// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "./IAdminControl.sol";
abstract contract AdminControl is Ownable, IAdminControl, ERC165 {
using EnumerableSet for EnumerableSet.AddressSet;
// Track registered admins
EnumerableSet.AddressSet private _admins;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return interfaceId == type(IAdminControl).interfaceId
|| super.supportsInterface(interfaceId);
}
/**
* @dev Only allows approved admins to call the specified function
*/
modifier adminRequired() {
require(owner() == msg.sender || _admins.contains(msg.sender), "AdminControl: Must be owner or admin");
_;
}
/**
* @dev See {IAdminControl-getAdmins}.
*/
function getAdmins() external view override returns (address[] memory admins) {
admins = new address[](_admins.length());
for (uint i = 0; i < _admins.length(); i++) {
admins[i] = _admins.at(i);
}
return admins;
}
/**
* @dev See {IAdminControl-approveAdmin}.
*/
function approveAdmin(address admin) external override onlyOwner {
if (!_admins.contains(admin)) {
emit AdminApproved(admin, msg.sender);
_admins.add(admin);
}
}
/**
* @dev See {IAdminControl-revokeAdmin}.
*/
function revokeAdmin(address admin) external override onlyOwner {
if (_admins.contains(admin)) {
emit AdminRevoked(admin, msg.sender);
_admins.remove(admin);
}
}
/**
* @dev See {IAdminControl-isAdmin}.
*/
function isAdmin(address admin) public override view returns (bool) {
return (owner() == admin || _admins.contains(admin));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library to encode strings in Base64.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Base64.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Base64.sol)
/// @author Modified from (https://github.com/Brechtpd/base64/blob/main/base64.sol) by Brecht Devos - <brecht@loopring.org>.
library Base64 {
/// @dev Encodes `data` using the base64 encoding described in RFC 4648.
/// See: https://datatracker.ietf.org/doc/html/rfc4648
/// @param fileSafe Whether to replace '+' with '-' and '/' with '_'.
/// @param noPadding Whether to strip away the padding.
function encode(bytes memory data, bool fileSafe, bool noPadding)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let dataLength := mload(data)
if dataLength {
// Multiply by 4/3 rounded up.
// The `shl(2, ...)` is equivalent to multiplying by 4.
let encodedLength := shl(2, div(add(dataLength, 2), 3))
// Set `result` to point to the start of the free memory.
result := mload(0x40)
// Store the table into the scratch space.
// Offsetted by -1 byte so that the `mload` will load the character.
// We will rewrite the free memory pointer at `0x40` later with
// the allocated size.
// The magic constant 0x0670 will turn "-_" into "+/".
mstore(0x1f, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef")
mstore(0x3f, xor("ghijklmnopqrstuvwxyz0123456789-_", mul(iszero(fileSafe), 0x0670)))
// Skip the first slot, which stores the length.
let ptr := add(result, 0x20)
let end := add(ptr, encodedLength)
let dataEnd := add(add(0x20, data), dataLength)
let dataEndValue := mload(dataEnd) // Cache the value at the `dataEnd` slot.
mstore(dataEnd, 0x00) // Zeroize the `dataEnd` slot to clear dirty bits.
// Run over the input, 3 bytes at a time.
for {} 1 {} {
data := add(data, 3) // Advance 3 bytes.
let input := mload(data)
// Write 4 bytes. Optimized for fewer stack operations.
mstore8(0, mload(and(shr(18, input), 0x3F)))
mstore8(1, mload(and(shr(12, input), 0x3F)))
mstore8(2, mload(and(shr(6, input), 0x3F)))
mstore8(3, mload(and(input, 0x3F)))
mstore(ptr, mload(0x00))
ptr := add(ptr, 4) // Advance 4 bytes.
if iszero(lt(ptr, end)) { break }
}
mstore(dataEnd, dataEndValue) // Restore the cached value at `dataEnd`.
mstore(0x40, add(end, 0x20)) // Allocate the memory.
// Equivalent to `o = [0, 2, 1][dataLength % 3]`.
let o := div(2, mod(dataLength, 3))
// Offset `ptr` and pad with '='. We can simply write over the end.
mstore(sub(ptr, o), shl(240, 0x3d3d))
// Set `o` to zero if there is padding.
o := mul(iszero(iszero(noPadding)), o)
mstore(sub(ptr, o), 0) // Zeroize the slot after the string.
mstore(result, sub(encodedLength, o)) // Store the length.
}
}
}
/// @dev Encodes `data` using the base64 encoding described in RFC 4648.
/// Equivalent to `encode(data, false, false)`.
function encode(bytes memory data) internal pure returns (string memory result) {
result = encode(data, false, false);
}
/// @dev Encodes `data` using the base64 encoding described in RFC 4648.
/// Equivalent to `encode(data, fileSafe, false)`.
function encode(bytes memory data, bool fileSafe)
internal
pure
returns (string memory result)
{
result = encode(data, fileSafe, false);
}
/// @dev Decodes base64 encoded `data`.
///
/// Supports:
/// - RFC 4648 (both standard and file-safe mode).
/// - RFC 3501 (63: ',').
///
/// Does not support:
/// - Line breaks.
///
/// Note: For performance reasons,
/// this function will NOT revert on invalid `data` inputs.
/// Outputs for invalid inputs will simply be undefined behaviour.
/// It is the user's responsibility to ensure that the `data`
/// is a valid base64 encoded string.
function decode(string memory data) internal pure returns (bytes memory result) {
/// @solidity memory-safe-assembly
assembly {
let dataLength := mload(data)
if dataLength {
let decodedLength := mul(shr(2, dataLength), 3)
for {} 1 {} {
// If padded.
if iszero(and(dataLength, 3)) {
let t := xor(mload(add(data, dataLength)), 0x3d3d)
// forgefmt: disable-next-item
decodedLength := sub(
decodedLength,
add(iszero(byte(30, t)), iszero(byte(31, t)))
)
break
}
// If non-padded.
decodedLength := add(decodedLength, sub(and(dataLength, 3), 1))
break
}
result := mload(0x40)
// Write the length of the bytes.
mstore(result, decodedLength)
// Skip the first slot, which stores the length.
let ptr := add(result, 0x20)
let end := add(ptr, decodedLength)
// Load the table into the scratch space.
// Constants are optimized for smaller bytecode with zero gas overhead.
// `m` also doubles as the mask of the upper 6 bits.
let m := 0xfc000000fc00686c7074787c8084888c9094989ca0a4a8acb0b4b8bcc0c4c8cc
mstore(0x5b, m)
mstore(0x3b, 0x04080c1014181c2024282c3034383c4044484c5054585c6064)
mstore(0x1a, 0xf8fcf800fcd0d4d8dce0e4e8ecf0f4)
for {} 1 {} {
// Read 4 bytes.
data := add(data, 4)
let input := mload(data)
// Write 3 bytes.
// forgefmt: disable-next-item
mstore(ptr, or(
and(m, mload(byte(28, input))),
shr(6, or(
and(m, mload(byte(29, input))),
shr(6, or(
and(m, mload(byte(30, input))),
shr(6, mload(byte(31, input)))
))
))
))
ptr := add(ptr, 3)
if iszero(lt(ptr, end)) { break }
}
mstore(0x40, add(end, 0x20)) // Allocate the memory.
mstore(end, 0) // Zeroize the slot after the bytes.
mstore(0x60, 0) // Restore the zero slot.
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import "@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol";
import "../extensions/ICreatorExtensionTokenURI.sol";
import "../extensions/ICreatorExtensionRoyalties.sol";
import "./ICreatorCore.sol";
/**
* @dev Core creator implementation
*/
abstract contract CreatorCore is ReentrancyGuard, ICreatorCore, ERC165 {
using Strings for uint256;
using EnumerableSet for EnumerableSet.AddressSet;
using AddressUpgradeable for address;
uint256 internal _tokenCount = 0;
// Base approve transfers address location
address internal _approveTransferBase;
// Track registered extensions data
EnumerableSet.AddressSet internal _extensions;
EnumerableSet.AddressSet internal _blacklistedExtensions;
// The baseURI for a given extension
mapping (address => string) private _extensionBaseURI;
mapping (address => bool) private _extensionBaseURIIdentical;
// The prefix for any tokens with a uri configured
mapping (address => string) private _extensionURIPrefix;
// Mapping for individual token URIs
mapping (uint256 => string) internal _tokenURIs;
// Royalty configurations
struct RoyaltyConfig {
address payable receiver;
uint16 bps;
}
mapping (address => RoyaltyConfig[]) internal _extensionRoyalty;
mapping (uint256 => RoyaltyConfig[]) internal _tokenRoyalty;
bytes4 private constant _CREATOR_CORE_V1 = 0x28f10a21;
/**
* External interface identifiers for royalties
*/
/**
* @dev CreatorCore
*
* bytes4(keccak256('getRoyalties(uint256)')) == 0xbb3bafd6
*
* => 0xbb3bafd6 = 0xbb3bafd6
*/
bytes4 private constant _INTERFACE_ID_ROYALTIES_CREATORCORE = 0xbb3bafd6;
/**
* @dev Rarible: RoyaltiesV1
*
* bytes4(keccak256('getFeeRecipients(uint256)')) == 0xb9c4d9fb
* bytes4(keccak256('getFeeBps(uint256)')) == 0x0ebd4c7f
*
* => 0xb9c4d9fb ^ 0x0ebd4c7f = 0xb7799584
*/
bytes4 private constant _INTERFACE_ID_ROYALTIES_RARIBLE = 0xb7799584;
/**
* @dev Foundation
*
* bytes4(keccak256('getFees(uint256)')) == 0xd5a06d4c
*
* => 0xd5a06d4c = 0xd5a06d4c
*/
bytes4 private constant _INTERFACE_ID_ROYALTIES_FOUNDATION = 0xd5a06d4c;
/**
* @dev EIP-2981
*
* bytes4(keccak256("royaltyInfo(uint256,uint256)")) == 0x2a55205a
*
* => 0x2a55205a = 0x2a55205a
*/
bytes4 private constant _INTERFACE_ID_ROYALTIES_EIP2981 = 0x2a55205a;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return interfaceId == type(ICreatorCore).interfaceId || interfaceId == _CREATOR_CORE_V1 || super.supportsInterface(interfaceId)
|| interfaceId == _INTERFACE_ID_ROYALTIES_CREATORCORE || interfaceId == _INTERFACE_ID_ROYALTIES_RARIBLE
|| interfaceId == _INTERFACE_ID_ROYALTIES_FOUNDATION || interfaceId == _INTERFACE_ID_ROYALTIES_EIP2981;
}
/**
* @dev Only allows registered extensions to call the specified function
*/
function requireExtension() internal view {
require(_extensions.contains(msg.sender), "Must be registered extension");
}
/**
* @dev Only allows non-blacklisted extensions
*/
function requireNonBlacklist(address extension) internal view {
require(!_blacklistedExtensions.contains(extension), "Extension blacklisted");
}
/**
* @dev See {ICreatorCore-getExtensions}.
