账户
0xcf...59b2
0xcf...59b2

0xcf...59b2

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.27+commit.40a35a09
语言
Solidity
合同源代码
文件 1 的 13:AccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)

pragma solidity 0.8.27;

import {IAccessControl} from "./IAccessControl.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `msg.sender`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, msg.sender);
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != msg.sender) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, msg.sender);
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, msg.sender);
            return true;
        } else {
            return false;
        }
    }
}
合同源代码
文件 2 的 13:Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)

pragma solidity 0.8.27;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success,) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(address target, bool success, bytes memory returndata)
        internal
        view
        returns (bytes memory)
    {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}
合同源代码
文件 3 的 13:ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)

pragma solidity 0.8.27;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
合同源代码
文件 4 的 13:Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity 0.8.27;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}
合同源代码
文件 5 的 13:Hashes.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)

pragma solidity 0.8.27;

/**
 * @dev Library of standard hash functions.
 *
 * _Available since v5.1._
 */
library Hashes {
    /**
     * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
     *
     * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     */
    function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
        return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        assembly ("memory-safe") {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}
合同源代码
文件 6 的 13:IAccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/IAccessControl.sol)

pragma solidity 0.8.27;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}
合同源代码
文件 7 的 13:IERC1363.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity 0.8.27;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data)
        external
        returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
合同源代码
文件 8 的 13:IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity 0.8.27;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
合同源代码
文件 9 的 13:IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity 0.8.27;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
合同源代码
文件 10 的 13:MerkleProof.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.

pragma solidity 0.8.27;

import {Hashes} from "./Hashes.sol";

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 *
 * IMPORTANT: Consider memory side-effects when using custom hashing functions
 * that access memory in an unsafe way.
 *
 * NOTE: This library supports proof verification for merkle trees built using
 * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
 * leaf inclusion in trees built using non-commutative hashing functions requires
 * additional logic that is not supported by this library.
 */
library MerkleProof {
    /**
     * @dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProof(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function processProof(
        bytes32[] memory proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProofCalldata(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function processProofCalldata(
        bytes32[] calldata proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves)
        internal
        pure
        returns (bool)
    {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves)
        internal
        pure
        returns (bytes32 merkleRoot)
    {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b =
                proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProof(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b =
                proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves)
        internal
        pure
        returns (bytes32 merkleRoot)
    {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b =
                proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b =
                proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }
}
合同源代码
文件 11 的 13:Pausable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)

pragma solidity 0.8.27;

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable {
    bool private _paused;

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(msg.sender);
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(msg.sender);
    }
}
合同源代码
文件 12 的 13:SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity 0.8.27;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(IERC1363 token, address from, address to, uint256 value, bytes memory data)
        internal
    {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}
合同源代码
文件 13 的 13:SuperSaleDeposit.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

import "./dependencies/openzeppelin/token/ERC20/utils/SafeERC20.sol";
import "./dependencies/openzeppelin/access/AccessControl.sol";
import "./dependencies/openzeppelin/utils/cryptography/MerkleProof.sol";
import "./dependencies/openzeppelin/utils/Pausable.sol";

/**
 * @title SuperSaleDeposit Contract
 * @notice This contract allows users to deposit USDC or USDT and purchase tokens in tiers with discounts and bonuses.
 *         The contract uses Merkle Proof for whitelisting users and SafeERC20 for token transfers.
 * @dev Access Control description:
 *      SuperAdmin [DEFAULT_ADMIN_ROLE]:
 *         - Can grant and revoke roles.
 *      Admin [ADMIN_ROLE]:
 *         - Can manage contract parameters setup like sale configuration and recipient of funds.
 *         - In exceptional scenarios like a security breach or unforeseen situations: Can intervene in the sale process by pausing the contract.
 *      Operator [OPERATOR_ROLE]:
 *         - Can update the Merkle root for whitelist verification.
 * @dev Uses Merkle Proof for whitelisting users and SafeERC20 for token transfers.
 */
contract SuperSaleDeposit is AccessControl, Pausable {
    /*//////////////////////////////////////////////////////////////
                            LIBRARIES
    //////////////////////////////////////////////////////////////*/

    using SafeERC20 for IERC20;

