// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.15;
// These are the core Yearn libraries
import "@openzeppelin/contracts/utils/math/Math.sol";
import "https://github.com/yearn/yearn-vaults/blob/v0.4.6/contracts/BaseStrategy.sol";
interface IVelodromeRouter {
struct Routes {
address from;
address to;
bool stable;
address factory;
}
function addLiquidity(
address,
address,
bool,
uint256,
uint256,
uint256,
uint256,
address,
uint256
) external returns (uint256 amountA, uint256 amountB, uint256 liquidity);
function swapExactTokensForTokens(
uint256 amountIn,
uint256 amountOutMin,
Routes[] memory routes,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
Routes[] calldata routes,
address to,
uint256 deadline
) external;
function quoteStableLiquidityRatio(
address token0,
address token1,
address factory
) external view returns (uint256 ratio);
}
interface IVelodromeGauge {
function deposit(uint256 amount) external;
function balanceOf(address) external view returns (uint256);
function withdraw(uint256 amount) external;
function getReward(address account) external;
function earned(address account) external view returns (uint256);
function stakingToken() external view returns (address);
}
interface IVelodromePool {
function stable() external view returns (bool);
function token0() external view returns (address);
function token1() external view returns (address);
function factory() external view returns (address);
function getAmountOut(
uint256 amountIn,
address tokenIn
) external view returns (uint256 amount);
}
interface IDetails {
// get details from velodrome
function name() external view returns (string memory);
function symbol() external view returns (string memory);
}
contract StrategyVelodromeFactoryClonable is BaseStrategy {
using SafeERC20 for IERC20;
/* ========== STATE VARIABLES ========== */
/// @notice Velodrome gauge contract
IVelodromeGauge public gauge;
/// @notice Velodrome v2 router contract
IVelodromeRouter public constant router =
IVelodromeRouter(0xcF77a3Ba9A5CA399B7c97c74d54e5b1Beb874E43);
/// @notice The percentage of VELO from each harvest that we send to our voter (out of 10,000).
uint256 public localKeepVELO;
/// @notice The address of our Velodrome voter. This is where we send any keepVELO.
address public veloVoter;
// this means all of our fee values are in basis points
uint256 internal constant FEE_DENOMINATOR = 10000;
/// @notice The address of our base token (VELO v2)
IERC20 public constant velo =
IERC20(0x940181a94A35A4569E4529A3CDfB74e38FD98631);
/// @notice Token0 in our pool.
IERC20 public poolToken0;
/// @notice Token1 in our pool.
IERC20 public poolToken1;
/// @notice Factory address that deployed our Velodrome pool.
address public factory;
/// @notice True if our pool is stable, false if volatile.
bool public isStablePool;
/// @notice Array of structs containing our swap route to go from VELO to token0.
/// @dev Struct is from token, to token, and true/false for stable/volatile.
IVelodromeRouter.Routes[] public swapRouteForToken0;
/// @notice Array of structs containing our swap route to go from VELO to token1.
/// @dev Struct is from token, to token, and true/false for stable/volatile.
IVelodromeRouter.Routes[] public swapRouteForToken1;
/// @notice Minimum profit size in USDC that we want to harvest.
/// @dev Only used in harvestTrigger.
uint256 public harvestProfitMinInUsdc;
/// @notice Maximum profit size in USDC that we want to harvest (ignore gas price once we get here).
/// @dev Only used in harvestTrigger.
uint256 public harvestProfitMaxInUsdc;
/// @notice Will only be true on the original deployed contract and not on clones; we don't want to clone a clone.
bool public isOriginal = true;
// we use this to be able to adjust our strategy's name
string internal stratName;
/// @notice Set to true if one of our pools contains fee on transfer or rebasing token
bool public isFeeOnTransfer;
/* ========== CONSTRUCTOR ========== */
constructor(
address _vault,
address _gauge,
IVelodromeRouter.Routes[] memory _veloSwapRouteForToken0,
IVelodromeRouter.Routes[] memory _veloSwapRouteForToken1
) BaseStrategy(_vault) {
_initializeStrat(
_gauge,
_veloSwapRouteForToken0,
_veloSwapRouteForToken1
);
}
/* ========== CLONING ========== */
event Cloned(address indexed clone);
/// @notice Use this to clone an exact copy of this strategy on another vault.