*/
function getExtensions() external view override returns (address[] memory extensions) {
extensions = new address[](_extensions.length());
for (uint i; i < _extensions.length();) {
extensions[i] = _extensions.at(i);
unchecked { ++i; }
}
return extensions;
}
/**
* @dev Register an extension
*/
function _registerExtension(address extension, string calldata baseURI, bool baseURIIdentical) internal virtual {
require(extension != address(this) && extension.isContract(), "Invalid");
emit ExtensionRegistered(extension, msg.sender);
_extensionBaseURI[extension] = baseURI;
_extensionBaseURIIdentical[extension] = baseURIIdentical;
_extensions.add(extension);
_setApproveTransferExtension(extension, true);
}
/**
* @dev See {ICreatorCore-setApproveTransferExtension}.
*/
function setApproveTransferExtension(bool enabled) external override {
requireExtension();
_setApproveTransferExtension(msg.sender, enabled);
}
/**
* @dev Set whether or not tokens minted by the extension defers transfer approvals to the extension
*/
function _setApproveTransferExtension(address extension, bool enabled) internal virtual;
/**
* @dev Unregister an extension
*/
function _unregisterExtension(address extension) internal {
emit ExtensionUnregistered(extension, msg.sender);
_extensions.remove(extension);
}
/**
* @dev Blacklist an extension
*/
function _blacklistExtension(address extension) internal {
require(extension != address(0) && extension != address(this), "Cannot blacklist yourself");
if (_extensions.contains(extension)) {
emit ExtensionUnregistered(extension, msg.sender);
_extensions.remove(extension);
}
if (!_blacklistedExtensions.contains(extension)) {
emit ExtensionBlacklisted(extension, msg.sender);
_blacklistedExtensions.add(extension);
}
}
/**
* @dev Set base token uri for an extension
*/
function _setBaseTokenURIExtension(string calldata uri, bool identical) internal {
_extensionBaseURI[msg.sender] = uri;
_extensionBaseURIIdentical[msg.sender] = identical;
}
/**
* @dev Set token uri prefix for an extension
*/
function _setTokenURIPrefixExtension(string calldata prefix) internal {
_extensionURIPrefix[msg.sender] = prefix;
}
/**
* @dev Set token uri for a token of an extension
*/
function _setTokenURIExtension(uint256 tokenId, string calldata uri) internal {
require(_tokenExtension(tokenId) == msg.sender, "Invalid token");
_tokenURIs[tokenId] = uri;
}
/**
* @dev Set base token uri for tokens with no extension
*/
function _setBaseTokenURI(string calldata uri) internal {
_extensionBaseURI[address(0)] = uri;
}
/**
* @dev Set token uri prefix for tokens with no extension
*/
function _setTokenURIPrefix(string calldata prefix) internal {
_extensionURIPrefix[address(0)] = prefix;
}
/**
* @dev Set token uri for a token with no extension
*/
function _setTokenURI(uint256 tokenId, string calldata uri) internal {
require(tokenId > 0 && tokenId <= _tokenCount && _tokenExtension(tokenId) == address(0), "Invalid token");
_tokenURIs[tokenId] = uri;
}
/**
* @dev Retrieve a token's URI
*/
function _tokenURI(uint256 tokenId) internal view returns (string memory) {
require(tokenId > 0 && tokenId <= _tokenCount, "Invalid token");
address extension = _tokenExtension(tokenId);
require(!_blacklistedExtensions.contains(extension), "Extension blacklisted");
if (bytes(_tokenURIs[tokenId]).length != 0) {
if (bytes(_extensionURIPrefix[extension]).length != 0) {
return string(abi.encodePacked(_extensionURIPrefix[extension], _tokenURIs[tokenId]));
}
return _tokenURIs[tokenId];
}
if (ERC165Checker.supportsInterface(extension, type(ICreatorExtensionTokenURI).interfaceId)) {
return ICreatorExtensionTokenURI(extension).tokenURI(address(this), tokenId);
}
if (!_extensionBaseURIIdentical[extension]) {
return string(abi.encodePacked(_extensionBaseURI[extension], tokenId.toString()));
} else {
return _extensionBaseURI[extension];
}
}
/**
* Helper to get royalties for a token
*/
function _getRoyalties(uint256 tokenId) view internal returns (address payable[] memory receivers, uint256[] memory bps) {
// Get token level royalties
RoyaltyConfig[] memory royalties = _tokenRoyalty[tokenId];
if (royalties.length == 0) {
// Get extension specific royalties
address extension = _tokenExtension(tokenId);
if (extension != address(0)) {
if (ERC165Checker.supportsInterface(extension, type(ICreatorExtensionRoyalties).interfaceId)) {
(receivers, bps) = ICreatorExtensionRoyalties(extension).getRoyalties(address(this), tokenId);
// Extension override exists, just return that
if (receivers.length > 0) return (receivers, bps);
}
royalties = _extensionRoyalty[extension];
}
}
if (royalties.length == 0) {
// Get the default royalty
royalties = _extensionRoyalty[address(0)];
}
if (royalties.length > 0) {
receivers = new address payable[](royalties.length);
bps = new uint256[](royalties.length);
for (uint i; i < royalties.length;) {
receivers[i] = royalties[i].receiver;
bps[i] = royalties[i].bps;
unchecked { ++i; }
}
}
}
/**
* Helper to get royalty receivers for a token
*/
function _getRoyaltyReceivers(uint256 tokenId) view internal returns (address payable[] memory recievers) {
(recievers, ) = _getRoyalties(tokenId);
}
/**
* Helper to get royalty basis points for a token
*/
function _getRoyaltyBPS(uint256 tokenId) view internal returns (uint256[] memory bps) {
(, bps) = _getRoyalties(tokenId);
}
function _getRoyaltyInfo(uint256 tokenId, uint256 value) view internal returns (address receiver, uint256 amount){
(address payable[] memory receivers, uint256[] memory bps) = _getRoyalties(tokenId);
require(receivers.length <= 1, "More than 1 royalty receiver");
if (receivers.length == 0) {
return (address(this), 0);
}
return (receivers[0], bps[0]*value/10000);
}
/**
* Set royalties for a token
*/
function _setRoyalties(uint256 tokenId, address payable[] calldata receivers, uint256[] calldata basisPoints) internal {
_checkRoyalties(receivers, basisPoints);
delete _tokenRoyalty[tokenId];
_setRoyalties(receivers, basisPoints, _tokenRoyalty[tokenId]);
emit RoyaltiesUpdated(tokenId, receivers, basisPoints);
}
/**
* Set royalties for all tokens of an extension
*/
function _setRoyaltiesExtension(address extension, address payable[] calldata receivers, uint256[] calldata basisPoints) internal {
_checkRoyalties(receivers, basisPoints);
delete _extensionRoyalty[extension];
_setRoyalties(receivers, basisPoints, _extensionRoyalty[extension]);
if (extension == address(0)) {
emit DefaultRoyaltiesUpdated(receivers, basisPoints);
} else {
emit ExtensionRoyaltiesUpdated(extension, receivers, basisPoints);
}
}
/**
* Helper function to check that royalties provided are valid
*/
function _checkRoyalties(address payable[] calldata receivers, uint256[] calldata basisPoints) private pure {
require(receivers.length == basisPoints.length, "Invalid input");
uint256 totalBasisPoints;
for (uint i; i < basisPoints.length;) {
totalBasisPoints += basisPoints[i];
unchecked { ++i; }
}
require(totalBasisPoints < 10000, "Invalid total royalties");
}
/**
* Helper function to set royalties
*/
function _setRoyalties(address payable[] calldata receivers, uint256[] calldata basisPoints, RoyaltyConfig[] storage royalties) private {
for (uint i; i < basisPoints.length;) {
royalties.push(
RoyaltyConfig(
{
receiver: receivers[i],
bps: uint16(basisPoints[i])
}
)
);
unchecked { ++i; }
}
}
/**
* @dev Set the base contract's approve transfer contract location
*/
function _setApproveTransferBase(address extension) internal {
_approveTransferBase = extension;
emit ApproveTransferUpdated(extension);
}
/**
* @dev See {ICreatorCore-getApproveTransfer}.
*/
function getApproveTransfer() external view override returns (address) {
return _approveTransferBase;
}
/**
* @dev Get the extension for the given token
*/
function _tokenExtension(uint256 tokenId) internal virtual view returns(address);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/introspection/ERC165Checker.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Library used to query support of an interface declared via {IERC165}.
*
* Note that these functions return the actual result of the query: they do not
* `revert` if an interface is not supported. It is up to the caller to decide
* what to do in these cases.
*/
library ERC165Checker {
// As per the EIP-165 spec, no interface should ever match 0xffffffff
bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff;
/**
* @dev Returns true if `account` supports the {IERC165} interface.
*/
function supportsERC165(address account) internal view returns (bool) {
// Any contract that implements ERC165 must explicitly indicate support of
// InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid
return
supportsERC165InterfaceUnchecked(account, type(IERC165).interfaceId) &&
!supportsERC165InterfaceUnchecked(account, _INTERFACE_ID_INVALID);
}
/**
* @dev Returns true if `account` supports the interface defined by
* `interfaceId`. Support for {IERC165} itself is queried automatically.
*
* See {IERC165-supportsInterface}.
*/
function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) {
// query support of both ERC165 as per the spec and support of _interfaceId
return supportsERC165(account) && supportsERC165InterfaceUnchecked(account, interfaceId);
}
/**
* @dev Returns a boolean array where each value corresponds to the
* interfaces passed in and whether they're supported or not. This allows
* you to batch check interfaces for a contract where your expectation
* is that some interfaces may not be supported.
*
* See {IERC165-supportsInterface}.
*
* _Available since v3.4._
*/
function getSupportedInterfaces(
address account,
bytes4[] memory interfaceIds
) internal view returns (bool[] memory) {
// an array of booleans corresponding to interfaceIds and whether they're supported or not
bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length);
// query support of ERC165 itself
if (supportsERC165(account)) {
// query support of each interface in interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
interfaceIdsSupported[i] = supportsERC165InterfaceUnchecked(account, interfaceIds[i]);
}
}
return interfaceIdsSupported;
}
/**
* @dev Returns true if `account` supports all the interfaces defined in
* `interfaceIds`. Support for {IERC165} itself is queried automatically.
*
* Batch-querying can lead to gas savings by skipping repeated checks for
* {IERC165} support.
*
* See {IERC165-supportsInterface}.
*/
function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) {
// query support of ERC165 itself
if (!supportsERC165(account)) {
return false;
}
// query support of each interface in interfaceIds
for (uint256 i = 0; i < interfaceIds.length; i++) {
if (!supportsERC165InterfaceUnchecked(account, interfaceIds[i])) {
return false;
}
}
// all interfaces supported
return true;
}
/**
* @notice Query if a contract implements an interface, does not check ERC165 support
* @param account The address of the contract to query for support of an interface
* @param interfaceId The interface identifier, as specified in ERC-165
* @return true if the contract at account indicates support of the interface with
* identifier interfaceId, false otherwise
* @dev Assumes that account contains a contract that supports ERC165, otherwise
* the behavior of this method is undefined. This precondition can be checked
* with {supportsERC165}.
*
* Some precompiled contracts will falsely indicate support for a given interface, so caution
* should be exercised when using this function.
*
* Interface identification is specified in ERC-165.
