 31)

                // The multiplication in the next line is necessary
                // because when slicing multiples of 32 bytes (lengthmod == 0)
                // the following copy loop was copying the origin's length
                // and then ending prematurely not copying everything it should.
                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                let end := add(mc, _length)

                for {
                    // The multiplication in the next line has the same exact purpose
                    // as the one above.
                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                } lt(mc, end) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    mstore(mc, mload(cc))
                }

                mstore(tempBytes, _length)

                //update free-memory pointer
                //allocating the array padded to 32 bytes like the compiler does now
                mstore(0x40, and(add(mc, 31), not(31)))
            }
            //if we want a zero-length slice let's just return a zero-length array
            default {
                tempBytes := mload(0x40)

                mstore(0x40, add(tempBytes, 0x20))
            }
        }

        return tempBytes;
    }
    /* @notice              Check if the elements number of _signers within _keepers array is no less than _m
    *  @param _keepers      The array consists of serveral address
    *  @param _signers      Some specific addresses to be looked into
    *  @param _m            The number requirement paramter
    *  @return              True means containment, false meansdo do not contain.
    */
    function containMAddresses(address[] memory _keepers, address[] memory _signers, uint _m) internal pure returns (bool){
        uint m = 0;
        for(uint i = 0; i < _signers.length; i++){
            for (uint j = 0; j < _keepers.length; j++) {
                if (_signers[i] == _keepers[j]) {
                    m++;
                    delete _keepers[j];
                }
            }
        }
        return m >= _m;
    }

    /* @notice              TODO
    *  @param key
    *  @return
    */
    function compressMCPubKey(bytes memory key) internal pure returns (bytes memory newkey) {
         require(key.length >= 67, "key lenggh is too short");
         newkey = slice(key, 0, 35);
         if (uint8(key[66]) % 2 == 0){
             newkey[2] = byte(0x02);
         } else {
             newkey[2] = byte(0x03);
         }
         return newkey;
    }
    
    /**
     * @dev Returns true if `account` is a contract.
     *      Refer from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Address.sol#L18
     *
     * This test is non-exhaustive, and there may be false-negatives: during the
     * execution of a contract's constructor, its address will be reported as
     * not containing a contract.
     *
     * IMPORTANT: It is unsafe to assume that an address for which this
     * function returns false is an externally-owned account (EOA) and not a
     * contract.
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies in extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
        // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
        // for accounts without code, i.e. `keccak256('')`
        bytes32 codehash;
        bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
        // solhint-disable-next-line no-inline-assembly
        assembly { codehash := extcodehash(account) }
        return (codehash != 0x0 && codehash != accountHash);
    }
}
/**
 * @dev Wrappers over encoding and serialization operation into bytes from bassic types in Solidity for PolyNetwork cross chain utility.
 *
 * Encode basic types in Solidity into bytes easily. It's designed to be used 
 * for PolyNetwork cross chain application, and the encoding rules on Ethereum chain 
 * and the decoding rules on other chains should be consistent. Here we  
 * follow the underlying serialization rule with implementation found here: 
 * https://github.com/polynetwork/poly/blob/master/common/zero_copy_sink.go
 *
 * Using this library instead of the unchecked serialization method can help reduce
 * the risk of serious bugs and handfule, so it's recommended to use it.
 *
 * Please note that risk can be minimized, yet not eliminated.
 */
library ZeroCopySink {
    /* @notice          Convert boolean value into bytes
    *  @param b         The boolean value
    *  @return          Converted bytes array
    */
    function WriteBool(bool b) internal pure returns (bytes memory) {
        bytes memory buff;
        assembly{
            buff := mload(0x40)
            mstore(buff, 1)
            switch iszero(b)
            case 1 {
                mstore(add(buff, 0x20), shl(248, 0x00))
                // mstore8(add(buff, 0x20), 0x00)
            }
            default {
                mstore(add(buff, 0x20), shl(248, 0x01))
                // mstore8(add(buff, 0x20), 0x01)
            }
            mstore(0x40, add(buff, 0x21))
        }
        return buff;
    }

    /* @notice          Convert byte value into bytes
    *  @param b         The byte value
    *  @return          Converted bytes array
    */
    function WriteByte(byte b) internal pure returns (bytes memory) {
        return WriteUint8(uint8(b));
    }

    /* @notice          Convert uint8 value into bytes
    *  @param v         The uint8 value
    *  @return          Converted bytes array
    */
    function WriteUint8(uint8 v) internal pure returns (bytes memory) {
        bytes memory buff;
        assembly{
            buff := mload(0x40)
            mstore(buff, 1)
            mstore(add(buff, 0x20), shl(248, v))
            // mstore(add(buff, 0x20), byte(0x1f, v))
            mstore(0x40, add(buff, 0x21))
        }
        return buff;
    }

    /* @notice          Convert uint16 value into bytes
    *  @param v         The uint16 value
    *  @return          Converted bytes array
    */
    function WriteUint16(uint16 v) internal pure returns (bytes memory) {
        bytes memory buff;

        assembly{
            buff := mload(0x40)
            let byteLen := 0x02
            mstore(buff, byteLen)
            for {
                let mindex := 0x00
                let vindex := 0x1f
            } lt(mindex, byteLen) {
                mindex := add(mindex, 0x01)
                vindex := sub(vindex, 0x01)
            }{
                mstore8(add(add(buff, 0x20), mindex), byte(vindex, v))
            }
            mstore(0x40, add(buff, 0x22))
        }
        return buff;
    }
    
    /* @notice          Convert uint32 value into bytes
    *  @param v         The uint32 value
    *  @return          Converted bytes array
    */
    function WriteUint32(uint32 v) internal pure returns(bytes memory) {
        bytes memory buff;
        assembly{
            buff := mload(0x40)
            let byteLen := 0x04
            mstore(buff, byteLen)
            for {
                let mindex := 0x00
                let vindex := 0x1f
            } lt(mindex, byteLen) {
                mindex := add(mindex, 0x01)
                vindex := sub(vindex, 0x01)
            }{
                mstore8(add(add(buff, 0x20), mindex), byte(vindex, v))
            }
            mstore(0x40, add(buff, 0x24))
        }
        return buff;
    }