/// @dev In practice, this will only be called by the factory on the template contract.
/// @param _vault Vault address we are targeting with this strategy.
/// @param _strategist Address to grant the strategist role.
/// @param _rewards If we have any strategist rewards, send them here.
/// @param _keeper Address to grant the keeper role.
/// @param _gauge Gauge address for this strategy.
/// @param _veloSwapRouteForToken0 Array of structs containing our swap route to go from VELO to token0.
/// @param _veloSwapRouteForToken1 Array of structs containing our swap route to go from VELO to token1.
/// @return newStrategy Address of our new cloned strategy.
function cloneStrategyVelodrome(
address _vault,
address _strategist,
address _rewards,
address _keeper,
address _gauge,
IVelodromeRouter.Routes[] memory _veloSwapRouteForToken0,
IVelodromeRouter.Routes[] memory _veloSwapRouteForToken1
) external returns (address newStrategy) {
// don't clone a clone
if (!isOriginal) {
revert();
}
// Copied from https://github.com/optionality/clone-factory/blob/master/contracts/CloneFactory.sol
bytes20 addressBytes = bytes20(address(this));
assembly {
// EIP-1167 bytecode
let clone_code := mload(0x40)
mstore(
clone_code,
0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000
)
mstore(add(clone_code, 0x14), addressBytes)
mstore(
add(clone_code, 0x28),
0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000
)
newStrategy := create(0, clone_code, 0x37)
}
StrategyVelodromeFactoryClonable(newStrategy).initialize(
_vault,
_strategist,
_rewards,
_keeper,
_gauge,
_veloSwapRouteForToken0,
_veloSwapRouteForToken1
);
emit Cloned(newStrategy);
}
/// @notice Initialize the strategy.
/// @dev This should only be called by the clone function above.
/// @param _vault Vault address we are targeting with this strategy.
/// @param _strategist Address to grant the strategist role.
/// @param _rewards If we have any strategist rewards, send them here.
/// @param _keeper Address to grant the keeper role.
/// @param _gauge Gauge address for this strategy.
/// @param _veloSwapRouteForToken0 Array of structs containing our swap route to go from VELO to token0.
/// @param _veloSwapRouteForToken1 Array of structs containing our swap route to go from VELO to token1.
function initialize(
address _vault,
address _strategist,
address _rewards,
address _keeper,
address _gauge,
IVelodromeRouter.Routes[] memory _veloSwapRouteForToken0,
IVelodromeRouter.Routes[] memory _veloSwapRouteForToken1
) public {
_initialize(_vault, _strategist, _rewards, _keeper);
_initializeStrat(
_gauge,
_veloSwapRouteForToken0,
_veloSwapRouteForToken1
);
}
// this is called by our original strategy, as well as any clones
function _initializeStrat(
address _gauge,
IVelodromeRouter.Routes[] memory _veloSwapRouteForToken0,
IVelodromeRouter.Routes[] memory _veloSwapRouteForToken1
) internal {
// make sure that we haven't initialized this before
if (address(gauge) != address(0)) {
revert("already initialized");
}
// gauge, giver of life and VELO
gauge = IVelodromeGauge(_gauge);
// make sure we have the right gauge for our want
if (gauge.stakingToken() != address(want)) {
revert("gauge pool mismatch");
}
// check our pool to see if it is stable or volatile, get pool tokens as well (pool = want)
IVelodromePool pool = IVelodromePool(address(want));
isStablePool = pool.stable();
poolToken0 = IERC20(pool.token0());
poolToken1 = IERC20(pool.token1());
factory = pool.factory();
// create our route state vars
for (uint i; i < _veloSwapRouteForToken0.length; ++i) {
swapRouteForToken0.push(_veloSwapRouteForToken0[i]);
}
for (uint i; i < _veloSwapRouteForToken1.length; ++i) {
swapRouteForToken1.push(_veloSwapRouteForToken1[i]);
}
// check to make sure our routes are reasonably correct
if (address(poolToken0) != address(velo)) {
if (
swapRouteForToken0[0].from != address(velo) ||
address(poolToken0) !=
swapRouteForToken0[_veloSwapRouteForToken0.length - 1].to
) {
revert("token0 route error");
}
}
if (address(poolToken1) != address(velo)) {
if (
swapRouteForToken1[0].from != address(velo) ||
address(poolToken1) !=
swapRouteForToken1[_veloSwapRouteForToken1.length - 1].to
) {
revert("token1 route error");
}
}
// set up our baseStrategy vars
maxReportDelay = 30 days;
creditThreshold = 50_000e18;
harvestProfitMinInUsdc = 1_000e6;
harvestProfitMaxInUsdc = 100_000e6;
// want = Velodrome LP/pool
want.approve(_gauge, type(uint256).max);
poolToken0.safeApprove(address(router), type(uint256).max);
poolToken1.safeApprove(address(router), type(uint256).max);
velo.approve(address(router), type(uint256).max);
// set our strategy's name
stratName = string(
abi.encodePacked(
"StrategyAerodromeFactory-",
IDetails(address(want)).symbol()
)
);
}
/* ========== VIEWS ========== */
/// @notice Strategy name.