*/
function supportsERC165InterfaceUnchecked(address account, bytes4 interfaceId) internal view returns (bool) {
// prepare call
bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId);
// perform static call
bool success;
uint256 returnSize;
uint256 returnValue;
assembly {
success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20)
returnSize := returndatasize()
returnValue := mload(0x00)
}
return success && returnSize >= 0x20 && returnValue > 0;
}
}
// SPDX-License-Identifier: MIT
/*
▄
▒▒▀ _____ _____.__ ᴅɪɪᴅ ᴀɴᴅ ɴᴏᴜɴs ᴘʀᴇsᴇɴᴛ
▄▒▒ _____/ ____\/ ____\__| ____ _____ ___ ___
▓▒▒ _/ __ \ __\\ __\| |/ ___\\__ \ \ \/ /
▓▒▒▌ \ ___/| | | | | \ \___ / __ \_> <
▓▒▒▒ \___ >__| |__| |__|\___ >____ /__/\_ \
▓▒▒░▒ \/ version 1.4 \/ \/ ⌐◨-◨ \/
▐▒▓▒▒▒▒▒▒ ░▒░░
▓▓▒▓▒▒▒▒▒ ▒▒▒▒▒▒▒░░░░░░░░░░░░░░░░░ ▄
▐▒▓▒▒▒▒▒▒ ▒▒▒▒▒▒▒▒▒░▒░▀▀▒▒▒▀▒▒▒▒░▒░░░░░░░░░░░░░░░░░░░░░▄▄
▀▒▒▒▒▒ ▀▀▀▀▀▒▒▒▒▒▒░░▒▒▒▒▒▒▒░░░▒▒░▒▒░░░░░░░░░░░░░░░░
▓▒▓▓ ▀▀▀▒▒▒░▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒░░░▒░▒▒
▓▀░▓▓
▐▓▒▒▓▓▌
▀▀▒▒▒▓
----------------------
| author: diid.eth |
| funding: nouns dao |
| version: 1.4 |
| license: mit |
----------------------
*/
pragma solidity ^0.8.16;
import "@manifoldxyz/libraries-solidity/contracts/access/AdminControl.sol";
import "@manifoldxyz/creator-core-solidity/contracts/core/IERC721CreatorCore.sol";
import "@manifoldxyz/creator-core-solidity/contracts/core/IERC1155CreatorCore.sol";
import "@manifoldxyz/creator-core-solidity/contracts/extensions/ICreatorExtensionTokenURI.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "solady/src/utils/SSTORE2.sol";
import "solady/src/utils/LibZip.sol";
import "solady/src/utils/Base64.sol";
import "./libraries/InflateLib.sol";
contract Efficax is AdminControl, ICreatorExtensionTokenURI{
struct File {
string mimeType;
address[] chunks;
uint length;
bool zipped;
bool deflated;
}
struct Token {
string metadata;
File image;
File animation;
bool wrapped;
bool locked;
}
struct Options {
string metadata;
File image;
File animation;
bool wrapped;
uint quantity;
}
address diid = 0x735854c506CcEb0b95C949d1acB705b31136d487;
/**
* @notice The mapping that contains the token data for a given creator contract & token id.
*/
mapping(address => mapping(uint256 => Token)) public tokenData;
/**
* @notice A modifier for checking that the sender of the transaction has admin permissions on the Creator Contract they are trying to do something with
*
* Shamelessly borrowed from the Manifold claim page extension.
*
* @param creatorContractAddress The Manifold Creator Contract in question
*/
modifier creatorAdminRequired(address creatorContractAddress) {
AdminControl creatorCoreContract = AdminControl(creatorContractAddress);
require(creatorCoreContract.isAdmin(msg.sender), 'Wallet is not an administrator for contract');
_;
}
/**
* @notice A modifier for checking if a token is locked or can be edited/updated
*
* @param creatorContractAddress The Manifold Creator Contract in question
* @param tokenId The token id in question
*/
modifier tokenUnlocked(address creatorContractAddress, uint256 tokenId) {
require(!tokenData[creatorContractAddress][tokenId].locked, 'Token is locked and cannot be updated.');
_;
}
/**
* @dev safe sets the token metadata, only overwriting string params if they exist
*
* @param creatorContractAddress the contract address for the token
* @param tokenId the token id for the token
* @param options the options to write to the token data
*/
function _setTokenData(address creatorContractAddress, uint256 tokenId, Options calldata options) internal {
if (bytes(options.metadata).length > 0) {
tokenData[creatorContractAddress][tokenId].metadata = options.metadata;
}
if (bytes(options.image.mimeType).length > 0) {
tokenData[creatorContractAddress][tokenId].image.mimeType = options.image.mimeType;
}
if (bytes(options.animation.mimeType).length > 0) {
tokenData[creatorContractAddress][tokenId].animation.mimeType = options.animation.mimeType;
}
tokenData[creatorContractAddress][tokenId].image.length = options.image.length;
tokenData[creatorContractAddress][tokenId].animation.length = options.animation.length;
tokenData[creatorContractAddress][tokenId].image.zipped = options.image.zipped;
tokenData[creatorContractAddress][tokenId].image.deflated = options.image.deflated;
tokenData[creatorContractAddress][tokenId].animation.zipped = options.animation.zipped;
tokenData[creatorContractAddress][tokenId].animation.deflated = options.animation.deflated;
tokenData[creatorContractAddress][tokenId].wrapped = options.wrapped;
}
/**
* @dev sets (technically appends) to the image the chunks provided
*
* @param creatorContractAddress the contract address for the token
* @param tokenId the token id for the token
* @param image the image chunks to set
*/
function _setImage(address creatorContractAddress, uint256 tokenId, bytes[] calldata image) internal {
// loop through the image array, appending a new byte array
// to the chunks. This is because the contract storage limit
// is 24576 but we actually get much further than that before
// running out of gas in the block.
for (uint8 i = 0; i < image.length; i++) {
tokenData[creatorContractAddress][tokenId].image.chunks.push(SSTORE2.write(image[i]));
}
}
/**
* @dev sets (technically appends) to the animation the chunks provided
*
* @param creatorContractAddress the contract address for the token
* @param tokenId the token id for the token
* @param animation the animation chunks to set
*/
function _setAnimation(address creatorContractAddress, uint256 tokenId, bytes[] calldata animation) internal {
// same thing for animation as the image
for (uint8 i = 0; i < animation.length; i++) {
tokenData[creatorContractAddress][tokenId].animation.chunks.push(SSTORE2.write(animation[i]));
}
}
/**
@notice Mints a token with `metadata` of type `mimeType` and image `image`
@param creatorContractAddress The Manifold contract to mint to
@param options minting details: quantity, metadata, mimeType
- quantity The number of editions to mint
- metadata The string metadata for the token, expressed as a JSON with no opening or closing bracket, e.g. `"name": "hello!","description": "world!"`
- mimeType The mime type for `image`
- animationMimeType The mime type for `animation`
- zipped Whether or not the data is FastLZ compressed
- deflated Whether or not the data is DEFLATE compressed
- wrapped Whether or not to wrap the image in a basic html wrapper for the animation
@param image The image data, split into bytes of max len 24576 (EVM contract limit)
@param animation The animation data, split into bytes of max len 24576 (EVM contract limit)
*/
function mint1155(
address creatorContractAddress,
Options calldata options,
bytes[] calldata image,
bytes[] calldata animation
) external payable creatorAdminRequired(creatorContractAddress) {
address[] memory dest = new address[](1);
uint256[] memory quantities = new uint256[](1);
string[] memory uris = new string[](1);
dest[0] = msg.sender;
quantities[0] = options.quantity;
uint256[] memory tokenIds = IERC1155CreatorCore(creatorContractAddress).mintExtensionNew(dest, quantities, uris);
uint256 tokenId = tokenIds[0];
_setTokenData(creatorContractAddress, tokenId, options);
_setImage(creatorContractAddress, tokenId, image);
_setAnimation(creatorContractAddress, tokenId, animation);
}
/**
@notice Mints a token with `metadata` of type `mimeType` and image `image`
@param creatorContractAddress The Manifold contract to mint to
@param image The image data, split into bytes of max len 24576 (EVM contract limit)
@param animation The animation data, split into bytes of max len 24576 (EVM contract limit)
@param options minting details: quantity, metadata, mimeType
- quantity The number of editions to mint
- metadata The string metadata for the token, expressed as a JSON with no opening or closing bracket, e.g. `"name": "hello!","description": "world!"`
- mimeType The mime type for `image`
- animationMimeType The mime type for `animation`
- zipped Whether or not the data is FastLZ compressed
- deflated Whether or not the data is DEFLATE compressed
- wrapped Whether or not to wrap the image in a basic html wrapper for the animation
*/
function mint(
address creatorContractAddress,
Options calldata options,
bytes[] calldata image,
bytes[] calldata animation
) external payable creatorAdminRequired(creatorContractAddress) {
uint256 tokenId = IERC721CreatorCore(creatorContractAddress).mintExtension(msg.sender);
_setTokenData(creatorContractAddress, tokenId, options);
_setImage(creatorContractAddress, tokenId, image);
_setAnimation(creatorContractAddress, tokenId, animation);
}
/**
@notice Updates a token with `metadata` of type `mimeType` and image `image`.
@param creatorContractAddress The Manifold contract to mint to
@param tokenId the token to update the data for
@param image The image data, split into bytes of max len 24576 (EVM contract limit)
@param animation The animation data, split into bytes of max len 24576 (EVM contract limit)
@param options minting details: quantity, metadata, mimeType
- quantity The number of editions to mint
- metadata The string metadata for the token, expressed as a JSON with no opening or closing bracket, e.g. `"name": "hello!","description": "world!"`
- mimeType The mime type for `image`
- deflate Whether or not the data is compressed
*/
function updateToken(
address creatorContractAddress,
uint256 tokenId,
bytes[] calldata image,
bytes[] calldata animation,
Options calldata options
) external creatorAdminRequired(creatorContractAddress) tokenUnlocked(creatorContractAddress, tokenId) {
_setTokenData(creatorContractAddress, tokenId, options);
if (image.length > 0) {
delete tokenData[creatorContractAddress][tokenId].image.chunks;
_setImage(creatorContractAddress, tokenId, image);
}
if (animation.length > 0) {
delete tokenData[creatorContractAddress][tokenId].animation.chunks;
_setAnimation(creatorContractAddress, tokenId, animation);
}
}
/**
@notice Appends chunks of binary data to the chunks for a given token. If your image won't fit in a single "mint" transaction, you can use this to add data to it.
@param creatorContractAddress The Manifold contract to mint to
@param tokenId The token to add data to
@param chunks The chunks of data to add, max length for each individual chunk is 24576 bytes (EVM contract limit)
*/
function appendChunks(
address creatorContractAddress,
uint256 tokenId,
bytes[] calldata chunks
) external creatorAdminRequired(creatorContractAddress) tokenUnlocked(creatorContractAddress, tokenId) {
_setImage(creatorContractAddress, tokenId, chunks);
}
/**
@notice Appends chunks of binary data to the chunks for a given token. If your animation won't fit in a single "mint" transaction, you can use this to add data to it.