    /* @notice          Convert uint64 value into bytes
    *  @param v         The uint64 value
    *  @return          Converted bytes array
    */
    function WriteUint64(uint64 v) internal pure returns(bytes memory) {
        bytes memory buff;

        assembly{
            buff := mload(0x40)
            let byteLen := 0x08
            mstore(buff, byteLen)
            for {
                let mindex := 0x00
                let vindex := 0x1f
            } lt(mindex, byteLen) {
                mindex := add(mindex, 0x01)
                vindex := sub(vindex, 0x01)
            }{
                mstore8(add(add(buff, 0x20), mindex), byte(vindex, v))
            }
            mstore(0x40, add(buff, 0x28))
        }
        return buff;
    }

    /* @notice          Convert limited uint256 value into bytes
    *  @param v         The uint256 value
    *  @return          Converted bytes array
    */
    function WriteUint255(uint256 v) internal pure returns (bytes memory) {
        require(v <= 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, "Value exceeds uint255 range");
        bytes memory buff;

        assembly{
            buff := mload(0x40)
            let byteLen := 0x20
            mstore(buff, byteLen)
            for {
                let mindex := 0x00
                let vindex := 0x1f
            } lt(mindex, byteLen) {
                mindex := add(mindex, 0x01)
                vindex := sub(vindex, 0x01)
            }{
                mstore8(add(add(buff, 0x20), mindex), byte(vindex, v))
            }
            mstore(0x40, add(buff, 0x40))
        }
        return buff;
    }

    /* @notice          Encode bytes format data into bytes
    *  @param data      The bytes array data
    *  @return          Encoded bytes array
    */
    function WriteVarBytes(bytes memory data) internal pure returns (bytes memory) {
        uint64 l = uint64(data.length);
        return abi.encodePacked(WriteVarUint(l), data);
    }

    function WriteVarUint(uint64 v) internal pure returns (bytes memory) {
        if (v < 0xFD){
    		return WriteUint8(uint8(v));
    	} else if (v <= 0xFFFF) {
    		return abi.encodePacked(WriteByte(0xFD), WriteUint16(uint16(v)));
    	} else if (v <= 0xFFFFFFFF) {
            return abi.encodePacked(WriteByte(0xFE), WriteUint32(uint32(v)));
    	} else {
    		return abi.encodePacked(WriteByte(0xFF), WriteUint64(uint64(v)));
    	}
    }
}
/**
 * @dev Wrappers over decoding and deserialization operation from bytes into bassic types in Solidity for PolyNetwork cross chain utility.
 *
 * Decode into basic types in Solidity from bytes easily. It's designed to be used 
 * for PolyNetwork cross chain application, and the decoding rules on Ethereum chain 
 * and the encoding rule on other chains should be consistent, and . Here we
 * follow the underlying deserialization rule with implementation found here: 
 * https://github.com/polynetwork/poly/blob/master/common/zero_copy_source.go
 *
 * Using this library instead of the unchecked serialization method can help reduce
 * the risk of serious bugs and handfule, so it's recommended to use it.
 *
 * Please note that risk can be minimized, yet not eliminated.
 */
library ZeroCopySource {
    /* @notice              Read next byte as boolean type starting at offset from buff
    *  @param buff          Source bytes array
    *  @param offset        The position from where we read the boolean value
    *  @return              The the read boolean value and new offset
    */
    function NextBool(bytes memory buff, uint256 offset) internal pure returns(bool, uint256) {
        require(offset + 1 <= buff.length && offset < offset + 1, "Offset exceeds limit");
        // byte === bytes1
        byte v;
        assembly{
            v := mload(add(add(buff, 0x20), offset))
        }
        bool value;
        if (v == 0x01) {
		    value = true;
    	} else if (v == 0x00) {
            value = false;
        } else {
            revert("NextBool value error");
        }
        return (value, offset + 1);
    }

    /* @notice              Read next byte starting at offset from buff
    *  @param buff          Source bytes array
    *  @param offset        The position from where we read the byte value
    *  @return              The read byte value and new offset
    */
    function NextByte(bytes memory buff, uint256 offset) internal pure returns (byte, uint256) {
        require(offset + 1 <= buff.length && offset < offset + 1, "NextByte, Offset exceeds maximum");
        byte v;
        assembly{
            v := mload(add(add(buff, 0x20), offset))
        }
        return (v, offset + 1);
    }

    /* @notice              Read next byte as uint8 starting at offset from buff
    *  @param buff          Source bytes array
    *  @param offset        The position from where we read the byte value
    *  @return              The read uint8 value and new offset
    */
    function NextUint8(bytes memory buff, uint256 offset) internal pure returns (uint8, uint256) {
        require(offset + 1 <= buff.length && offset < offset + 1, "NextUint8, Offset exceeds maximum");
        uint8 v;
        assembly{
            let tmpbytes := mload(0x40)
            let bvalue := mload(add(add(buff, 0x20), offset))
            mstore8(tmpbytes, byte(0, bvalue))
            mstore(0x40, add(tmpbytes, 0x01))
            v := mload(sub(tmpbytes, 0x1f))
        }
        return (v, offset + 1);
    }

    /* @notice              Read next two bytes as uint16 type starting from offset
    *  @param buff          Source bytes array
    *  @param offset        The position from where we read the uint16 value
    *  @return              The read uint16 value and updated offset
    */
    function NextUint16(bytes memory buff, uint256 offset) internal pure returns (uint16, uint256) {
        require(offset + 2 <= buff.length && offset < offset + 2, "NextUint16, offset exceeds maximum");
        
        uint16 v;
        assembly {
            let tmpbytes := mload(0x40)
            let bvalue := mload(add(add(buff, 0x20), offset))
            mstore8(tmpbytes, byte(0x01, bvalue))
            mstore8(add(tmpbytes, 0x01), byte(0, bvalue))
            mstore(0x40, add(tmpbytes, 0x02))
            v := mload(sub(tmpbytes, 0x1e))
        }
        return (v, offset + 2);
    }


    /* @notice              Read next four bytes as uint32 type starting from offset
    *  @param buff          Source bytes array
    *  @param offset        The position from where we read the uint32 value
    *  @return              The read uint32 value and updated offset
    */
    function NextUint32(bytes memory buff, uint256 offset) internal pure returns (uint32, uint256) {
        require(offset + 4 <= buff.length && offset < offset + 4, "NextUint32, offset exceeds maximum");
        uint32 v;
        assembly {
            let tmpbytes := mload(0x40)
            let byteLen := 0x04
            for {
                let tindex := 0x00
                let bindex := sub(byteLen, 0x01)
                let bvalue := mload(add(add(buff, 0x20), offset))
            } lt(tindex, byteLen) {
                tindex := add(tindex, 0x01)
                bindex := sub(bindex, 0x01)
            }{
                mstore8(add(tmpbytes, tindex), byte(bindex, bvalue))
            }
            mstore(0x40, add(tmpbytes, byteLen))
            v := mload(sub(tmpbytes, sub(0x20, byteLen)))
        }
        return (v, offset + 4);
    }