function name() external view override returns (string memory) {
return stratName;
}
/// @notice Balance of want staked in Velodrome's gauge.
function stakedBalance() public view returns (uint256) {
return gauge.balanceOf(address(this));
}
/// @notice Balance of want sitting in our strategy.
function balanceOfWant() public view returns (uint256) {
return want.balanceOf(address(this));
}
/// @notice Total assets the strategy holds, sum of loose and staked want.
function estimatedTotalAssets() public view override returns (uint256) {
return balanceOfWant() + stakedBalance();
}
/// @notice Claimable VELO rewards. We use this for triggering harvests.
function claimableRewards() public view returns (uint256) {
return gauge.earned(address(this));
}
/// @notice Use this to check our current swap route of VELO to token0.
/// @dev Since this is a factory, users may set non-optimal paths or liquidity may change over time.
/// @return Array of tokens we swap through.
function veloRouteToToken0() external view returns (address[] memory) {
IVelodromeRouter.Routes[] memory _route = swapRouteForToken0;
return _veloToRoute(_route);
}
/// @notice Use this to check our current swap route of VELO to token1.
/// @dev Since this is a factory, users may set non-optimal paths or liquidity may change over time.
/// @return Array of tokens we swap through.
function veloRouteToToken1() external view returns (address[] memory) {
IVelodromeRouter.Routes[] memory _route = swapRouteForToken1;
return _veloToRoute(_route);
}
/// @dev Credit to beefy for this useful helper function, 0xd0B6809f9b6FdeC41280e0C843B4C232425d8015, MIT license
function _veloToRoute(
IVelodromeRouter.Routes[] memory _route
) internal pure returns (address[] memory) {
address[] memory route = new address[](_route.length + 1);
route[0] = _route[0].from;
for (uint i; i < _route.length; ++i) {
route[i + 1] = _route[i].to;
}
return route;
}
/* ========== CORE STRATEGY FUNCTIONS ========== */
function prepareReturn(
uint256 _debtOutstanding
)
internal
override
returns (uint256 _profit, uint256 _loss, uint256 _debtPayment)
{
// harvest no matter what
gauge.getReward(address(this));
uint256 veloBalance = velo.balanceOf(address(this));
// by default this is zero, but if we want any for our voter this will be used
uint256 _localKeepVELO = localKeepVELO;
address _veloVoter = veloVoter;
if (_localKeepVELO > 0 && _veloVoter != address(0)) {
uint256 sendToVoter;
unchecked {
sendToVoter = (veloBalance * _localKeepVELO) / FEE_DENOMINATOR;
}
if (sendToVoter > 0) {
velo.safeTransfer(_veloVoter, sendToVoter);
}
veloBalance = velo.balanceOf(address(this));
}
// don't bother if we don't get at least 10 VELO
if (veloBalance > 10e18) {
// sell rewards for more want, have to add from both sides.