@param creatorContractAddress The Manifold contract to mint to
@param tokenId The token to add data to
@param chunks The chunks of data to add, max length for each individual chunk is 24576 bytes (EVM contract limit)
*/
function appendAnimationChunks(
address creatorContractAddress,
uint256 tokenId,
bytes[] calldata chunks
) external creatorAdminRequired(creatorContractAddress) tokenUnlocked(creatorContractAddress, tokenId) {
_setAnimation(creatorContractAddress, tokenId, chunks);
}
/**
* @notice PERMANENTLY locks token metadata to the current state
*
* @param creatorContractAddress the contract address of the token to lock
* @param tokenId the id of the token to lock
*/
function lockToken(
address creatorContractAddress,
uint256 tokenId
) external creatorAdminRequired(creatorContractAddress) {
tokenData[creatorContractAddress][tokenId].locked = true;
}
/**
* @dev loads just the binary image data without any conversion
*
* @param creatorContractAddress the contract address containing the token
* @param tokenId the token id to load
*/
function loadRawImage(address creatorContractAddress, uint256 tokenId) public view returns (bytes memory) {
bytes memory data;
for (uint8 i = 0; i < tokenData[creatorContractAddress][tokenId].image.chunks.length; i++) {
data = abi.encodePacked(
data,
SSTORE2.read(tokenData[creatorContractAddress][tokenId].image.chunks[i])
);
}
if (tokenData[creatorContractAddress][tokenId].image.zipped) {
data = LibZip.flzDecompress(data);
} else if (tokenData[creatorContractAddress][tokenId].image.deflated) {
data = InflateLib.puff(data, tokenData[creatorContractAddress][tokenId].image.length);
}
return data;
}
/**
* @dev loads image data by converting it to base64 and attaching the mime type
*
* @param creatorContractAddress the contract address containing the token
* @param tokenId the token id to pack
*/
function loadImage(address creatorContractAddress, uint256 tokenId) public view returns (string memory) {
string memory image = string(
abi.encodePacked(
"data:",
tokenData[creatorContractAddress][tokenId].image.mimeType,
";base64,"
)
);
bytes memory data = loadRawImage(creatorContractAddress, tokenId);
image = string(
abi.encodePacked(
image,
Base64.encode(data)
)
);
return image;
}
/**
* @dev loads animation data by converting it to base64 and attaching the mime type
*
* @param creatorContractAddress the contract address containing the token
* @param tokenId the token id to pack
*/
function loadAnimation(address creatorContractAddress, uint256 tokenId) public view returns (string memory) {
string memory animation = string(
abi.encodePacked(
"data:",
tokenData[creatorContractAddress][tokenId].animation.mimeType,
";base64,"
)
);
bytes memory data;
for (uint8 i = 0; i < tokenData[creatorContractAddress][tokenId].animation.chunks.length; i++) {
data = abi.encodePacked(
data,
SSTORE2.read(tokenData[creatorContractAddress][tokenId].animation.chunks[i])
);
}
if (tokenData[creatorContractAddress][tokenId].animation.zipped) {
data = LibZip.flzDecompress(data);
} else if (tokenData[creatorContractAddress][tokenId].animation.deflated) {
data = InflateLib.puff(data, tokenData[creatorContractAddress][tokenId].animation.length);
}
animation = string(
abi.encodePacked(
animation,
Base64.encode(data)
)
);
return animation;
}
/**
* @dev A utility function for verifying that compressed data will decompress properly
*
* @param data the compressed data
*
* @return data the uncompressed data
*/
function unzip(bytes memory data) external pure returns (bytes memory) {
return abi.encodePacked(
LibZip.flzDecompress(data)
);
}
/**
* @dev A utility function for compressing data
*
* @param data the uncompressed data
*
* @return data the compressed data
*/
function zip(bytes memory data) external pure returns (bytes memory) {
return abi.encodePacked(
LibZip.flzCompress(data)
);
}
/**
* @dev A utility function for decompressing DEFLATE compressed data
*
* @param data the compressed data
* @param totalLength the length of the uncompressed file
*/
function inflate(bytes memory data, uint totalLength) external pure returns (bytes memory) {
return abi.encodePacked(InflateLib.puff(data, totalLength));
}
function tokenURI(address creatorContractAddress, uint256 tokenId) external view override returns (string memory) {
require(tokenData[creatorContractAddress][tokenId].image.chunks.length != 0, "Token metadata doesn't exist here");
string memory token = string(
abi.encodePacked(
'data:application/json;utf8,{',
tokenData[creatorContractAddress][tokenId].metadata,
', "image": "',
loadImage(creatorContractAddress, tokenId),
'"'
)
);
if (tokenData[creatorContractAddress][tokenId].animation.chunks.length > 0) {
token = string(
abi.encodePacked(
token,
',"animation_url": "',
loadAnimation(creatorContractAddress, tokenId),
'"'
)
);
} else if (tokenData[creatorContractAddress][tokenId].wrapped) {
token = string(
abi.encodePacked(
token,
',"animation_url": "data:text/html;base64,',
Base64.encode(
abi.encodePacked(
'<!DOCTYPE HTML>\n\n',
'<html>\n',
'<body>\n',
string(loadRawImage(creatorContractAddress, tokenId)),
'</body>\n',
'</html>\n'
)
),
'"'
)
);
}
token = string(
abi.encodePacked(
token, '}'
)
);
return token;
}
function withdraw() external onlyOwner {
(bool success, ) = diid.call{value: address(this).balance}("");
require(success, "withdraw failed");
}
function supportsInterface(bytes4 interfaceId) public view virtual override(AdminControl, IERC165) returns (bool) {
return interfaceId == type(ICreatorExtensionTokenURI).interfaceId
|| AdminControl.supportsInterface(interfaceId)
|| super.supportsInterface(interfaceId);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
/**
* @dev Interface for admin control
*/
interface IAdminControl is IERC165 {
event AdminApproved(address indexed account, address indexed sender);
event AdminRevoked(address indexed account, address indexed sender);
/**
* @dev gets address of all admins
*/
function getAdmins() external view returns (address[] memory);
/**
* @dev add an admin. Can only be called by contract owner.
*/
function approveAdmin(address admin) external;
/**
* @dev remove an admin. Can only be called by contract owner.
*/
function revokeAdmin(address admin) external;
/**
* @dev checks whether or not given address is an admin
* Returns True if they are
*/
function isAdmin(address admin) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
/**
* @dev Core creator interface
*/
interface ICreatorCore is IERC165 {
event ExtensionRegistered(address indexed extension, address indexed sender);
event ExtensionUnregistered(address indexed extension, address indexed sender);
event ExtensionBlacklisted(address indexed extension, address indexed sender);
event MintPermissionsUpdated(address indexed extension, address indexed permissions, address indexed sender);
event RoyaltiesUpdated(uint256 indexed tokenId, address payable[] receivers, uint256[] basisPoints);
event DefaultRoyaltiesUpdated(address payable[] receivers, uint256[] basisPoints);
event ApproveTransferUpdated(address extension);
event ExtensionRoyaltiesUpdated(address indexed extension, address payable[] receivers, uint256[] basisPoints);
event ExtensionApproveTransferUpdated(address indexed extension, bool enabled);
/**
* @dev gets address of all extensions
*/
function getExtensions() external view returns (address[] memory);
/**
* @dev add an extension. Can only be called by contract owner or admin.
* extension address must point to a contract implementing ICreatorExtension.
* Returns True if newly added, False if already added.
*/
function registerExtension(address extension, string calldata baseURI) external;
/**
* @dev add an extension. Can only be called by contract owner or admin.
* extension address must point to a contract implementing ICreatorExtension.
* Returns True if newly added, False if already added.
*/
function registerExtension(address extension, string calldata baseURI, bool baseURIIdentical) external;
/**
* @dev add an extension. Can only be called by contract owner or admin.
* Returns True if removed, False if already removed.
*/
function unregisterExtension(address extension) external;
/**
* @dev blacklist an extension. Can only be called by contract owner or admin.
* This function will destroy all ability to reference the metadata of any tokens created
* by the specified extension. It will also unregister the extension if needed.
* Returns True if removed, False if already removed.
*/
function blacklistExtension(address extension) external;
/**
* @dev set the baseTokenURI of an extension. Can only be called by extension.
*/
function setBaseTokenURIExtension(string calldata uri) external;
/**
* @dev set the baseTokenURI of an extension. Can only be called by extension.
* For tokens with no uri configured, tokenURI will return "uri+tokenId"
*/
function setBaseTokenURIExtension(string calldata uri, bool identical) external;
/**
* @dev set the common prefix of an extension. Can only be called by extension.
* If configured, and a token has a uri set, tokenURI will return "prefixURI+tokenURI"
* Useful if you want to use ipfs/arweave
*/
function setTokenURIPrefixExtension(string calldata prefix) external;
/**
* @dev set the tokenURI of a token extension. Can only be called by extension that minted token.
*/
function setTokenURIExtension(uint256 tokenId, string calldata uri) external;
/**
* @dev set the tokenURI of a token extension for multiple tokens. Can only be called by extension that minted token.
*/
function setTokenURIExtension(uint256[] memory tokenId, string[] calldata uri) external;
/**
* @dev set the baseTokenURI for tokens with no extension. Can only be called by owner/admin.
* For tokens with no uri configured, tokenURI will return "uri+tokenId"
*/
function setBaseTokenURI(string calldata uri) external;
/**
* @dev set the common prefix for tokens with no extension. Can only be called by owner/admin.
* If configured, and a token has a uri set, tokenURI will return "prefixURI+tokenURI"
* Useful if you want to use ipfs/arweave
*/
function setTokenURIPrefix(string calldata prefix) external;
/**
* @dev set the tokenURI of a token with no extension. Can only be called by owner/admin.
*/
function setTokenURI(uint256 tokenId, string calldata uri) external;
/**
* @dev set the tokenURI of multiple tokens with no extension. Can only be called by owner/admin.
*/
function setTokenURI(uint256[] memory tokenIds, string[] calldata uris) external;
/**
* @dev set a permissions contract for an extension. Used to control minting.
*/
function setMintPermissions(address extension, address permissions) external;
/**
* @dev Configure so transfers of tokens created by the caller (must be extension) gets approval
* from the extension before transferring
*/
function setApproveTransferExtension(bool enabled) external;
/**
* @dev get the extension of a given token
*/
function tokenExtension(uint256 tokenId) external view returns (address);
/**
* @dev Set default royalties
*/
function setRoyalties(address payable[] calldata receivers, uint256[] calldata basisPoints) external;
/**
* @dev Set royalties of a token
*/
function setRoyalties(uint256 tokenId, address payable[] calldata receivers, uint256[] calldata basisPoints) external;
/**
* @dev Set royalties of an extension
*/
function setRoyaltiesExtension(address extension, address payable[] calldata receivers, uint256[] calldata basisPoints) external;
/**
* @dev Get royalites of a token. Returns list of receivers and basisPoints
*/
function getRoyalties(uint256 tokenId) external view returns (address payable[] memory, uint256[] memory);
// Royalty support for various other standards
function getFeeRecipients(uint256 tokenId) external view returns (address payable[] memory);
function getFeeBps(uint256 tokenId) external view returns (uint[] memory);
function getFees(uint256 tokenId) external view returns (address payable[] memory, uint256[] memory);
function royaltyInfo(uint256 tokenId, uint256 value) external view returns (address, uint256);
/**
* @dev Set the default approve transfer contract location.