    /* @notice              Read next eight bytes as uint64 type starting from offset
    *  @param buff          Source bytes array
    *  @param offset        The position from where we read the uint64 value
    *  @return              The read uint64 value and updated offset
    */
    function NextUint64(bytes memory buff, uint256 offset) internal pure returns (uint64, uint256) {
        require(offset + 8 <= buff.length && offset < offset + 8, "NextUint64, offset exceeds maximum");
        uint64 v;
        assembly {
            let tmpbytes := mload(0x40)
            let byteLen := 0x08
            for {
                let tindex := 0x00
                let bindex := sub(byteLen, 0x01)
                let bvalue := mload(add(add(buff, 0x20), offset))
            } lt(tindex, byteLen) {
                tindex := add(tindex, 0x01)
                bindex := sub(bindex, 0x01)
            }{
                mstore8(add(tmpbytes, tindex), byte(bindex, bvalue))
            }
            mstore(0x40, add(tmpbytes, byteLen))
            v := mload(sub(tmpbytes, sub(0x20, byteLen)))
        }
        return (v, offset + 8);
    }

    /* @notice              Read next 32 bytes as uint256 type starting from offset,
                            there are limits considering the numerical limits in multi-chain
    *  @param buff          Source bytes array
    *  @param offset        The position from where we read the uint256 value
    *  @return              The read uint256 value and updated offset
    */
    function NextUint255(bytes memory buff, uint256 offset) internal pure returns (uint256, uint256) {
        require(offset + 32 <= buff.length && offset < offset + 32, "NextUint255, offset exceeds maximum");
        uint256 v;
        assembly {
            let tmpbytes := mload(0x40)
            let byteLen := 0x20
            for {
                let tindex := 0x00
                let bindex := sub(byteLen, 0x01)
                let bvalue := mload(add(add(buff, 0x20), offset))
            } lt(tindex, byteLen) {
                tindex := add(tindex, 0x01)
                bindex := sub(bindex, 0x01)
            }{
                mstore8(add(tmpbytes, tindex), byte(bindex, bvalue))
            }
            mstore(0x40, add(tmpbytes, byteLen))
            v := mload(tmpbytes)
        }
        require(v <= 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, "Value exceeds the range");
        return (v, offset + 32);
    }
    /* @notice              Read next variable bytes starting from offset,
                            the decoding rule coming from multi-chain
    *  @param buff          Source bytes array
    *  @param offset        The position from where we read the bytes value
    *  @return              The read variable bytes array value and updated offset
    */
    function NextVarBytes(bytes memory buff, uint256 offset) internal pure returns(bytes memory, uint256) {
        uint len;
        (len, offset) = NextVarUint(buff, offset);
        require(offset + len <= buff.length && offset < offset + len, "NextVarBytes, offset exceeds maximum");
        bytes memory tempBytes;
        assembly{
            switch iszero(len)
            case 0 {
                // Get a location of some free memory and store it in tempBytes as
                // Solidity does for memory variables.
                tempBytes := mload(0x40)

                // The first word of the slice result is potentially a partial
                // word read from the original array. To read it, we calculate
                // the length of that partial word and start copying that many
                // bytes into the array. The first word we copy will start with
                // data we don't care about, but the last `lengthmod` bytes will
                // land at the beginning of the contents of the new array. When
                // we're done copying, we overwrite the full first word with
                // the actual length of the slice.
                let lengthmod := and(len, 31)

                // The multiplication in the next line is necessary
                // because when slicing multiples of 32 bytes (lengthmod == 0)
                // the following copy loop was copying the origin's length
                // and then ending prematurely not copying everything it should.
                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                let end := add(mc, len)

                for {
                    // The multiplication in the next line has the same exact purpose
                    // as the one above.
                    let cc := add(add(add(buff, lengthmod), mul(0x20, iszero(lengthmod))), offset)
                } lt(mc, end) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    mstore(mc, mload(cc))
                }

                mstore(tempBytes, len)

                //update free-memory pointer
                //allocating the array padded to 32 bytes like the compiler does now
                mstore(0x40, and(add(mc, 31), not(31)))
            }
            //if we want a zero-length slice let's just return a zero-length array
            default {
                tempBytes := mload(0x40)

                mstore(0x40, add(tempBytes, 0x20))
            }
        }

        return (tempBytes, offset + len);
    }
    /* @notice              Read next 32 bytes starting from offset,
    *  @param buff          Source bytes array
    *  @param offset        The position from where we read the bytes value
    *  @return              The read bytes32 value and updated offset
    */
    function NextHash(bytes memory buff, uint256 offset) internal pure returns (bytes32 , uint256) {
        require(offset + 32 <= buff.length && offset < offset + 32, "NextHash, offset exceeds maximum");
        bytes32 v;
        assembly {
            v := mload(add(buff, add(offset, 0x20)))
        }
        return (v, offset + 32);
    }

    /* @notice              Read next 20 bytes starting from offset,
    *  @param buff          Source bytes array
    *  @param offset        The position from where we read the bytes value
    *  @return              The read bytes20 value and updated offset
    */
    function NextBytes20(bytes memory buff, uint256 offset) internal pure returns (bytes20 , uint256) {
        require(offset + 20 <= buff.length && offset < offset + 20, "NextBytes20, offset exceeds maximum");
        bytes20 v;
        assembly {
            v := mload(add(buff, add(offset, 0x20)))
        }
        return (v, offset + 20);
    }
    
    function NextVarUint(bytes memory buff, uint256 offset) internal pure returns(uint, uint256) {
        byte v;
        (v, offset) = NextByte(buff, offset);

        uint value;
        if (v == 0xFD) {
            // return NextUint16(buff, offset);
            (value, offset) = NextUint16(buff, offset);
            require(value >= 0xFD && value <= 0xFFFF, "NextUint16, value outside range");
            return (value, offset);
        } else if (v == 0xFE) {
            // return NextUint32(buff, offset);
            (value, offset) = NextUint32(buff, offset);
            require(value > 0xFFFF && value <= 0xFFFFFFFF, "NextVarUint, value outside range");
            return (value, offset);
        } else if (v == 0xFF) {
            // return NextUint64(buff, offset);
            (value, offset) = NextUint64(buff, offset);
            require(value > 0xFFFFFFFF, "NextVarUint, value outside range");
            return (value, offset);
        } else{
            // return (uint8(v), offset);
            value = uint8(v);
            require(value < 0xFD, "NextVarUint, value outside range");
            return (value, offset);
        }
    }
}