uint256 amountToSwapToken0 = veloBalance / 2;
uint256 amountToSwapToken1 = veloBalance - amountToSwapToken0;
// if stable, do some more fancy math, not as easy as swapping half
if (isStablePool) {
uint256 ratio = router.quoteStableLiquidityRatio(
address(poolToken0),
address(poolToken1),
factory
);
amountToSwapToken1 = (veloBalance * ratio) / 1e18;
amountToSwapToken0 = veloBalance - amountToSwapToken1;
}
if (address(poolToken0) != address(velo)) {
if (isFeeOnTransfer) {
router
.swapExactTokensForTokensSupportingFeeOnTransferTokens(
amountToSwapToken0,
0,
swapRouteForToken0,
address(this),
block.timestamp
);
} else {
router.swapExactTokensForTokens(
amountToSwapToken0,
0,
swapRouteForToken0,
address(this),
block.timestamp
);
}
}
if (address(poolToken1) != address(velo)) {
if (isFeeOnTransfer) {
router
.swapExactTokensForTokensSupportingFeeOnTransferTokens(
amountToSwapToken1,
0,
swapRouteForToken1,
address(this),
block.timestamp
);
} else {
router.swapExactTokensForTokens(
amountToSwapToken1,
0,
swapRouteForToken1,
address(this),
block.timestamp
);
}
}
// check and see what we have after swaps
uint256 balanceToken0 = poolToken0.balanceOf(address(this));
uint256 balanceToken1 = poolToken1.balanceOf(address(this));
// deposit our liquidity, should have minimal remaining in strategy after this
router.addLiquidity(
address(poolToken0),
address(poolToken1),
isStablePool,
balanceToken0,
balanceToken1,
0,
0,
address(this),
block.timestamp
);
}
// serious loss should never happen, but if it does (for instance, if Ramses is hacked), let's record it accurately
uint256 assets = estimatedTotalAssets();
uint256 debt = vault.strategies(address(this)).totalDebt;
// if assets are greater than debt, things are working great!
if (assets >= debt) {
unchecked {
_profit = assets - debt;
}
_debtPayment = _debtOutstanding;
uint256 toFree = _profit + _debtPayment;
// freed is math.min(wantBalance, toFree)
(uint256 freed, ) = liquidatePosition(toFree);
if (toFree > freed) {
if (_debtPayment > freed) {
_debtPayment = freed;
_profit = 0;
} else {
unchecked {
_profit = freed - _debtPayment;
}
}
}
}
// if assets are less than debt, we are in trouble. don't worry about withdrawing here, just report losses
else {
unchecked {
_loss = debt - assets;
}
}
}
function adjustPosition(uint256 _debtOutstanding) internal override {
// if in emergency exit, we don't want to deploy any more funds
if (emergencyExit) {
return;
}
// Deposit all of our LP tokens in the gauge
uint256 toInvest = balanceOfWant();
if (toInvest > 0) {
gauge.deposit(toInvest);
}
}
function liquidatePosition(
uint256 _amountNeeded
) internal override returns (uint256 _liquidatedAmount, uint256 _loss) {
// check our loose want
uint256 wantBal = balanceOfWant();
if (_amountNeeded > wantBal) {
uint256 stakedBal = stakedBalance();
if (stakedBal > 0) {
uint256 neededFromStaked;
unchecked {
neededFromStaked = _amountNeeded - wantBal;
}
// withdraw whatever extra funds we need
gauge.withdraw(Math.min(stakedBal, neededFromStaked));
}
uint256 withdrawnBal = balanceOfWant();
_liquidatedAmount = Math.min(_amountNeeded, withdrawnBal);
unchecked {
_loss = _amountNeeded - _liquidatedAmount;
}
} else {
// we have enough balance to cover the liquidation available
return (_amountNeeded, 0);
}
}
// fire sale, get rid of it all!
function liquidateAllPositions() internal override returns (uint256) {
uint256 stakedBal = stakedBalance();
if (stakedBal > 0) {
// don't bother withdrawing zero, save gas where we can
gauge.withdraw(stakedBal);
}
return balanceOfWant();
}
// migrate our want token to a new strategy if needed, as well as our VELO
function prepareMigration(address _newStrategy) internal override {
uint256 stakedBal = stakedBalance();
if (stakedBal > 0) {
gauge.withdraw(stakedBal);
}
uint256 veloBal = velo.balanceOf(address(this));
if (veloBal > 0) {
velo.safeTransfer(_newStrategy, veloBal);
}
}
// want is blocked by default, add any other tokens to protect from gov here.
function protectedTokens()
internal
view
override
returns (address[] memory)
{}
/// @notice In case we enter emergencyExit before harvesting, vault managers can use this function to claim our last rewards.
function manualRewardClaim() external onlyVaultManagers {
gauge.getReward(address(this));
}
/* ========== KEEP3RS ========== */
/**
* @notice
* Provide a signal to the keeper that harvest() should be called.