    /*//////////////////////////////////////////////////////////////
                            STRUCTS & ENUMS
    //////////////////////////////////////////////////////////////*/

    // ============== Structs ==============
    /**
     * @notice Info about user deposit
     */
    struct UserDepositInfo {
        uint256 amountDeposited; // Total amount deposited by the user
        uint256 purchasedTokens; // Total tokens purchased by the user
    }

    /**
     * @notice Struct for tier price and cap
     */
    struct Tier {
        uint256 price; // Price of the token
        uint256 cap; // Cap for the tier
    }

    struct SaleSchedule {
        uint256 comingSoon; // End timestamp for coming soon phase
        uint256 onlyKyc; // End timestamp of only KYC phase
        uint256 tokenPurchase; // End timestamp of token purchase phase
    }

    struct SaleParameters {
        uint256 minDepositAmount; // Minimum USD amount required per purchase.
        uint256 maxDepositAmount; // Maximum USD amount allowed per wallet.
    }

    // ============== Enums ===============

    enum Stages {
        Completed, // Sale is final
        ComingSoon, // Contract is deployed but not yet started
        OnlyKyc, // Only Merkle root updates and setup functions
        TokenPurchase // Deposit and purchase tokens

    }

    /*//////////////////////////////////////////////////////////////
                            STATE VARIABLES
    //////////////////////////////////////////////////////////////*/

    // ============== Contract Setup ===============

    /**
     * @dev Admin Role: Manages contract parameters setup like sale configuration and recipient of funds
     */
    bytes32 private constant ADMIN_ROLE = keccak256("ADMIN_ROLE");

    /**
     * @dev Operator role: updating merkle root
     */
    bytes32 private constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE");

    /**
     * @notice Maximum funds allowed to be collected.
     * @dev 20,000,000 USDC/T (*) times 10^6, 6 is the number of decimals of USDC/USDT.
     */
    uint256 public maxTotalFunds;

    /**
     * @dev Merkle root for whitelist verification.
     */
    bytes32 public merkleRoot;

    /**
     * @dev Recipient of collected funds.
     */
    address private immutable treasury;

    /**
     * @dev Address of USDC token.
     */
    IERC20 private immutable USDC;

    /**
     * @dev Address of USDT token.
     */
    IERC20 private immutable USDT;

    /**
     * @dev Array of Tier structs representing different price tiers in Sale.
     */
    Tier[4] public tiers;

    /**
     * @dev Sale stages timestamps.
     */
    SaleSchedule public saleSchedule;

    /**
     * @dev Sale constraints for each wallet.
     */
    SaleParameters public saleParameters;

    // ============ Tracking the sale =============

    /**
     * @dev Total amount of USD collected so far.
     */
    uint256 public totalFundsCollected;

    /**
     * @dev Price tier tracking.
     */
    uint256 public activeTierIndex;

    /**
     * @dev Mapping to track deposits by each user.
     */
    mapping(address => UserDepositInfo) public userDeposits;

    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event ExternalContractsSet(address indexed user, address treasury, IERC20 usdc, IERC20 usdt);
    event TiersUpdate(address indexed user, Tier[4] tiers);
    event SaleParametersUpdate(address indexed user, uint256 minDepositAmount, uint256 maxDepositAmount);
    event SaleScheduleUpdate(address indexed user, uint256 comingSoon, uint256 onlyKyc, uint256 tokenPurchase);
    event MerkleRootUpdate(address indexed user, bytes32 newRoot);
    event ActiveTierUpdate(address indexed user, uint256 oldTierIndex, uint256 newTierIndex);
    event TokensPurchase(
        address indexed user, uint256 depositedAmount, uint256 purchasedTokens, uint256 totalFundsCollected
    );
    event SaleCompleted();
    event WithdrawAsset(address asset, address withdrawTo, uint256 amount);

    /*//////////////////////////////////////////////////////////////
                                 ERRORS
    //////////////////////////////////////////////////////////////*/

    /**
     * @dev Error thrown when a user is not verified.
     * @param _selector The function selector that triggered the error.
     * @param _user The address of the user that is not verified.
     */
    error UserNotVerified(bytes4 _selector, address _user);