library ECCUtils {
    using SafeMath for uint256;
    
    struct Header {
        uint32 version;
        uint64 chainId;
        uint32 timestamp;
        uint32 height;
        uint64 consensusData;
        bytes32 prevBlockHash;
        bytes32 transactionsRoot;
        bytes32 crossStatesRoot;
        bytes32 blockRoot;
        bytes consensusPayload;
        bytes20 nextBookkeeper;
    }

    struct ToMerkleValue {
        bytes  txHash;  // cross chain txhash
        uint64 fromChainID;
        TxParam makeTxParam;
    }

    struct TxParam {
        bytes txHash; //  source chain txhash
        bytes crossChainId;
        bytes fromContract;
        uint64 toChainId;
        bytes toContract;
        bytes method;
        bytes args;
    }

    uint constant POLYCHAIN_PUBKEY_LEN = 67;
    uint constant POLYCHAIN_SIGNATURE_LEN = 65;

    /* @notice                  Verify Poly chain transaction whether exist or not
    *  @param _auditPath        Poly chain merkle proof
    *  @param _root             Poly chain root
    *  @return                  The verified value included in _auditPath
    */
    function merkleProve(bytes memory _auditPath, bytes32 _root) internal pure returns (bytes memory) {
        uint256 off = 0;
        bytes memory value;
        (value, off)  = ZeroCopySource.NextVarBytes(_auditPath, off);

        bytes32 hash = Utils.hashLeaf(value);
        uint size = _auditPath.length.sub(off).div(33);
        bytes32 nodeHash;
        byte pos;
        for (uint i = 0; i < size; i++) {
            (pos, off) = ZeroCopySource.NextByte(_auditPath, off);
            (nodeHash, off) = ZeroCopySource.NextHash(_auditPath, off);
            if (pos == 0x00) {
                hash = Utils.hashChildren(nodeHash, hash);
            } else if (pos == 0x01) {
                hash = Utils.hashChildren(hash, nodeHash);
            } else {
                revert("merkleProve, NextByte for position info failed");
            }
        }
        require(hash == _root, "merkleProve, expect root is not equal actual root");
        return value;
    }

    /* @notice              calculate next book keeper according to public key list
    *  @param _keyLen       consensus node number
    *  @param _m            minimum signature number
    *  @param _pubKeyList   consensus node public key list
    *  @return              two element: next book keeper, consensus node signer addresses
    */
    function _getBookKeeper(uint _keyLen, uint _m, bytes memory _pubKeyList) internal pure returns (bytes20, address[] memory){
         bytes memory buff;
         buff = ZeroCopySink.WriteUint16(uint16(_keyLen));
         address[] memory keepers = new address[](_keyLen);
         bytes32 hash;
         bytes memory publicKey;
         for(uint i = 0; i < _keyLen; i++){
             publicKey = Utils.slice(_pubKeyList, i*POLYCHAIN_PUBKEY_LEN, POLYCHAIN_PUBKEY_LEN);
             buff =  abi.encodePacked(buff, ZeroCopySink.WriteVarBytes(Utils.compressMCPubKey(publicKey)));
             hash = keccak256(Utils.slice(publicKey, 3, 64));
             keepers[i] = address(uint160(uint256(hash)));
         }

         buff = abi.encodePacked(buff, ZeroCopySink.WriteUint16(uint16(_m)));
         bytes20  nextBookKeeper = ripemd160(abi.encodePacked(sha256(buff)));
         return (nextBookKeeper, keepers);
    }

    /* @notice              Verify public key derived from Poly chain
    *  @param _pubKeyList   serialized consensus node public key list
    *  @param _sigList      consensus node signature list
    *  @return              return two element: next book keeper, consensus node signer addresses
    */
    function verifyPubkey(bytes memory _pubKeyList) internal pure returns (bytes20, address[] memory) {
        require(_pubKeyList.length % POLYCHAIN_PUBKEY_LEN == 0, "_pubKeyList length illegal!");
        uint n = _pubKeyList.length / POLYCHAIN_PUBKEY_LEN;
        require(n >= 1, "too short _pubKeyList!");
        return _getBookKeeper(n, n - (n - 1) / 3, _pubKeyList);
    }

    /* @notice              Verify Poly chain consensus node signature
    *  @param _rawHeader    Poly chain block header raw bytes
    *  @param _sigList      consensus node signature list
    *  @param _keepers      addresses corresponding with Poly chain book keepers' public keys
    *  @param _m            minimum signature number
    *  @return              true or false
    */
    function verifySig(bytes memory _rawHeader, bytes memory _sigList, address[] memory _keepers, uint _m) internal pure returns (bool){
        bytes32 hash = getHeaderHash(_rawHeader);

        uint sigCount = _sigList.length.div(POLYCHAIN_SIGNATURE_LEN);
        address[] memory signers = new address[](sigCount);
        bytes32 r;
        bytes32 s;
        uint8 v;
        for(uint j = 0; j  < sigCount; j++){
            r = Utils.bytesToBytes32(Utils.slice(_sigList, j*POLYCHAIN_SIGNATURE_LEN, 32));
            s =  Utils.bytesToBytes32(Utils.slice(_sigList, j*POLYCHAIN_SIGNATURE_LEN + 32, 32));
            v =  uint8(_sigList[j*POLYCHAIN_SIGNATURE_LEN + 64]) + 27;
            signers[j] =  ecrecover(sha256(abi.encodePacked(hash)), v, r, s);
        }
        return Utils.containMAddresses(_keepers, signers, _m);
    }
    

    /* @notice               Serialize Poly chain book keepers' info in Ethereum addresses format into raw bytes
    *  @param keepersBytes   The serialized addresses
    *  @return               serialized bytes result
    */
    function serializeKeepers(address[] memory keepers) internal pure returns (bytes memory) {
        uint256 keeperLen = keepers.length;
        bytes memory keepersBytes = ZeroCopySink.WriteUint64(uint64(keeperLen));
        for(uint i = 0; i < keeperLen; i++) {
            keepersBytes = abi.encodePacked(keepersBytes, ZeroCopySink.WriteVarBytes(Utils.addressToBytes(keepers[i])));
        }
        return keepersBytes;
    }