*
* Don't harvest if a strategy is inactive.
* If we exceed our max delay, then harvest no matter what. For
* our min delay, credit threshold, and manual force trigger,
* only harvest if our gas price is acceptable.
*
* @param callCostinEth The keeper's estimated gas cost to call harvest() (in wei).
* @return True if harvest() should be called, false otherwise.
*/
function harvestTrigger(
uint256 callCostinEth
) public view override returns (bool) {
// Should not trigger if strategy is not active (no assets and no debtRatio). This means we don't need to adjust keeper job.
if (!isActive()) {
return false;
}
// harvest if we have a profit to claim at our upper limit without considering gas price
uint256 claimableProfit = claimableProfitInUsdc();
if (claimableProfit > harvestProfitMaxInUsdc) {
return true;
}
// check if the base fee gas price is higher than we allow. if it is, block harvests.
if (!isBaseFeeAcceptable()) {
return false;
}
// trigger if we want to manually harvest, but only if our gas price is acceptable
if (forceHarvestTriggerOnce) {
return true;
}
// harvest if we have a sufficient profit to claim, but only if our gas price is acceptable
if (claimableProfit > harvestProfitMinInUsdc) {
return true;
}
StrategyParams memory params = vault.strategies(address(this));
// harvest regardless of profit once we reach our maxDelay
if (block.timestamp - params.lastReport > maxReportDelay) {
return true;
}
// harvest our credit if it's above our threshold
if (vault.creditAvailable() > creditThreshold) {
return true;
}
// otherwise, we don't harvest
return false;
}
/// @notice Calculates the profit if all claimable VELO were sold for USDC (6 decimals).
/// @dev Calls Velodrome's VELO-USDC pool directly.
/// @return Total return in USDC from selling claimable VELO.
function claimableProfitInUsdc() public view returns (uint256) {
// check price on our VELOv2/USDC pool
uint256 veloPrice = IVelodromePool(
0x2223F9FE624F69Da4D8256A7bCc9104FBA7F8f75
).getAmountOut(1e18, address(velo));
// Pool returns amount as 6 decimals, so multiply by claimable VELO and divide by VELO decimals (1e18)
return (veloPrice * claimableRewards()) / 1e18;
}
/// @notice Convert our keeper's eth cost into want
/// @dev We don't use this since we don't factor call cost into our harvestTrigger.
/// @param _ethAmount Amount of ether spent.
/// @return Value of ether in want.
function ethToWant(
uint256 _ethAmount
) public view override returns (uint256) {}
/* ========== SETTERS ========== */
// These functions are useful for setting parameters of the strategy that may need to be adjusted.
/**
* @notice
* Here we set various parameters to optimize our harvestTrigger.
* @param _harvestProfitMinInUsdc The amount of profit (in USDC, 6 decimals)
* that will trigger a harvest if gas price is acceptable.
* @param _harvestProfitMaxInUsdc The amount of profit in USDC that
* will trigger a harvest regardless of gas price.
*/
function setHarvestTriggerParams(
uint256 _harvestProfitMinInUsdc,
uint256 _harvestProfitMaxInUsdc
) external onlyVaultManagers {
harvestProfitMinInUsdc = _harvestProfitMinInUsdc;
harvestProfitMaxInUsdc = _harvestProfitMaxInUsdc;
}
/// @notice Here we can override the swap routes set on deployment.
/// @dev Must be called by gov or management.
/// @param _newSwapRouteForToken0 Swap route for VELO -> token0, using Routes structs.
/// @param _newSwapRouteForToken1 Swap route for VELO -> token1, using Routes structs.