    /**
     * @dev Error thrown when the purchase input is invalid.
     * @param _selector The function selector that triggered the error.
     * @param _input The invalid input provided.
     */
    /**
     * @dev Error indicating that the purchase input is invalid.
     * @param _selector The function selector where the error occurred.
     * @param _input The invalid input that was provided.
     * @param _message A message providing additional details about the error.
     * @param _suggestedInput A suggested valid input to correct the error.
     */
    error InvalidPurchaseInput(bytes4 _selector, bytes32 _input, bytes32 _message, uint256 _suggestedInput);

    /**
     * @dev Error thrown when an input is invalid.
     * @param _selector The function selector that triggered the error.
     * @param _input The invalid input provided.
     */
    error InvalidInput(bytes4 _selector, bytes32 _input);

    /**
     * @dev Error thrown when the contract is in the wrong stage.
     * @param _selector The function selector that triggered the error.
     * @param _currentStage The current stage of the contract.
     * @param _requiredStage The required stage for the operation.
     */
    error WrongStage(bytes4 _selector, Stages _currentStage, Stages _requiredStage);

    /*//////////////////////////////////////////////////////////////
                             MODIFIERS
    //////////////////////////////////////////////////////////////*/

    /**
     * @dev Modifier to check if the sale is in the correct stage
     * @param _requiredStage The minimal required stage for the function to execute
     * @notice Compares stages sequentially: OnlyKyc < TokenPurchase < Completed
     *         If the current stage if before the required stage, the function will revert
     */
    modifier fromStage(Stages _requiredStage) {
        Stages _currentStage = _getCurrentStage();

        // completed = 0, comingSoon = 1, onlyKyc = 2, tokenPurchase = 3
        if (_currentStage < _requiredStage) {
            revert WrongStage(msg.sig, _currentStage, _requiredStage);
        }

        _;
    }

    /**
     * @dev Modifier to ensure that the current stage matches the required stage for the function execution.
     * @param _requiredStage The exact stage required for the function to execute.
     * @notice The function will revert if the current stage is not identical to the required stage.
     */
    modifier atStage(Stages _requiredStage) {
        Stages _currentStage = _getCurrentStage();

        if (_currentStage != _requiredStage) {
            revert WrongStage(msg.sig, _currentStage, _requiredStage);
        }

        _;
    }

    /*//////////////////////////////////////////////////////////////
                            CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(
        address _superAdmin,
        address _admin,
        address _operator,
        address _treasury,
        IERC20 _usdc,
        IERC20 _usdt,
        bytes32 _merkleRoot
    ) {
        address ZERO_ADDRESS = address(0);

        require(
            (_superAdmin != ZERO_ADDRESS) && (_admin != ZERO_ADDRESS) && (_operator != ZERO_ADDRESS)
                && (_treasury != ZERO_ADDRESS) && (address(_usdc) != ZERO_ADDRESS) && (address(_usdt) != ZERO_ADDRESS)
                && (_merkleRoot != bytes32(0))
        );

        _pause();

        treasury = _treasury;
        USDC = _usdc;
        USDT = _usdt;
        emit ExternalContractsSet(msg.sender, treasury, USDC, USDT);

        _setMerkleRoot(_merkleRoot);

        // Tier prices are scaled by 10^18 to keep precision during division
        _setTiers(
            [
                Tier(9090909090909090, 2_000_000e6), // 0
                Tier(9523809523809520, 4_000_000e6), // 1
                Tier(9708737864077669, 6_000_000e6), // 2
                Tier(10263929618768321, 20_000_000e6) // 3
            ]
        );

        _grantRole(DEFAULT_ADMIN_ROLE, _superAdmin);
        _grantRole(ADMIN_ROLE, _admin);
        _grantRole(OPERATOR_ROLE, _operator);
    }

    /*//////////////////////////////////////////////////////////////
                            CONTRACT SETUP
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Sets the sale parameters including minimum and maximum deposit amounts.
     * @dev This function can only be called by an account with the ADMIN_ROLE and when the contract is paused.
     * @param _minDepositAmount The minimum amount that can be deposited.
     * @param _maxDepositAmount The maximum amount that can be deposited.
     * Emits a {SaleParametersUpdate} event.
     */
    function setSaleParameters(uint256 _minDepositAmount, uint256 _maxDepositAmount)
        external
        whenPaused
        onlyRole(ADMIN_ROLE)
    {
        require(_minDepositAmount < _maxDepositAmount);

        saleParameters = SaleParameters(_minDepositAmount, _maxDepositAmount);
        emit SaleParametersUpdate(msg.sender, _minDepositAmount, _maxDepositAmount);
    }