*/
function setApproveTransfer(address extension) external;
/**
* @dev Get the default approve transfer contract location.
*/
function getApproveTransfer() external view returns (address);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
/**
* @dev Implement this if you want your extension to have overloadable royalties
*/
interface ICreatorExtensionRoyalties is IERC165 {
/**
* Get the royalties for a given creator/tokenId
*/
function getRoyalties(address creator, uint256 tokenId) external view returns (address payable[] memory, uint256[] memory);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
/**
* @dev Implement this if you want your extension to have overloadable URI's
*/
interface ICreatorExtensionTokenURI is IERC165 {
/**
* Get the uri for a given creator/tokenId
*/
function tokenURI(address creator, uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "./CreatorCore.sol";
/**
* @dev Core ERC1155 creator interface
*/
interface IERC1155CreatorCore is ICreatorCore {
/**
* @dev mint a token with no extension. Can only be called by an admin.
*
* @param to - Can be a single element array (all tokens go to same address) or multi-element array (single token to many recipients)
* @param amounts - Can be a single element array (all recipients get the same amount) or a multi-element array
* @param uris - If no elements, all tokens use the default uri.
* If any element is an empty string, the corresponding token uses the default uri.
*
*
* Requirements: If to is a multi-element array, then uris must be empty or single element array
* If to is a multi-element array, then amounts must be a single element array or a multi-element array of the same size
* If to is a single element array, uris must be empty or the same length as amounts
*
* Examples:
* mintBaseNew(['0x....1', '0x....2'], [1], [])
* Mints a single new token, and gives 1 each to '0x....1' and '0x....2'. Token uses default uri.
*
* mintBaseNew(['0x....1', '0x....2'], [1, 2], [])
* Mints a single new token, and gives 1 to '0x....1' and 2 to '0x....2'. Token uses default uri.
*
* mintBaseNew(['0x....1'], [1, 2], ["", "http://token2.com"])
* Mints two new tokens to '0x....1'. 1 of the first token, 2 of the second. 1st token uses default uri, second uses "http://token2.com".
*
* @return Returns list of tokenIds minted
*/
function mintBaseNew(address[] calldata to, uint256[] calldata amounts, string[] calldata uris) external returns (uint256[] memory);
/**
* @dev batch mint existing token with no extension. Can only be called by an admin.
*
* @param to - Can be a single element array (all tokens go to same address) or multi-element array (single token to many recipients)
* @param tokenIds - Can be a single element array (all recipients get the same token) or a multi-element array
* @param amounts - Can be a single element array (all recipients get the same amount) or a multi-element array
*
* Requirements: If any of the parameters are multi-element arrays, they need to be the same length as other multi-element arrays
*
* Examples:
* mintBaseExisting(['0x....1', '0x....2'], [1], [10])
* Mints 10 of tokenId 1 to each of '0x....1' and '0x....2'.
*
* mintBaseExisting(['0x....1', '0x....2'], [1, 2], [10, 20])
* Mints 10 of tokenId 1 to '0x....1' and 20 of tokenId 2 to '0x....2'.
*
* mintBaseExisting(['0x....1'], [1, 2], [10, 20])
* Mints 10 of tokenId 1 and 20 of tokenId 2 to '0x....1'.
*
* mintBaseExisting(['0x....1', '0x....2'], [1], [10, 20])
* Mints 10 of tokenId 1 to '0x....1' and 20 of tokenId 1 to '0x....2'.
*
*/
function mintBaseExisting(address[] calldata to, uint256[] calldata tokenIds, uint256[] calldata amounts) external;
/**
* @dev mint a token from an extension. Can only be called by a registered extension.
*
* @param to - Can be a single element array (all tokens go to same address) or multi-element array (single token to many recipients)
* @param amounts - Can be a single element array (all recipients get the same amount) or a multi-element array
* @param uris - If no elements, all tokens use the default uri.
* If any element is an empty string, the corresponding token uses the default uri.
*
*
* Requirements: If to is a multi-element array, then uris must be empty or single element array
* If to is a multi-element array, then amounts must be a single element array or a multi-element array of the same size
* If to is a single element array, uris must be empty or the same length as amounts
*
* Examples:
* mintExtensionNew(['0x....1', '0x....2'], [1], [])
* Mints a single new token, and gives 1 each to '0x....1' and '0x....2'. Token uses default uri.
*
* mintExtensionNew(['0x....1', '0x....2'], [1, 2], [])
* Mints a single new token, and gives 1 to '0x....1' and 2 to '0x....2'. Token uses default uri.
*
* mintExtensionNew(['0x....1'], [1, 2], ["", "http://token2.com"])
* Mints two new tokens to '0x....1'. 1 of the first token, 2 of the second. 1st token uses default uri, second uses "http://token2.com".
*
* @return Returns list of tokenIds minted
*/
function mintExtensionNew(address[] calldata to, uint256[] calldata amounts, string[] calldata uris) external returns (uint256[] memory);
/**
* @dev batch mint existing token from extension. Can only be called by a registered extension.
*
* @param to - Can be a single element array (all tokens go to same address) or multi-element array (single token to many recipients)
* @param tokenIds - Can be a single element array (all recipients get the same token) or a multi-element array
* @param amounts - Can be a single element array (all recipients get the same amount) or a multi-element array
*
* Requirements: If any of the parameters are multi-element arrays, they need to be the same length as other multi-element arrays
*
* Examples:
* mintExtensionExisting(['0x....1', '0x....2'], [1], [10])
* Mints 10 of tokenId 1 to each of '0x....1' and '0x....2'.
*
* mintExtensionExisting(['0x....1', '0x....2'], [1, 2], [10, 20])
* Mints 10 of tokenId 1 to '0x....1' and 20 of tokenId 2 to '0x....2'.
*
* mintExtensionExisting(['0x....1'], [1, 2], [10, 20])
* Mints 10 of tokenId 1 and 20 of tokenId 2 to '0x....1'.
*
* mintExtensionExisting(['0x....1', '0x....2'], [1], [10, 20])
* Mints 10 of tokenId 1 to '0x....1' and 20 of tokenId 1 to '0x....2'.
*
*/
function mintExtensionExisting(address[] calldata to, uint256[] calldata tokenIds, uint256[] calldata amounts) external;
/**
* @dev burn tokens. Can only be called by token owner or approved address.
* On burn, calls back to the registered extension's onBurn method
*/
function burn(address account, uint256[] calldata tokenIds, uint256[] calldata amounts) external;
/**
* @dev Total amount of tokens in with a given tokenId.
*/
function totalSupply(uint256 tokenId) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @author: manifold.xyz
import "./ICreatorCore.sol";
/**
* @dev Core ERC721 creator interface
*/
interface IERC721CreatorCore is ICreatorCore {
/**
* @dev mint a token with no extension. Can only be called by an admin.
* Returns tokenId minted
*/
function mintBase(address to) external returns (uint256);
/**
* @dev mint a token with no extension. Can only be called by an admin.
* Returns tokenId minted
*/
function mintBase(address to, string calldata uri) external returns (uint256);
/**
* @dev batch mint a token with no extension. Can only be called by an admin.
* Returns tokenId minted
*/
function mintBaseBatch(address to, uint16 count) external returns (uint256[] memory);
/**
* @dev batch mint a token with no extension. Can only be called by an admin.
* Returns tokenId minted
*/
function mintBaseBatch(address to, string[] calldata uris) external returns (uint256[] memory);
/**
* @dev mint a token. Can only be called by a registered extension.
* Returns tokenId minted
*/
function mintExtension(address to) external returns (uint256);
/**
* @dev mint a token. Can only be called by a registered extension.
* Returns tokenId minted
*/
function mintExtension(address to, string calldata uri) external returns (uint256);
/**
* @dev mint a token. Can only be called by a registered extension.
* Returns tokenId minted
*/
function mintExtension(address to, uint80 data) external returns (uint256);
/**
* @dev batch mint a token. Can only be called by a registered extension.
* Returns tokenIds minted
*/
function mintExtensionBatch(address to, uint16 count) external returns (uint256[] memory);
/**
* @dev batch mint a token. Can only be called by a registered extension.
* Returns tokenId minted
*/
function mintExtensionBatch(address to, string[] calldata uris) external returns (uint256[] memory);
/**
* @dev batch mint a token. Can only be called by a registered extension.
* Returns tokenId minted
*/
function mintExtensionBatch(address to, uint80[] calldata data) external returns (uint256[] memory);
/**
* @dev burn a token. Can only be called by token owner or approved address.