/// @param _isFeeOnTransfer Set to true if we have rebasing or fee on transfer tokens in the route.
function setSwapRoutes(
IVelodromeRouter.Routes[] memory _newSwapRouteForToken0,
IVelodromeRouter.Routes[] memory _newSwapRouteForToken1,
bool _isFeeOnTransfer
) external onlyVaultManagers {
delete swapRouteForToken0;
delete swapRouteForToken1;
isFeeOnTransfer = _isFeeOnTransfer;
for (uint i; i < _newSwapRouteForToken0.length; ++i) {
swapRouteForToken0.push(_newSwapRouteForToken0[i]);
}
for (uint i; i < _newSwapRouteForToken1.length; ++i) {
swapRouteForToken1.push(_newSwapRouteForToken1[i]);
}
// check our swap paths end with our correct token, but only if it's not VELO
if (
address(poolToken0) != address(velo) &&
address(poolToken0) !=
swapRouteForToken0[_newSwapRouteForToken0.length - 1].to
) {
revert("token0 route error");
}
if (
address(poolToken1) != address(velo) &&
address(poolToken1) !=
swapRouteForToken1[_newSwapRouteForToken1.length - 1].to
) {
revert("token1 route error");
}
}
/// @notice Use this to set or update our keep amounts for this strategy.
/// @dev Must be less than 10,000. Set in basis points. Only governance can set this.
/// @param _keepVelo Percent of each VELO harvest to send to our voter.
function setLocalKeepVelo(uint256 _keepVelo) external onlyGovernance {
if (_keepVelo > 10_000) {
revert();
}
if (_keepVelo > 0 && veloVoter == address(0)) {
revert();
}
localKeepVELO = _keepVelo;
}
/// @notice Use this to set or update our voter contracts.
/// @dev For Velo strategies, this is where we send our keepVELO.
/// Only governance can set this.
/// @param _veloVoter Address of our velodrome voter.
function setVoter(address _veloVoter) external onlyGovernance {
veloVoter = _veloVoter;
}
}
{
"compilationTarget": {
"contracts/StrategyVelodromeFactoryClonable.sol": "StrategyVelodromeFactoryClonable"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"address","name":"_gauge","type":"address"},{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bool","name":"stable","type":"bool"},{"internalType":"address","name":"factory","type":"address"}],"internalType":"struct IVelodromeRouter.Routes[]","name":"_veloSwapRouteForToken0","type":"tuple[]"},{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bool","name":"stable","type":"bool"},{"internalType":"address","name":"factory","type":"address"}],"internalType":"struct IVelodromeRouter.Routes[]","name":"_veloSwapRouteForToken1","type":"tuple[]"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"clone","type":"address"}],"name":"Cloned","type":"event"},{"anonymous":false,"inputs":[],"name":"EmergencyExitEnabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"triggerState","type":"bool"}],"name":"ForcedHarvestTrigger","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"profit","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"loss","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"debtPayment","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"debtOutstanding","type":"uint256"}],"name":"Harvested","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"","type":"bool"}],"name":"SetDoHealthCheck","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"","type":"address"}],"name":"SetHealthCheck","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"baseFeeOracle","type":"address"}],"name":"UpdatedBaseFeeOracle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"creditThreshold","type":"uint256"}],"name":"UpdatedCreditThreshold","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newKeeper","type":"address"}],"name":"UpdatedKeeper","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"delay","type":"uint256"}],"name":"UpdatedMaxReportDelay","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"metadataURI","type":"string"}],"name":"UpdatedMetadataURI","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"delay","type":"uint256"}],"name":"UpdatedMinReportDelay","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"rewards","type":"address"}],"name":"UpdatedRewards","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newStrategist","type":"address"}],"name":"UpdatedStrategist","type":"event"},{"inputs":[],"name":"apiVersion","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"balanceOfWant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseFeeOracle","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimableProfitInUsdc","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimableRewards","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"address","name":"_strategist","type":"address"},{"internalType":"address","name":"_rewards","type":"address"},{"internalType":"address","name":"_keeper","type":"address"},{"internalType":"address","name":"_gauge","type":"address"},{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bool","name":"stable","type":"bool"},{"internalType":"address","name":"factory","type":"address"}],"internalType":"struct IVelodromeRouter.Routes[]","name":"_veloSwapRouteForToken0","type":"tuple[]"},{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bool","name":"stable","type":"bool"},{"internalType":"address","name":"factory","type":"address"}],"internalType":"struct IVelodromeRouter.Routes[]","name":"_veloSwapRouteForToken1","type":"tuple[]"}],"name":"cloneStrategyVelodrome","outputs":[{"internalType":"address","name":"newStrategy","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"creditThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"delegatedAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"doHealthCheck","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"emergencyExit","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"estimatedTotalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_ethAmount","type":"uint256"}],"name":"ethToWant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"forceHarvestTriggerOnce","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gauge","outputs":[{"internalType":"contract