    /* @notice               Deserialize bytes into Ethereum addresses
    *  @param keepersBytes   The serialized addresses derived from Poly chain book keepers in bytes format
    *  @return               addresses
    */
    function deserializeKeepers(bytes memory keepersBytes) internal pure returns (address[] memory) {
        uint256 off = 0;
        uint64 keeperLen;
        (keeperLen, off) = ZeroCopySource.NextUint64(keepersBytes, off);
        address[] memory keepers = new address[](keeperLen);
        bytes memory keeperBytes;
        for(uint i = 0; i < keeperLen; i++) {
            (keeperBytes, off) = ZeroCopySource.NextVarBytes(keepersBytes, off);
            keepers[i] = Utils.bytesToAddress(keeperBytes);
        }
        return keepers;
    }

    /* @notice               Deserialize Poly chain transaction raw value
    *  @param _valueBs       Poly chain transaction raw bytes
    *  @return               ToMerkleValue struct
    */
    function deserializeMerkleValue(bytes memory _valueBs) internal pure returns (ToMerkleValue memory) {
        ToMerkleValue memory toMerkleValue;
        uint256 off = 0;

        (toMerkleValue.txHash, off) = ZeroCopySource.NextVarBytes(_valueBs, off);

        (toMerkleValue.fromChainID, off) = ZeroCopySource.NextUint64(_valueBs, off);

        TxParam memory txParam;

        (txParam.txHash, off) = ZeroCopySource.NextVarBytes(_valueBs, off);
        
        (txParam.crossChainId, off) = ZeroCopySource.NextVarBytes(_valueBs, off);

        (txParam.fromContract, off) = ZeroCopySource.NextVarBytes(_valueBs, off);

        (txParam.toChainId, off) = ZeroCopySource.NextUint64(_valueBs, off);

        (txParam.toContract, off) = ZeroCopySource.NextVarBytes(_valueBs, off);

        (txParam.method, off) = ZeroCopySource.NextVarBytes(_valueBs, off);

        (txParam.args, off) = ZeroCopySource.NextVarBytes(_valueBs, off);
        toMerkleValue.makeTxParam = txParam;

        return toMerkleValue;
    }

    /* @notice            Deserialize Poly chain block header raw bytes
    *  @param _valueBs    Poly chain block header raw bytes
    *  @return            Header struct
    */
    function deserializeHeader(bytes memory _headerBs) internal pure returns (Header memory) {
        Header memory header;
        uint256 off = 0;
        (header.version, off)  = ZeroCopySource.NextUint32(_headerBs, off);

        (header.chainId, off) = ZeroCopySource.NextUint64(_headerBs, off);

        (header.prevBlockHash, off) = ZeroCopySource.NextHash(_headerBs, off);

        (header.transactionsRoot, off) = ZeroCopySource.NextHash(_headerBs, off);

        (header.crossStatesRoot, off) = ZeroCopySource.NextHash(_headerBs, off);

        (header.blockRoot, off) = ZeroCopySource.NextHash(_headerBs, off);

        (header.timestamp, off) = ZeroCopySource.NextUint32(_headerBs, off);

        (header.height, off) = ZeroCopySource.NextUint32(_headerBs, off);

        (header.consensusData, off) = ZeroCopySource.NextUint64(_headerBs, off);

        (header.consensusPayload, off) = ZeroCopySource.NextVarBytes(_headerBs, off);

        (header.nextBookkeeper, off) = ZeroCopySource.NextBytes20(_headerBs, off);

        return header;
    }

    /* @notice            Deserialize Poly chain block header raw bytes
    *  @param rawHeader   Poly chain block header raw bytes
    *  @return            header hash same as Poly chain
    */
    function getHeaderHash(bytes memory rawHeader) internal pure returns (bytes32) {
        return sha256(abi.encodePacked(sha256(rawHeader)));
    }
}
/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     * - Subtraction cannot overflow.
     *
     * _Available since v2.4.0._
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     *
     * _Available since v2.4.0._
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        // Solidity only automatically asserts when dividing by 0
        require(b != 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     *
     * _Available since v2.4.0._
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}


/**
 * @dev Interface of the EthCrossChainData contract, the implementation is in EthCrossChainData.sol
 */
interface IEthCrossChainData {
    function putCurEpochStartHeight(uint32 curEpochStartHeight) external returns (bool);
    function getCurEpochStartHeight() external view returns (uint32);
    function putCurEpochConPubKeyBytes(bytes calldata curEpochPkBytes) external returns (bool);
    function getCurEpochConPubKeyBytes() external view returns (bytes memory);
    function markFromChainTxExist(uint64 fromChainId, bytes32 fromChainTx) external returns (bool);
    function checkIfFromChainTxExist(uint64 fromChainId, bytes32 fromChainTx) external view returns (bool);
    function getEthTxHashIndex() external view returns (uint256);
    function putEthTxHash(bytes32 ethTxHash) external returns (bool);
    function putExtraData(bytes32 key1, bytes32 key2, bytes calldata value) external returns (bool);
    function getExtraData(bytes32 key1, bytes32 key2) external view returns (bytes memory);
    function transferOwnership(address newOwner) external;
    function pause() external returns (bool);
    function unpause() external returns (bool);
    function paused() external view returns (bool);
    // Not used currently by ECCM
    function getEthTxHash(uint256 ethTxHashIndex) external view returns (bytes32);
}

pragma solidity ^0.5.0;

/**
 * @dev Interface of the EthCrossChainManager contract for business contract like LockProxy to request cross chain transaction
 */
interface IEthCrossChainManager {
    function crossChain(uint64 _toChainId, bytes calldata _toContract, bytes calldata _method, bytes calldata _txData) external returns (bool);
}

pragma solidity ^0.5.0;

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 * Refer from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/GSN/Context.sol
 */
contract Context {
    // Empty internal constructor, to prevent people from mistakenly deploying
    // an instance of this contract, which should be used via inheritance.
    constructor () internal { }
    // solhint-disable-previous-line no-empty-blocks

    function _msgSender() internal view returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}
contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by a pauser (`account`).
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by a pauser (`account`).
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor () internal {
        _paused = false;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view returns (bool) {
        return _paused;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     */
    modifier whenNotPaused() {
        require(!_paused, "Pausable: paused");
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     */
    modifier whenPaused() {
        require(_paused, "Pausable: not paused");
        _;
    }

    /**
     * @dev Called to pause, triggers stopped state.
     */
    function _pause() internal whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Called to unpause, returns to normal state.
     */
    function _unpause() internal whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

pragma solidity ^0.5.0;