* On burn, calls back to the registered extension's onBurn method
*/
function burn(uint256 tokenId) external;
/**
* @dev get token data
*/
function tokenData(uint256 tokenId) external view returns (uint80);
}
// SPDX-License-Identifier: Apache-2.0
pragma solidity >=0.8.0 <0.9.0;
/// @notice Based on https://github.com/madler/zlib/blob/master/contrib/puff
library InflateLib {
// Maximum bits in a code
uint256 constant MAXBITS = 15;
// Maximum number of literal/length codes
uint256 constant MAXLCODES = 286;
// Maximum number of distance codes
uint256 constant MAXDCODES = 30;
// Maximum codes lengths to read
uint256 constant MAXCODES = (MAXLCODES + MAXDCODES);
// Number of fixed literal/length codes
uint256 constant FIXLCODES = 288;
// Input and output state
struct State {
//////////////////
// Output state //
//////////////////
// Output buffer
bytes output;
// Bytes written to out so far
uint256 outcnt;
/////////////////
// Input state //
/////////////////
// Input buffer
bytes input;
// Bytes read so far
uint256 incnt;
////////////////
// Temp state //
////////////////
// Bit buffer
uint256 bitbuf;
// Number of bits in bit buffer
uint256 bitcnt;
//////////////////////////
// Static Huffman codes //
//////////////////////////
Huffman lencode;
Huffman distcode;
}
// Huffman code decoding tables
struct Huffman {
uint256[] counts;
uint256[] symbols;
}
function bits(State memory s, uint256 need)
private
pure
returns (uint256)
{
// Bit accumulator (can use up to 20 bits)
uint256 val;
// Load at least need bits into val
val = s.bitbuf;
while (s.bitcnt < need) {
if (s.incnt == s.input.length) {
// Out of input
return 0;
}
// Load eight bits
val |= uint256(uint8(s.input[s.incnt++])) << s.bitcnt;
s.bitcnt += 8;
}
// Drop need bits and update buffer, always zero to seven bits left
s.bitbuf = val >> need;
s.bitcnt -= need;
// Return need bits, zeroing the bits above that
return (val & ((1 << need) - 1));
}
function _stored(State memory s) private pure {
// Length of stored block
uint256 len;
// Discard leftover bits from current byte (assumes s.bitcnt < 8)
s.bitbuf = 0;
s.bitcnt = 0;
len = uint256(uint8(s.input[s.incnt++]));
len |= uint256(uint8(s.input[s.incnt++])) << 8;
while (len != 0) {
// Note: Solidity reverts on underflow, so we decrement here
len -= 1;
s.output[s.outcnt++] = s.input[s.incnt++];
}
}
function _decode(State memory s, Huffman memory h)
private
pure
returns (uint256)
{
// Current number of bits in code
uint256 len;
// Len bits being decoded
uint256 code = 0;
// First code of length len
uint256 first = 0;
// Number of codes of length len
uint256 count;
// Index of first code of length len in symbol table
uint256 index = 0;
for (len = 1; len <= MAXBITS; len++) {
// Get next bit
uint256 tempCode;
tempCode = bits(s, 1);
code |= tempCode;
count = h.counts[len];
// If length len, return symbol
if (code < first + count) {
return h.symbols[index + (code - first)];
}
// Else update for next length
index += count;
first += count;
first <<= 1;
code <<= 1;
}
// Ran out of codes
return 0;
}
function _construct(
Huffman memory h,
uint256[] memory lengths,
uint256 n,
uint256 start
) private pure {
// Current symbol when stepping through lengths[]
uint256 symbol;
// Current length when stepping through h.counts[]
uint256 len;
// Number of possible codes left of current length
uint256 left;
// Offsets in symbol table for each length
uint256[MAXBITS + 1] memory offs;
// Count number of codes of each length
for (len = 0; len <= MAXBITS; len++) {
h.counts[len] = 0;
}
for (symbol = 0; symbol < n; symbol++) {
// Assumes lengths are within bounds
h.counts[lengths[start + symbol]]++;
}
// Check for an over-subscribed or incomplete set of lengths
// One possible code of zero length
left = 1;
for (len = 1; len <= MAXBITS; len++) {
// One more bit, double codes left
left <<= 1;
// Deduct count from possible codes
left -= h.counts[len];
}
// Generate offsets into symbol table for each length for sorting
offs[1] = 0;
for (len = 1; len < MAXBITS; len++) {
offs[len + 1] = offs[len] + h.counts[len];
}
// Put symbols in table sorted by length, by symbol order within each length
for (symbol = 0; symbol < n; symbol++) {
if (lengths[start + symbol] != 0) {
h.symbols[offs[lengths[start + symbol]]++] = symbol;
}
}
}
function _codes(
State memory s,
Huffman memory lencode,
Huffman memory distcode
) private pure {
// Decoded symbol
uint256 symbol;
// Length for copy
uint256 len;
// Distance for copy
uint256 dist;
// TODO Solidity doesn't support constant arrays, but these are fixed at compile-time
// Size base for length codes 257..285
uint16[29] memory lens =
[
3,
4,
5,
6,
7,
8,
9,
10,
11,
13,
15,
17,
19,
23,
27,
31,
35,
43,
51,
59,
67,
83,
99,
115,
131,
163,
195,
227,
258
];
// Extra bits for length codes 257..285
uint8[29] memory lext =
[
0,
0,
0,
0,
0,
0,
0,
0,
1,
1,
1,
1,
2,
2,
2,
2,
3,
3,
3,
3,
4,
4,
4,
4,
5,
5,
5,
5,
0
];
// Offset base for distance codes 0..29
uint16[30] memory dists =
[
1,
2,
3,
4,
5,
7,
9,
13,
17,
25,
33,
49,
65,
97,
129,
193,
257,
385,
513,
769,
1025,
1537,
2049,
3073,
4097,
6145,
8193,
12289,
16385,
24577
];
// Extra bits for distance codes 0..29
uint8[30] memory dext =
[
0,
0,
0,
0,
1,
1,
2,
2,
3,
3,
4,
4,
5,
5,
6,
6,
7,
7,
8,
8,
9,
9,
10,
10,
11,
11,
12,
12,
13,
13
];
// Decode literals and length/distance pairs
while (symbol != 256) {
symbol = _decode(s, lencode);
if (symbol < 256) {
// Literal: symbol is the byte
// Write out the literal
s.output[s.outcnt] = bytes1(uint8(symbol));
s.outcnt++;
} else if (symbol > 256) {
uint256 tempBits;
// Length
// Get and compute length
symbol -= 257;
tempBits = bits(s, lext[symbol]);
len = lens[symbol] + tempBits;
// Get and check distance
symbol = _decode(s, distcode);
tempBits = bits(s, dext[symbol]);
dist = dists[symbol] + tempBits;
// Copy length bytes from distance bytes back
while (len != 0) {
// Note: Solidity reverts on underflow, so we decrement here
len -= 1;
s.output[s.outcnt] = s.output[s.outcnt - dist];
s.outcnt++;
}
} else {
s.outcnt += len;
}
}
}
function _build_fixed(State memory s) private pure {
// Build fixed Huffman tables
// TODO this is all a compile-time constant
uint256 symbol;
uint256[] memory lengths = new uint256[](FIXLCODES);
// Literal/length table
for (symbol = 0; symbol < 144; symbol++) {
lengths[symbol] = 8;
}
for (; symbol < 256; symbol++) {
lengths[symbol] = 9;
}
for (; symbol < 280; symbol++) {
lengths[symbol] = 7;
}
for (; symbol < FIXLCODES; symbol++) {
lengths[symbol] = 8;
}
_construct(s.lencode, lengths, FIXLCODES, 0);
// Distance table
for (symbol = 0; symbol < MAXDCODES; symbol++) {
lengths[symbol] = 5;
}
_construct(s.distcode, lengths, MAXDCODES, 0);
}
function _build_dynamic_lengths(State memory s)
private
pure
returns (uint256[] memory)
{
uint256 ncode;
// Index of lengths[]
uint256 index;
// Descriptor code lengths
uint256[] memory lengths = new uint256[](MAXCODES);
// Permutation of code length codes
uint8[19] memory order =
[16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15];
ncode = bits(s, 4) + 4;
// Read code length code lengths (really), missing lengths are zero
for (index = 0; index < ncode; index++) {
lengths[order[index]] = bits(s, 3);
}
for (; index < 19; index++) {
lengths[order[index]] = 0;
}
return lengths;
}
function _build_dynamic(State memory s)
private
pure
returns (
Huffman memory,
Huffman memory
)
{
// Number of lengths in descriptor
uint256 nlen;
uint256 ndist;
// Index of lengths[]
uint256 index;
// Descriptor code lengths
uint256[] memory lengths = new uint256[](MAXCODES);
// Length and distance codes
Huffman memory lencode =
Huffman(new uint256[](MAXBITS + 1), new uint256[](MAXLCODES));
Huffman memory distcode =
Huffman(new uint256[](MAXBITS + 1), new uint256[](MAXDCODES));
// Get number of lengths in each table, check lengths
nlen = bits(s, 5) + 257;
ndist = bits(s, 5) + 1;
if (nlen > MAXLCODES || ndist > MAXDCODES) {
// Bad counts
return (
lencode,
distcode
);
}
lengths = _build_dynamic_lengths(s);
// Build huffman table for code lengths codes (use lencode temporarily)
_construct(lencode, lengths, 19, 0);
// Read length/literal and distance code length tables
index = 0;
while (index < nlen + ndist) {
// Decoded value
uint256 symbol;
// Last length to repeat
uint256 len;
symbol = _decode(s, lencode);
if (symbol < 16) {
// Length in 0..15
lengths[index++] = symbol;
} else {
// Repeat instruction
// Assume repeating zeros
len = 0;
if (symbol == 16) {
// Last length
len = lengths[index - 1];
symbol = bits(s, 2) + 3;
} else if (symbol == 17) {
// Repeat zero 3..10 times
symbol = bits(s, 3) + 3;
} else {
// == 18, repeat zero 11..138 times
symbol = bits(s, 7) + 11;
}
while (symbol != 0) {
// Note: Solidity reverts on underflow, so we decrement here
symbol -= 1;
// Repeat last or zero symbol times
lengths[index++] = len;
}
}
}
// Build huffman table for literal/length codes
_construct(lencode, lengths, nlen, 0);
// Build huffman table for distance codes
_construct(distcode, lengths, ndist, nlen);
return (lencode, distcode);
}
function _dynamic(State memory s) private pure {
// Length and distance codes
Huffman memory lencode;
Huffman memory distcode;
(lencode, distcode) = _build_dynamic(s);
// Decode data until end-of-block code
_codes(s, lencode, distcode);
}
function puff(bytes memory source, uint256 destlen)
internal
pure
returns (bytes memory)
{
// Input/output state
State memory s =
State(
new bytes(destlen),
0,
source,
0,
0,
0,
Huffman(new uint256[](MAXBITS + 1), new uint256[](FIXLCODES)),
Huffman(new uint256[](MAXBITS + 1), new uint256[](MAXDCODES))
);
// Temp: last bit
uint256 last;
// Temp: block type bit
uint256 t;
// Build fixed Huffman tables
_build_fixed(s);
// Process blocks until last block or error
while (last == 0) {
// One if last block
last = bits(s, 1);
// Block type 0..3
t = bits(s, 2);
_dynamic(s);
}
return s.output;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library for compressing and decompressing bytes.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibZip.sol)
/// @author Calldata compression by clabby (https://github.com/clabby/op-kompressor)
/// @author FastLZ by ariya (https://github.com/ariya/FastLZ)
///
/// @dev Note:
/// The accompanying solady.js library includes implementations of
/// FastLZ and calldata operations for convenience.
library LibZip {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* FAST LZ OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// LZ77 implementation based on FastLZ.
// Equivalent to level 1 compression and decompression at the following commit:
// https://github.com/ariya/FastLZ/commit/344eb4025f9ae866ebf7a2ec48850f7113a97a42
// Decompression is backwards compatible.
/// @dev Returns the compressed `data`.
function flzCompress(bytes memory data) internal pure returns (bytes memory result) {
/// @solidity memory-safe-assembly
assembly {
function ms8(d_, v_) -> _d {
mstore8(d_, v_)
_d := add(d_, 1)
}
function u24(p_) -> _u {
_u := mload(p_)
_u := or(shl(16, byte(2, _u)), or(shl(8, byte(1, _u)), byte(0, _u)))
}
function cmp(p_, q_, e_) -> _l {
for { e_ := sub(e_, q_) } lt(_l, e_) { _l := add(_l, 1) } {
e_ := mul(iszero(byte(0, xor(mload(add(p_, _l)), mload(add(q_, _l))))), e_)
}
}
function literals(runs_, src_, dest_) -> _o {
for { _o := dest_ } iszero(lt(runs_, 0x20)) { runs_ := sub(runs_, 0x20) } {
mstore(ms8(_o, 31), mload(src_))
_o := add(_o, 0x21)
src_ := add(src_, 0x20)
}
if iszero(runs_) { leave }
mstore(ms8(_o, sub(runs_, 1)), mload(src_))
_o := add(1, add(_o, runs_))
}
function mt(l_, d_, o_) -> _o {
for { d_ := sub(d_, 1) } iszero(lt(l_, 263)) { l_ := sub(l_, 262) } {
o_ := ms8(ms8(ms8(o_, add(224, shr(8, d_))), 253), and(0xff, d_))
}
if iszero(lt(l_, 7)) {
_o := ms8(ms8(ms8(o_, add(224, shr(8, d_))), sub(l_, 7)), and(0xff, d_))
leave
}
_o := ms8(ms8(o_, add(shl(5, l_), shr(8, d_))), and(0xff, d_))
}
function setHash(i_, v_) {
let p_ := add(mload(0x40), shl(2, i_))
mstore(p_, xor(mload(p_), shl(224, xor(shr(224, mload(p_)), v_))))
}
function getHash(i_) -> _h {
_h := shr(224, mload(add(mload(0x40), shl(2, i_))))
}
function hash(v_) -> _r {
_r := and(shr(19, mul(2654435769, v_)), 0x1fff)
}
function setNextHash(ip_, ipStart_) -> _ip {
setHash(hash(u24(ip_)), sub(ip_, ipStart_))
_ip := add(ip_, 1)
}
result := mload(0x40)
codecopy(result, codesize(), 0x8000) // Zeroize the hashmap.