    /**
     * @notice Sets the sale schedule including KYC and token purchase periods.
     * @dev This function can only be called by an account with the ADMIN_ROLE and when the contract is paused.
     * @param _onlyKyc The timestamp until which users can only KYC.
     * @param _tokenPurchase The timestamp until which token purchases can be made.
     * Emits a {SaleScheduleUpdate} event.
     */
    function setSaleSchedule(uint256 _comingSoon, uint256 _onlyKyc, uint256 _tokenPurchase)
        external
        whenPaused
        onlyRole(ADMIN_ROLE)
    {
        require((_comingSoon < _onlyKyc) && (_onlyKyc < _tokenPurchase));

        saleSchedule = SaleSchedule(_comingSoon, _onlyKyc, _tokenPurchase);
        emit SaleScheduleUpdate(msg.sender, _comingSoon, _onlyKyc, _tokenPurchase);
    }

    /**
     * @notice Sets the tiers for the sale.
     * @dev This function can only be called by an account with the ADMIN_ROLE and when the contract is paused.
     * @param _tiers An array of Tier structs representing the different tiers.
     * Emits a {TiersUpdate} event.
     */
    function setTiers(Tier[4] calldata _tiers) public atStage(Stages.OnlyKyc) onlyRole(ADMIN_ROLE) {
        bytes32 tiersHash_ = keccak256(bytes.concat(msg.data[4:]));
        bytes32 zeroBytesHash_ = keccak256(bytes.concat(new bytes(256)));
        require(tiersHash_ != zeroBytesHash_);

        _setTiers(_tiers);
    }

    /*//////////////////////////////////////////////////////////////
                            PUBLIC API
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Deposit using USDC and purchase tokens.
     * @param _amount Amount of USDC to deposit.
     * @param merkleProof Merkle proof for whitelist verification.
     * @dev Emits a Purchase event upon successful purchase.
     */
    function depositUSDC(uint256 _amount, bytes32[] calldata merkleProof)
        external
        whenNotPaused
        fromStage(Stages.TokenPurchase)
    {
        UserDepositInfo storage userDepositInfo = userDeposits[msg.sender];

        _verifyDepositConditions(_amount, userDepositInfo.amountDeposited, merkleProof);
        _purchase(_amount, USDC, userDepositInfo);
    }

    /**
     * @notice Deposit using USDT and purchase tokens.
     * @param _amount Amount of USDT to deposit.
     * @param merkleProof Merkle proof for whitelist verification.
     * @dev Emits a Purchase event upon successful purchase.
     */
    function depositUSDT(uint256 _amount, bytes32[] calldata merkleProof)
        external
        whenNotPaused
        fromStage(Stages.TokenPurchase)
    {
        UserDepositInfo storage userDepositInfo = userDeposits[msg.sender];

        _verifyDepositConditions(_amount, userDepositInfo.amountDeposited, merkleProof);
        _purchase(_amount, USDT, userDepositInfo);
    }

    /**
     * @notice Update the Merkle root for whitelist verification.
     * @param _newRoot The new Merkle root.
     */
    function setMerkleRoot(bytes32 _newRoot) external onlyRole(OPERATOR_ROLE) fromStage(Stages.OnlyKyc) {
        _setMerkleRoot(_newRoot);
    }

    /**
     * @notice Withdraw assets from the contract.
     * @param recipient Address to send the assets to.
     * @param asset Address of the asset to withdraw (e.g., USDC/USDT).
     */
    function withdrawAssets(address recipient, IERC20 asset) external onlyRole(ADMIN_ROLE) {
        uint256 contractBalance = asset.balanceOf(address(this));
        asset.safeTransfer(recipient, contractBalance);
        emit WithdrawAsset(address(asset), recipient, contractBalance);
    }

    /**
     * @notice Pause the contract, preventing deposits.
     */
    function pause() external onlyRole(ADMIN_ROLE) {
        _pause();
    }

    /**
     * @notice Unpause the contract, allowing deposits.
     */
    function unpause() external onlyRole(ADMIN_ROLE) {
        _unpause();
    }