IVelodromeGauge","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"harvest","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"harvestProfitMaxInUsdc","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"harvestProfitMinInUsdc","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"callCostinEth","type":"uint256"}],"name":"harvestTrigger","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"healthCheck","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"address","name":"_strategist","type":"address"},{"internalType":"address","name":"_rewards","type":"address"},{"internalType":"address","name":"_keeper","type":"address"},{"internalType":"address","name":"_gauge","type":"address"},{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bool","name":"stable","type":"bool"},{"internalType":"address","name":"factory","type":"address"}],"internalType":"struct IVelodromeRouter.Routes[]","name":"_veloSwapRouteForToken0","type":"tuple[]"},{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bool","name":"stable","type":"bool"},{"internalType":"address","name":"factory","type":"address"}],"internalType":"struct IVelodromeRouter.Routes[]","name":"_veloSwapRouteForToken1","type":"tuple[]"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isBaseFeeAcceptable","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isFeeOnTransfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isOriginal","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isStablePool","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"keeper","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"localKeepVELO","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"manualRewardClaim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"maxReportDelay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"metadataURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newStrategy","type":"address"}],"name":"migrate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"minReportDelay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolToken0","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolToken1","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewards","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"router","outputs":[{"internalType":"contract IVelodromeRouter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_baseFeeOracle","type":"address"}],"name":"setBaseFeeOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_creditThreshold","type":"uint256"}],"name":"setCreditThreshold","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_doHealthCheck","type":"bool"}],"name":"setDoHealthCheck","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setEmergencyExit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_forceHarvestTriggerOnce","type":"bool"}],"name":"setForceHarvestTriggerOnce","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_harvestProfitMinInUsdc","type":"uint256"},{"internalType":"uint256","name":"_harvestProfitMaxInUsdc","type":"uint256"}],"name":"setHarvestTriggerParams","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_healthCheck","type":"address"}],"name":"setHealthCheck","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_keeper","type":"address"}],"name":"setKeeper","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_keepVelo","type":"uint256"}],"name":"setLocalKeepVelo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_delay","type":"uint256"}],"name":"setMaxReportDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_metadataURI","type":"string"}],"name":"setMetadataURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_delay","type":"uint256"}],"name":"setMinReportDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewards","type":"address"}],"name":"setRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_strategist","type":"address"}],"name":"setStrategist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bool","name":"stable","type":"bool"},{"internalType":"address","name":"factory","type":"address"}],"internalType":"struct IVelodromeRouter.Routes[]","name":"_newSwapRouteForToken0","type":"tuple[]"},{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bool","name":"stable","type":"bool"},{"internalType":"address","name":"factory","type":"address"}],"internalType":"struct IVelodromeRouter.Routes[]","name":"_newSwapRouteForToken1","type":"tuple[]"},{"internalType":"bool","name":"_isFeeOnTransfer","type":"bool"}],"name":"setSwapRoutes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_veloVoter","type":"address"}],"name":"setVoter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stakedBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"strategist","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"swapRouteForToken0","outputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bool","name":"stable","type":"bool"},{"internalType":"address","name":"factory","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"swapRouteForToken1","outputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bool","name":"stable","type":"bool"},{"internalType":"address","name":"factory","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"sweep","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"tend","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"callCostInWei","type":"uint256"}],"name":"tendTrigger","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vault","outputs":[{"internalType":"contract VaultAPI","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"velo","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"veloRouteToToken0","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"veloRouteToToken1","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"veloVoter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"want","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amountNeeded","type":"uint256"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"_loss","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]