let op := add(result, 0x8000)
let a := add(data, 0x20)
let ipStart := a
let ipLimit := sub(add(ipStart, mload(data)), 13)
for { let ip := add(2, a) } lt(ip, ipLimit) {} {
let r := 0
let d := 0
for {} 1 {} {
let s := u24(ip)
let h := hash(s)
r := add(ipStart, getHash(h))
setHash(h, sub(ip, ipStart))
d := sub(ip, r)
if iszero(lt(ip, ipLimit)) { break }
ip := add(ip, 1)
if iszero(gt(d, 0x1fff)) { if eq(s, u24(r)) { break } }
}
if iszero(lt(ip, ipLimit)) { break }
ip := sub(ip, 1)
if gt(ip, a) { op := literals(sub(ip, a), a, op) }
let l := cmp(add(r, 3), add(ip, 3), add(ipLimit, 9))
op := mt(l, d, op)
ip := setNextHash(setNextHash(add(ip, l), ipStart), ipStart)
a := ip
}
// Copy the result to compact the memory, overwriting the hashmap.
let end := sub(literals(sub(add(ipStart, mload(data)), a), a, op), 0x7fe0)
let o := add(result, 0x20)
mstore(result, sub(end, o)) // Store the length.
for {} iszero(gt(o, end)) { o := add(o, 0x20) } { mstore(o, mload(add(o, 0x7fe0))) }
mstore(end, 0) // Zeroize the slot after the string.
mstore(0x40, add(end, 0x20)) // Allocate the memory.
}
}
/// @dev Returns the decompressed `data`.
function flzDecompress(bytes memory data) internal pure returns (bytes memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let op := add(result, 0x20)
let end := add(add(data, 0x20), mload(data))
for { data := add(data, 0x20) } lt(data, end) {} {
let w := mload(data)
let c := byte(0, w)
let t := shr(5, c)
if iszero(t) {
mstore(op, mload(add(data, 1)))
data := add(data, add(2, c))
op := add(op, add(1, c))
continue
}
for {
let g := eq(t, 7)
let l := add(2, xor(t, mul(g, xor(t, add(7, byte(1, w)))))) // M
let s := add(add(shl(8, and(0x1f, c)), byte(add(1, g), w)), 1) // R
let r := sub(op, s)
let f := xor(s, mul(gt(s, 0x20), xor(s, 0x20)))
let j := 0
} 1 {} {
mstore(add(op, j), mload(add(r, j)))
j := add(j, f)
if lt(j, l) { continue }
data := add(data, add(2, g))
op := add(op, l)
break
}
}
mstore(result, sub(op, add(result, 0x20))) // Store the length.
mstore(op, 0) // Zeroize the slot after the string.
mstore(0x40, add(op, 0x20)) // Allocate the memory.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CALLDATA OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// Calldata compression and decompression using selective run length encoding:
// - Sequences of 0x00 (up to 128 consecutive).
// - Sequences of 0xff (up to 32 consecutive).
//
// A run length encoded block consists of two bytes:
// (0) 0x00
// (1) A control byte with the following bit layout:
// - [7] `0: 0x00, 1: 0xff`.
// - [0..6] `runLength - 1`.
//
// The first 4 bytes are bitwise negated so that the compressed calldata
// can be dispatched into the `fallback` and `receive` functions.
/// @dev Returns the compressed `data`.
function cdCompress(bytes memory data) internal pure returns (bytes memory result) {
/// @solidity memory-safe-assembly
assembly {
function rle(v_, o_, d_) -> _o, _d {
mstore(o_, shl(240, or(and(0xff, add(d_, 0xff)), and(0x80, v_))))
_o := add(o_, 2)
}
result := mload(0x40)
let o := add(result, 0x20)
let z := 0 // Number of consecutive 0x00.
let y := 0 // Number of consecutive 0xff.
for { let end := add(data, mload(data)) } iszero(eq(data, end)) {} {
data := add(data, 1)
let c := byte(31, mload(data))
if iszero(c) {
if y { o, y := rle(0xff, o, y) }
z := add(z, 1)
if eq(z, 0x80) { o, z := rle(0x00, o, 0x80) }
continue
}
if eq(c, 0xff) {
if z { o, z := rle(0x00, o, z) }
y := add(y, 1)
if eq(y, 0x20) { o, y := rle(0xff, o, 0x20) }
continue
}
if y { o, y := rle(0xff, o, y) }
if z { o, z := rle(0x00, o, z) }
mstore8(o, c)
o := add(o, 1)
}
if y { o, y := rle(0xff, o, y) }
if z { o, z := rle(0x00, o, z) }
// Bitwise negate the first 4 bytes.
mstore(add(result, 4), not(mload(add(result, 4))))
mstore(result, sub(o, add(result, 0x20))) // Store the length.
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate the memory.
}
}
/// @dev Returns the decompressed `data`.
function cdDecompress(bytes memory data) internal pure returns (bytes memory result) {
/// @solidity memory-safe-assembly
assembly {
if mload(data) {
result := mload(0x40)
let o := add(result, 0x20)
let s := add(data, 4)
let v := mload(s)
let end := add(data, mload(data))
mstore(s, not(v)) // Bitwise negate the first 4 bytes.
for {} lt(data, end) {} {
data := add(data, 1)
let c := byte(31, mload(data))
if iszero(c) {
data := add(data, 1)
let d := byte(31, mload(data))
// Fill with either 0xff or 0x00.
mstore(o, not(0))
if iszero(gt(d, 0x7f)) { codecopy(o, codesize(), add(d, 1)) }
o := add(o, add(and(d, 0x7f), 1))
continue
}
mstore8(o, c)
o := add(o, 1)
}
mstore(s, v) // Restore the first 4 bytes.
mstore(result, sub(o, add(result, 0x20))) // Store the length.
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate the memory.
}
}
}
/// @dev To be called in the `fallback` function.
/// ```
/// fallback() external payable { LibZip.cdFallback(); }
/// receive() external payable {} // Silence compiler warning to add a `receive` function.
/// ```
/// For efficiency, this function will directly return the results, terminating the context.
/// If called internally, it must be called at the end of the function.
function cdFallback() internal {
assembly {
if iszero(calldatasize()) { return(calldatasize(), calldatasize()) }
let o := 0
let f := not(3) // For negating the first 4 bytes.
for { let i := 0 } lt(i, calldatasize()) {} {
let c := byte(0, xor(add(i, f), calldataload(i)))
i := add(i, 1)
if iszero(c) {
let d := byte(0, xor(add(i, f), calldataload(i)))
i := add(i, 1)
// Fill with either 0xff or 0x00.
mstore(o, not(0))
if iszero(gt(d, 0x7f)) { codecopy(o, codesize(), add(d, 1)) }
o := add(o, add(and(d, 0x7f), 1))
continue
}
mstore8(o, c)
o := add(o, 1)
}
let success := delegatecall(gas(), address(), 0x00, o, codesize(), 0x00)
returndatacopy(0x00, 0x00, returndatasize())
if iszero(success) { revert(0x00, returndatasize()) }
return(0x00, returndatasize())
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Read and write to persistent storage at a fraction of the cost.
/// @author Solady (https://github.com/vectorized/solmady/blob/main/src/utils/SSTORE2.sol)
/// @author Saw-mon-and-Natalie (https://github.com/Saw-mon-and-Natalie)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SSTORE2.sol)
/// @author Modified from 0xSequence (https://github.com/0xSequence/sstore2/blob/master/contracts/SSTORE2.sol)
library SSTORE2 {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev We skip the first byte as it's a STOP opcode,
/// which ensures the contract can't be called.
uint256 internal constant DATA_OFFSET = 1;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Unable to deploy the storage contract.
error DeploymentFailed();
/// @dev The storage contract address is invalid.
error InvalidPointer();
/// @dev Attempt to read outside of the storage contract's bytecode bounds.
error ReadOutOfBounds();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* WRITE LOGIC */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Writes `data` into the bytecode of a storage contract and returns its address.
function write(bytes memory data) internal returns (address pointer) {
/// @solidity memory-safe-assembly
assembly {
let originalDataLength := mload(data)
// Add 1 to data size since we are prefixing it with a STOP opcode.
let dataSize := add(originalDataLength, DATA_OFFSET)
/**
* ------------------------------------------------------------------------------+
* Opcode | Mnemonic | Stack | Memory |
* ------------------------------------------------------------------------------|
* 61 dataSize | PUSH2 dataSize | dataSize | |
* 80 | DUP1 | dataSize dataSize | |
* 60 0xa | PUSH1 0xa | 0xa dataSize dataSize | |
* 3D | RETURNDATASIZE | 0 0xa dataSize dataSize | |
* 39 | CODECOPY | dataSize | [0..dataSize): code |
* 3D | RETURNDATASIZE | 0 dataSize | [0..dataSize): code |
* F3 | RETURN | | [0..dataSize): code |
* 00 | STOP | | |
* ------------------------------------------------------------------------------+
* @dev Prefix the bytecode with a STOP opcode to ensure it cannot be called.
* Also PUSH2 is used since max contract size cap is 24,576 bytes which is less than 2 ** 16.
*/
mstore(
// Do a out-of-gas revert if `dataSize` is more than 2 bytes.
// The actual EVM limit may be smaller and may change over time.
add(data, gt(dataSize, 0xffff)),
// Left shift `dataSize` by 64 so that it lines up with the 0000 after PUSH2.
or(0xfd61000080600a3d393df300, shl(0x40, dataSize))
)
// Deploy a new contract with the generated creation code.
pointer := create(0, add(data, 0x15), add(dataSize, 0xa))
// If `pointer` is zero, revert.
if iszero(pointer) {
// Store the function selector of `DeploymentFailed()`.
mstore(0x00, 0x30116425)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Restore original length of the variable size `data`.
mstore(data, originalDataLength)
}
}
/// @dev Writes `data` into the bytecode of a storage contract with `salt`
/// and returns its deterministic address.
function writeDeterministic(bytes memory data, bytes32 salt)
internal
returns (address pointer)
{
/// @solidity memory-safe-assembly
assembly {
let originalDataLength := mload(data)
let dataSize := add(originalDataLength, DATA_OFFSET)
mstore(
// Do a out-of-gas revert if `dataSize` is more than 2 bytes.