/**
 * @dev Interface of upgradableECCM to make ECCM be upgradable, the implementation is in UpgradableECCM.sol
 */
interface IUpgradableECCM {
    function pause() external returns (bool);
    function unpause() external returns (bool);
    function paused() external view returns (bool);
    function upgradeToNew(address) external returns (bool);
    function isOwner() external view returns (bool);
    function setChainId(uint64 _newChainId) external returns (bool);
}
contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor () internal {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(isOwner(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Returns true if the caller is the current owner.
     */
    function isOwner() public view returns (bool) {
        return _msgSender() == _owner;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public  onlyOwner {
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     */
    function _transferOwnership(address newOwner) internal {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
}


contract UpgradableECCM is IUpgradableECCM, Ownable, Pausable {
    address public EthCrossChainDataAddress;
    uint64 public chainId;  
    
    constructor (address ethCrossChainDataAddr, uint64 _chainId) Pausable() Ownable()  public {
        EthCrossChainDataAddress = ethCrossChainDataAddr;
        chainId = _chainId;
    }
    function pause() onlyOwner public returns (bool) {
        if (!paused()) {
            _pause();
        }
        IEthCrossChainData eccd = IEthCrossChainData(EthCrossChainDataAddress);
        if (!eccd.paused()) {
            require(eccd.pause(), "pause EthCrossChainData contract failed");
        }
        return true;
    }
    
    function unpause() onlyOwner public returns (bool) {
        if (paused()) {
            _unpause();
        }
        IEthCrossChainData eccd = IEthCrossChainData(EthCrossChainDataAddress);
        if (eccd.paused()) {
            require(eccd.unpause(), "unpause EthCrossChainData contract failed");
        }
        return true;
    }

    // if we want to upgrade this contract, we need to invoke this method 
    function upgradeToNew(address newEthCrossChainManagerAddress) whenPaused onlyOwner public returns (bool) {
        IEthCrossChainData eccd = IEthCrossChainData(EthCrossChainDataAddress);
        eccd.transferOwnership(newEthCrossChainManagerAddress);
        return true;
    }
    
    function setChainId(uint64 _newChainId) whenPaused onlyOwner public returns (bool) {
        chainId = _newChainId;
        return true;
    }
}

contract EthCrossChainManager is IEthCrossChainManager, UpgradableECCM {
    using SafeMath for uint256;

    mapping(address => bool) public whiteListFromContract;
    mapping(address => bool) public whiteListToContract;
    mapping(bytes => bool) public whiteListMethod;
    mapping(bytes => bool) public unsetEpochPkBytes;

    event InitGenesisBlockEvent(uint256 height, bytes rawHeader);
    event ChangeBookKeeperEvent(uint256 height, bytes rawHeader);
    event CrossChainEvent(address indexed sender, bytes txId, address proxyOrAssetContract, uint64 toChainId, bytes toContract, bytes rawdata);
    event VerifyHeaderAndExecuteTxEvent(uint64 fromChainID, bytes toContract, bytes crossChainTxHash, bytes fromChainTxHash);
    constructor(
        address _eccd, 
        uint64 _chainId, 
        address[] memory fromContractWhiteList, 
        address[] memory toContractWhiteList, 
        bytes[] memory methodWhiteList,
        bytes memory curEpochPkBytes
    ) UpgradableECCM(_eccd,_chainId) public {
        for (uint i=0;i<fromContractWhiteList.length;i++) {
            whiteListFromContract[fromContractWhiteList[i]] = true;
        }
        for (uint i=0;i<toContractWhiteList.length;i++) {
            whiteListToContract[toContractWhiteList[i]] = true;
        }
        for (uint i=0;i<methodWhiteList.length;i++) {
            whiteListMethod[methodWhiteList[i]] = true;
        }
        unsetEpochPkBytes[curEpochPkBytes] = true;
    }
    
    function recoverEpochPk(bytes memory EpochPkBytes) public {
        require(unsetEpochPkBytes[EpochPkBytes],"Don't arbitrarily set");
        unsetEpochPkBytes[EpochPkBytes] = false;
        IEthCrossChainData(EthCrossChainDataAddress).putCurEpochConPubKeyBytes(EpochPkBytes);
    }

    /* @notice              sync Poly chain genesis block header to smart contrat
    *  @dev                 this function can only be called once, nextbookkeeper of rawHeader can't be empty
    *  @param rawHeader     Poly chain genesis block raw header or raw Header including switching consensus peers info
    *  @return              true or false
    */
    function initGenesisBlock(bytes memory rawHeader, bytes memory pubKeyList) whenNotPaused public returns(bool) {
        // Load Ethereum cross chain data contract
        IEthCrossChainData eccd = IEthCrossChainData(EthCrossChainDataAddress);
        
        // Make sure the contract has not been initialized before
        require(eccd.getCurEpochConPubKeyBytes().length == 0, "EthCrossChainData contract has already been initialized!");
        
        // Parse header and convit the public keys into nextBookKeeper and compare it with header.nextBookKeeper to verify the validity of signature
        ECCUtils.Header memory header = ECCUtils.deserializeHeader(rawHeader);
        (bytes20 nextBookKeeper, address[] memory keepers) = ECCUtils.verifyPubkey(pubKeyList);
        require(header.nextBookkeeper == nextBookKeeper, "NextBookers illegal");
        
        // Record current epoch start height and public keys (by storing them in address format)
        require(eccd.putCurEpochStartHeight(header.height), "Save Poly chain current epoch start height to Data contract failed!");
        require(eccd.putCurEpochConPubKeyBytes(ECCUtils.serializeKeepers(keepers)), "Save Poly chain current epoch book keepers to Data contract failed!");
        
        // Fire the event
        emit InitGenesisBlockEvent(header.height, rawHeader);
        return true;
    }
    
    /* @notice              change Poly chain consensus book keeper
    *  @param rawHeader     Poly chain change book keeper block raw header
    *  @param pubKeyList    Poly chain consensus nodes public key list
    *  @param sigList       Poly chain consensus nodes signature list
    *  @return              true or false
    */
    function changeBookKeeper(bytes memory rawHeader, bytes memory pubKeyList, bytes memory sigList) whenNotPaused public returns(bool) {
        // Load Ethereum cross chain data contract
        ECCUtils.Header memory header = ECCUtils.deserializeHeader(rawHeader);
        IEthCrossChainData eccd = IEthCrossChainData(EthCrossChainDataAddress);
        
        // Make sure rawHeader.height is higher than recorded current epoch start height
        uint64 curEpochStartHeight = eccd.getCurEpochStartHeight();
        require(header.height > curEpochStartHeight, "The height of header is lower than current epoch start height!");
        
        // Ensure the rawHeader is the key header including info of switching consensus peers by containing non-empty nextBookKeeper field
        require(header.nextBookkeeper != bytes20(0), "The nextBookKeeper of header is empty");
        
        // Verify signature of rawHeader comes from pubKeyList
        address[] memory polyChainBKs = ECCUtils.deserializeKeepers(eccd.getCurEpochConPubKeyBytes());
        uint n = polyChainBKs.length;
        require(ECCUtils.verifySig(rawHeader, sigList, polyChainBKs, n - (n - 1) / 3), "Verify signature failed!");
        
        // Convert pubKeyList into ethereum address format and make sure the compound address from the converted ethereum addresses
        // equals passed in header.nextBooker
        (bytes20 nextBookKeeper, address[] memory keepers) = ECCUtils.verifyPubkey(pubKeyList);
        require(header.nextBookkeeper == nextBookKeeper, "NextBookers illegal");
        
        // update current epoch start height of Poly chain and current epoch consensus peers book keepers addresses
        require(eccd.putCurEpochStartHeight(header.height), "Save MC LatestHeight to Data contract failed!");
        require(eccd.putCurEpochConPubKeyBytes(ECCUtils.serializeKeepers(keepers)), "Save Poly chain book keepers bytes to Data contract failed!");
        
        // Fire the change book keeper event
        emit ChangeBookKeeperEvent(header.height, rawHeader);
        return true;
    }


    /* @notice              ERC20 token cross chain to other blockchain.
    *                       this function push tx event to blockchain
    *  @param toChainId     Target chain id
    *  @param toContract    Target smart contract address in target block chain
    *  @param txData        Transaction data for target chain, include to_address, amount
    *  @return              true or false
    */
    function crossChain(uint64 toChainId, bytes calldata toContract, bytes calldata method, bytes calldata txData) whenNotPaused external returns (bool) {
        // Only allow whitelist contract to call
        require(whiteListFromContract[msg.sender],"Invalid from contract");
        
        // Load Ethereum cross chain data contract
        IEthCrossChainData eccd = IEthCrossChainData(EthCrossChainDataAddress);
        
        // To help differentiate two txs, the ethTxHashIndex is increasing automatically
        uint256 txHashIndex = eccd.getEthTxHashIndex();
        
        // Convert the uint256 into bytes
        bytes memory paramTxHash = Utils.uint256ToBytes(txHashIndex);
        
        // Construct the makeTxParam, and put the hash info storage, to help provide proof of tx existence
        bytes memory rawParam = abi.encodePacked(ZeroCopySink.WriteVarBytes(paramTxHash),
            ZeroCopySink.WriteVarBytes(abi.encodePacked(sha256(abi.encodePacked(address(this), paramTxHash)))),
            ZeroCopySink.WriteVarBytes(Utils.addressToBytes(msg.sender)),
            ZeroCopySink.WriteUint64(toChainId),
            ZeroCopySink.WriteVarBytes(toContract),
            ZeroCopySink.WriteVarBytes(method),
            ZeroCopySink.WriteVarBytes(txData)
        );
        
        // Must save it in the storage to be included in the proof to be verified.
        require(eccd.putEthTxHash(keccak256(rawParam)), "Save ethTxHash by index to Data contract failed!");
        
        // Fire the cross chain event denoting there is a cross chain request from Ethereum network to other public chains through Poly chain network
        emit CrossChainEvent(tx.origin, paramTxHash, msg.sender, toChainId, toContract, rawParam);
        return true;
    }
    /* @notice              Verify Poly chain header and proof, execute the cross chain tx from Poly chain to Ethereum
    *  @param proof         Poly chain tx merkle proof
    *  @param rawHeader     The header containing crossStateRoot to verify the above tx merkle proof
    *  @param headerProof   The header merkle proof used to verify rawHeader
    *  @param curRawHeader  Any header in current epoch consensus of Poly chain
    *  @param headerSig     The coverted signature veriable for solidity derived from Poly chain consensus nodes' signature
    *                       used to verify the validity of curRawHeader
    *  @return              true or false
    */
    function verifyHeaderAndExecuteTx(bytes memory proof, bytes memory rawHeader, bytes memory headerProof, bytes memory curRawHeader,bytes memory headerSig) whenNotPaused public returns (bool){
        ECCUtils.Header memory header = ECCUtils.deserializeHeader(rawHeader);
        // Load ehereum cross chain data contract
        IEthCrossChainData eccd = IEthCrossChainData(EthCrossChainDataAddress);
        
        // Get stored consensus public key bytes of current poly chain epoch and deserialize Poly chain consensus public key bytes to address[]
        address[] memory polyChainBKs = ECCUtils.deserializeKeepers(eccd.getCurEpochConPubKeyBytes());

        uint256 curEpochStartHeight = eccd.getCurEpochStartHeight();

        uint n = polyChainBKs.length;
        if (header.height >= curEpochStartHeight) {
            // It's enough to verify rawHeader signature
            require(ECCUtils.verifySig(rawHeader, headerSig, polyChainBKs, n - ( n - 1) / 3), "Verify poly chain header signature failed!");
        } else {
            // We need to verify the signature of curHeader 
            require(ECCUtils.verifySig(curRawHeader, headerSig, polyChainBKs, n - ( n - 1) / 3), "Verify poly chain current epoch header signature failed!");

            // Then use curHeader.StateRoot and headerProof to verify rawHeader.CrossStateRoot
            ECCUtils.Header memory curHeader = ECCUtils.deserializeHeader(curRawHeader);
            bytes memory proveValue = ECCUtils.merkleProve(headerProof, curHeader.blockRoot);
            require(ECCUtils.getHeaderHash(rawHeader) == Utils.bytesToBytes32(proveValue), "verify header proof failed!");
        }
        
        // Through rawHeader.CrossStatesRoot, the toMerkleValue or cross chain msg can be verified and parsed from proof
        bytes memory toMerkleValueBs = ECCUtils.merkleProve(proof, header.crossStatesRoot);
        
        // Parse the toMerkleValue struct and make sure the tx has not been processed, then mark this tx as processed
        ECCUtils.ToMerkleValue memory toMerkleValue = ECCUtils.deserializeMerkleValue(toMerkleValueBs);
        require(!eccd.checkIfFromChainTxExist(toMerkleValue.fromChainID, Utils.bytesToBytes32(toMerkleValue.txHash)), "the transaction has been executed!");
        require(eccd.markFromChainTxExist(toMerkleValue.fromChainID, Utils.bytesToBytes32(toMerkleValue.txHash)), "Save crosschain tx exist failed!");
        