// The actual EVM limit may be smaller and may change over time.
add(data, gt(dataSize, 0xffff)),
// Left shift `dataSize` by 64 so that it lines up with the 0000 after PUSH2.
or(0xfd61000080600a3d393df300, shl(0x40, dataSize))
)
// Deploy a new contract with the generated creation code.
pointer := create2(0, add(data, 0x15), add(dataSize, 0xa), salt)
// If `pointer` is zero, revert.
if iszero(pointer) {
// Store the function selector of `DeploymentFailed()`.
mstore(0x00, 0x30116425)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Restore original length of the variable size `data`.
mstore(data, originalDataLength)
}
}
/// @dev Returns the initialization code hash of the storage contract for `data`.
/// Used for mining vanity addresses with create2crunch.
function initCodeHash(bytes memory data) internal pure returns (bytes32 hash) {
/// @solidity memory-safe-assembly
assembly {
let originalDataLength := mload(data)
let dataSize := add(originalDataLength, DATA_OFFSET)
// Do a out-of-gas revert if `dataSize` is more than 2 bytes.
// The actual EVM limit may be smaller and may change over time.
returndatacopy(returndatasize(), returndatasize(), shr(16, dataSize))
mstore(data, or(0x61000080600a3d393df300, shl(0x40, dataSize)))
hash := keccak256(add(data, 0x15), add(dataSize, 0xa))
// Restore original length of the variable size `data`.
mstore(data, originalDataLength)
}
}
/// @dev Returns the address of the storage contract for `data`
/// deployed with `salt` by `deployer`.
/// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
function predictDeterministicAddress(bytes memory data, bytes32 salt, address deployer)
internal
pure
returns (address predicted)
{
bytes32 hash = initCodeHash(data);
/// @solidity memory-safe-assembly
assembly {
// Compute and store the bytecode hash.
mstore8(0x00, 0xff) // Write the prefix.
mstore(0x35, hash)
mstore(0x01, shl(96, deployer))
mstore(0x15, salt)
predicted := keccak256(0x00, 0x55)
// Restore the part of the free memory pointer that has been overwritten.
mstore(0x35, 0)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* READ LOGIC */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns all the `data` from the bytecode of the storage contract at `pointer`.
function read(address pointer) internal view returns (bytes memory data) {
/// @solidity memory-safe-assembly
assembly {
let pointerCodesize := extcodesize(pointer)
if iszero(pointerCodesize) {
// Store the function selector of `InvalidPointer()`.
mstore(0x00, 0x11052bb4)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Offset all indices by 1 to skip the STOP opcode.
let size := sub(pointerCodesize, DATA_OFFSET)
// Get the pointer to the free memory and allocate
// enough 32-byte words for the data and the length of the data,
// then copy the code to the allocated memory.
// Masking with 0xffe0 will suffice, since contract size is less than 16 bits.
data := mload(0x40)
mstore(0x40, add(data, and(add(size, 0x3f), 0xffe0)))
mstore(data, size)
mstore(add(add(data, 0x20), size), 0) // Zeroize the last slot.
extcodecopy(pointer, add(data, 0x20), DATA_OFFSET, size)
}
}
/// @dev Returns the `data` from the bytecode of the storage contract at `pointer`,
/// from the byte at `start`, to the end of the data stored.
function read(address pointer, uint256 start) internal view returns (bytes memory data) {
/// @solidity memory-safe-assembly
assembly {
let pointerCodesize := extcodesize(pointer)
if iszero(pointerCodesize) {
// Store the function selector of `InvalidPointer()`.
mstore(0x00, 0x11052bb4)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// If `!(pointer.code.size > start)`, reverts.
// This also handles the case where `start + DATA_OFFSET` overflows.
if iszero(gt(pointerCodesize, start)) {
// Store the function selector of `ReadOutOfBounds()`.
mstore(0x00, 0x84eb0dd1)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
let size := sub(pointerCodesize, add(start, DATA_OFFSET))
// Get the pointer to the free memory and allocate
// enough 32-byte words for the data and the length of the data,
// then copy the code to the allocated memory.
// Masking with 0xffe0 will suffice, since contract size is less than 16 bits.
data := mload(0x40)
mstore(0x40, add(data, and(add(size, 0x3f), 0xffe0)))
mstore(data, size)
mstore(add(add(data, 0x20), size), 0) // Zeroize the last slot.
extcodecopy(pointer, add(data, 0x20), add(start, DATA_OFFSET), size)
}
}
/// @dev Returns the `data` from the bytecode of the storage contract at `pointer`,
/// from the byte at `start`, to the byte at `end` (exclusive) of the data stored.
function read(address pointer, uint256 start, uint256 end)
internal
view
returns (bytes memory data)
{
/// @solidity memory-safe-assembly
assembly {
let pointerCodesize := extcodesize(pointer)
if iszero(pointerCodesize) {
// Store the function selector of `InvalidPointer()`.
mstore(0x00, 0x11052bb4)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// If `!(pointer.code.size > end) || (start > end)`, revert.
// This also handles the cases where
// `end + DATA_OFFSET` or `start + DATA_OFFSET` overflows.
if iszero(
and(
gt(pointerCodesize, end), // Within bounds.
iszero(gt(start, end)) // Valid range.
)
) {
// Store the function selector of `ReadOutOfBounds()`.
mstore(0x00, 0x84eb0dd1)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
let size := sub(end, start)
// Get the pointer to the free memory and allocate
// enough 32-byte words for the data and the length of the data,
// then copy the code to the allocated memory.
// Masking with 0xffe0 will suffice, since contract size is less than 16 bits.
data := mload(0x40)
mstore(0x40, add(data, and(add(size, 0x3f), 0xffe0)))
mstore(data, size)
mstore(add(add(data, 0x20), size), 0) // Zeroize the last slot.
extcodecopy(pointer, add(data, 0x20), add(start, DATA_OFFSET), size)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
{
"compilationTarget": {
"contracts/Efficax.sol": "Efficax"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 1000
},
"remappings": []
}
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"AdminApproved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"AdminRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[{"internalType":"address","name":"creatorContractAddress","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes[]","name":"chunks","type":"bytes[]"}],"name":"appendAnimationChunks","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"creatorContractAddress","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes[]","name":"chunks","type":"bytes[]"}],"name":"appendChunks","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"admin","type":"address"}],"name":"approveAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getAdmins","outputs":[{"internalType":"address[]","name":"admins","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"totalLength","type":"uint256"}],"name":"inflate","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"admin","type":"address"}],"name":"isAdmin","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"creatorContractAddress","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"loadAnimation","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"creatorContractAddress","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"loadImage","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"creatorContractAddress","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"loadRawImage","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"creatorContractAddress","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"lockToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"creatorContractAddress","type":"address"},{"components":[{"internalType":"string","name":"metadata","type":"string"},{"components":[{"internalType":"string","name":"mimeType","type":"string"},{"internalType":"address[]","name":"chunks","type":"address[]"},{"internalType":"uint256","name":"length","type":"uint256"},{"internalType":"bool","name":"zipped","type":"bool"},{"internalType":"bool","name":"deflated","type":"bool"}],"internalType":"struct Efficax.File","name":"image","type":"tuple"},{"components":[{"internalType":"string","name":"mimeType","type":"string"},{"internalType":"address[]","name":"chunks","type":"address[]"},{"internalType":"uint256","name":"length","type":"uint256"},{"internalType":"bool","name":"zipped","type":"bool"},{"internalType":"bool","name":"deflated","type":"bool"}],"internalType":"struct Efficax.File","name":"animation","type":"tuple"},{"internalType":"bool","name":"wrapped","type":"bool"},{"internalType":"uint256","name":"quantity","type":"uint256"}],"internalType":"struct Efficax.Options","name":"options","type":"tuple"},{"internalType":"bytes[]","name":"image","type":"bytes[]"},{"internalType":"bytes[]","name":"animation","type":"bytes[]"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"creatorContractAddress","type":"address"},{"components":[{"internalType":"string","name":"metadata","type":"string"},{"components":[{"internalType":"string","name":"mimeType","type":"string"},{"internalType":"address[]","name":"chunks","type":"address[]"},{"internalType":"uint256","name":"length","type":"uint256"},{"internalType":"bool","name":"zipped","type":"bool"},{"internalType":"bool","name":"deflated","type":"bool"}],"internalType":"struct Efficax.File","name":"image","type":"tuple"},{"components":[{"internalType":"string","name":"mimeType","type":"string"},{"internalType":"address[]","name":"chunks","type":"address[]"},{"internalType":"uint256","name":"length","type":"uint256"},{"internalType":"bool","name":"zipped","type":"bool"},{"internalType":"bool","name":"deflated","type":"bool"}],"internalType":"struct Efficax.File","name":"animation","type":"tuple"},{"internalType":"bool","name":"wrapped","type":"bool"},{"internalType":"uint256","name":"quantity","type":"uint256"}],"internalType":"struct Efficax.Options","name":"options","type":"tuple"},{"internalType":"bytes[]","name":"image","type":"bytes[]"},{"internalType":"bytes[]","name":"animation","type":"bytes[]"}],"name":"mint1155","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"admin","type":"address"}],"name":"revokeAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokenData","outputs":[{"internalType":"string","name":"metadata","type":"string"},{"components":[{"internalType":"string","name":"mimeType","type":"string"},{"internalType":"address[]","name":"chunks","type":"address[]"},{"internalType":"uint256","name":"length","type":"uint256"},{"internalType":"bool","name":"zipped","type":"bool"},{"internalType":"bool","name":"deflated","type":"bool"}],"internalType":"struct Efficax.File","name":"image","type":"tuple"},{"components":[{"internalType":"string","name":"mimeType","type":"string"},{"internalType":"address[]","name":"chunks","type":"address[]"},{"internalType":"uint256","name":"length","type":"uint256"},{"internalType":"bool","name":"zipped","type":"bool"},{"internalType":"bool","name":"deflated","type":"bool"}],"internalType":"struct Efficax.File","name":"animation","type":"tuple"},{"internalType":"bool","name":"wrapped","type":"bool"},{"internalType":"bool","name":"locked","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"creatorContractAddress","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"data","type":"bytes"}],"name":"unzip","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"creatorContractAddress","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes[]","name":"image","type":"bytes[]"},{"internalType":"bytes[]","name":"animation","type":"bytes[]"},{"components":[{"internalType":"string","name":"metadata","type":"string"},{"components":[{"internalType":"string","name":"mimeType","type":"string"},{"internalType":"address[]","name":"chunks","type":"address[]"},{"internalType":"uint256","name":"length","type":"uint256"},{"internalType":"bool","name":"zipped","type":"bool"},{"internalType":"bool","name":"deflated","type":"bool"}],"internalType":"struct Efficax.File","name":"image","type":"tuple"},{"components":[{"internalType":"string","name":"mimeType","type":"string"},{"internalType":"address[]","name":"chunks","type":"address[]"},{"internalType":"uint256","name":"length","type":"uint256"},{"internalType":"bool","name":"zipped","type":"bool"},{"internalType":"bool","name":"deflated","type":"bool"}],"internalType":"struct Efficax.File","name":"animation","type":"tuple"},{"internalType":"bool","name":"wrapped","type":"bool"},{"internalType":"uint256","name":"quantity","type":"uint256"}],"internalType":"struct Efficax.Options","name":"options","type":"tuple"}],"name":"updateToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"data","type":"bytes"}],"name":"zip","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"pure","type":"function"}]