        // Ethereum ChainId is 2, we need to check the transaction is for Ethereum network
        require(toMerkleValue.makeTxParam.toChainId == chainId, "This Tx is not aiming at this network!");
        
        // Obtain the targeting contract, so that Ethereum cross chain manager contract can trigger the executation of cross chain tx on Ethereum side
        address toContract = Utils.bytesToAddress(toMerkleValue.makeTxParam.toContract);
        
        // only invoke PreWhiteListed Contract and method For Now
        require(whiteListToContract[toContract],"Invalid to contract");
        require(whiteListMethod[toMerkleValue.makeTxParam.method],"Invalid method");

        //TODO: check this part to make sure we commit the next line when doing local net UT test
        require(_executeCrossChainTx(toContract, toMerkleValue.makeTxParam.method, toMerkleValue.makeTxParam.args, toMerkleValue.makeTxParam.fromContract, toMerkleValue.fromChainID), "Execute CrossChain Tx failed!");

        // Fire the cross chain event denoting the executation of cross chain tx is successful,
        // and this tx is coming from other public chains to current Ethereum network
        emit VerifyHeaderAndExecuteTxEvent(toMerkleValue.fromChainID, toMerkleValue.makeTxParam.toContract, toMerkleValue.txHash, toMerkleValue.makeTxParam.txHash);

        return true;
    }
    
    /* @notice                  Dynamically invoke the targeting contract, and trigger executation of cross chain tx on Ethereum side
    *  @param _toContract       The targeting contract that will be invoked by the Ethereum Cross Chain Manager contract
    *  @param _method           At which method will be invoked within the targeting contract
    *  @param _args             The parameter that will be passed into the targeting contract
    *  @param _fromContractAddr From chain smart contract address
    *  @param _fromChainId      Indicate from which chain current cross chain tx comes 
    *  @return                  true or false
    */
    function _executeCrossChainTx(address _toContract, bytes memory _method, bytes memory _args, bytes memory _fromContractAddr, uint64 _fromChainId) internal returns (bool){
        // Ensure the targeting contract gonna be invoked is indeed a contract rather than a normal account address
        require(Utils.isContract(_toContract), "The passed in address is not a contract!");
        bytes memory returnData;
        bool success;
        
        // The returnData will be bytes32, the last byte must be 01;
        (success, returnData) = _toContract.call(abi.encodePacked(bytes4(keccak256(abi.encodePacked(_method, "(bytes,bytes,uint64)"))), abi.encode(_args, _fromContractAddr, _fromChainId)));
        
        // Ensure the executation is successful
        require(success == true, "EthCrossChain call business contract failed");
        
        // Ensure the returned value is true
        require(returnData.length != 0, "No return value from business contract!");
        (bool res,) = ZeroCopySource.NextBool(returnData, 31);
        require(res == true, "EthCrossChain call business contract return is not true");
        
        return true;
    }
}
设置
{
  "compilationTarget": {
    "EthCrossChainManager.sol": "EthCrossChainManager"
  },
  "evmVersion": "istanbul",
  "libraries": {},
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "remappings": []
}
ABI
[{"inputs":[{"internalType":"address","name":"_eccd","type":"address"},{"internalType":"uint64","name":"_chainId","type":"uint64"},{"internalType":"address[]","name":"fromContractWhiteList","type":"address[]"},{"internalType":"address[]","name":"toContractWhiteList","type":"address[]"},{"internalType":"bytes[]","name":"methodWhiteList","type":"bytes[]"},{"internalType":"bytes","name":"curEpochPkBytes","type":"bytes"}],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"height","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"rawHeader","type":"bytes"}],"name":"ChangeBookKeeperEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"bytes","name":"txId","type":"bytes"},{"indexed":false,"internalType":"address","name":"proxyOrAssetContract","type":"address"},{"indexed":false,"internalType":"uint64","name":"toChainId","type":"uint64"},{"indexed":false,"internalType":"bytes","name":"toContract","type":"bytes"},{"indexed":false,"internalType":"bytes","name":"rawdata","type":"bytes"}],"name":"CrossChainEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"height","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"rawHeader","type":"bytes"}],"name":"InitGenesisBlockEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"fromChainID","type":"uint64"},{"indexed":false,"internalType":"bytes","name":"toContract","type":"bytes"},{"indexed":false,"internalType":"bytes","name":"crossChainTxHash","type":"bytes"},{"indexed":false,"internalType":"bytes","name":"fromChainTxHash","type":"bytes"}],"name":"VerifyHeaderAndExecuteTxEvent","type":"event"},{"constant":true,"inputs":[],"name":"EthCrossChainDataAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"chainId","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"bytes","name":"rawHeader","type":"bytes"},{"internalType":"bytes","name":"pubKeyList","type":"bytes"},{"internalType":"bytes","name":"sigList","type":"bytes"}],"name":"changeBookKeeper","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint64","name":"toChainId","type":"uint64"},{"internalType":"bytes","name":"toContract","type":"bytes"},{"internalType":"bytes","name":"method","type":"bytes"},{"internalType":"bytes","name":"txData","type":"bytes"}],"name":"crossChain","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"bytes","name":"rawHeader","type":"bytes"},{"internalType":"bytes","name":"pubKeyList","type":"bytes"}],"name":"initGenesisBlock","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"isOwner","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"pause","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"bytes","name":"EpochPkBytes","type":"bytes"}],"name":"recoverEpochPk","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"renounceOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint64","name":"_newChainId","type":"uint64"}],"name":"setChainId","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"unpause","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"internalType":"bytes","name":"","type":"bytes"}],"name":"unsetEpochPkBytes","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"newEthCrossChainManagerAddress","type":"address"}],"name":"upgradeToNew","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"bytes","name":"proof","type":"bytes"},{"internalType":"bytes","name":"rawHeader","type":"bytes"},{"internalType":"bytes","name":"headerProof","type":"bytes"},{"internalType":"bytes","name":"curRawHeader","type":"bytes"},{"internalType":"bytes","name":"headerSig","type":"bytes"}],"name":"verifyHeaderAndExecuteTx","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"whiteListFromContract","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"bytes","name":"","type":"bytes"}],"name":"whiteListMethod","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"whiteListToContract","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"}]