    /*//////////////////////////////////////////////////////////////
                            PRIVATE API
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Internal function to handle the purchase logic.
     * @param _amountUSD Amount to deposit.
     * @param _asset Asset to deposit (USDC/USDT).
     * @param _userDepositInfo User deposit info.
     * @dev Emits a Purchase event upon successful purchase.
     */
    function _purchase(uint256 _amountUSD, IERC20 _asset, UserDepositInfo storage _userDepositInfo) private {
        (uint256 _resultingTokens, uint256 _remainingAmount, uint256 _resultingTierIndex) =
            _calculateTokensToTransfer(_amountUSD, totalFundsCollected, activeTierIndex, tiers);

        uint256 depositedAmount_ = _amountUSD - _remainingAmount;

        if (_resultingTierIndex > activeTierIndex) {
            emit ActiveTierUpdate(msg.sender, activeTierIndex, _resultingTierIndex);
            activeTierIndex = _resultingTierIndex;
        }

        totalFundsCollected += depositedAmount_;

        _userDepositInfo.amountDeposited += depositedAmount_;
        _userDepositInfo.purchasedTokens += _resultingTokens;

        _asset.safeTransferFrom(msg.sender, treasury, depositedAmount_);

        emit TokensPurchase(msg.sender, depositedAmount_, _resultingTokens, totalFundsCollected);

        if (_getRemainingCap() == 0) {
            _pause();
            emit SaleCompleted();
        }
    }

    /**
     * @notice Internal function to verify deposit conditions like minimum/maximum amount and whitelist.
     * @param _amount Amount to deposit.
     * @param _amountDeposited Amount already deposited by the user.
     * @param merkleProof Merkle proof for whitelist verification.
     * @dev Throws custom errors if any condition fails.
     */
    function _verifyDepositConditions(uint256 _amount, uint256 _amountDeposited, bytes32[] calldata merkleProof)
        private
        view
    {
        if (_amount < 10e6) {
            revert InvalidPurchaseInput(msg.sig, bytes32("_amount"), bytes32("at least"), 10e6);
        }

        if (!_verifyUser(msg.sender, merkleProof)) {
            revert UserNotVerified(msg.sig, msg.sender);
        }

        SaleParameters memory _saleParameters = saleParameters;

        if ((_amount + _amountDeposited) < _saleParameters.minDepositAmount) {
            revert InvalidPurchaseInput(
                msg.sig, bytes32("_amount"), bytes32("below minDepositAmount"), _saleParameters.minDepositAmount
            );
        }

        uint256 _remainingAmount = _saleParameters.maxDepositAmount - _amountDeposited;
        if (_amount > _remainingAmount) {
            revert InvalidPurchaseInput(
                msg.sig, bytes32("_amount"), bytes32("exceeds maxDepositAmount"), _remainingAmount
            );
        }
    }

    /**
     * @notice Internal function to set the Merkle root.
     * @param _newRoot The new Merkle root.
     * @dev Emits a {MerkleRootUpdate} event if the new root is set.
     */
    function _setMerkleRoot(bytes32 _newRoot) private {
        if ((_newRoot == bytes32(0)) || (_newRoot == merkleRoot)) revert InvalidInput(msg.sig, bytes32("_newRoot"));

        merkleRoot = _newRoot;
        emit MerkleRootUpdate(msg.sender, _newRoot);
    }

    /**
     * @notice Internal function to set the tiers.
     * @param _tiers An array of Tier structs representing the different tiers.
     * @dev Emits a {TiersUpdate} event if the new tiers are set.
     */
    function _setTiers(Tier[4] memory _tiers) private {
        for (uint256 i = 0; i < 4; i++) {
            tiers[i] = _tiers[i];
        }

        maxTotalFunds = _tiers[3].cap;

        emit TiersUpdate(msg.sender, _tiers);
    }

    /**
     * @notice Internal function to verify if a user is in the whitelist using Merkle proof.
     * @param user Address of the user.
     * @param merkleProof Merkle proof for whitelist verification.
     * @return A boolean indicating whether the user is in the whitelist.
     */
    function _verifyUser(address user, bytes32[] calldata merkleProof) private view returns (bool) {
        bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(user))));

        return MerkleProof.verify(merkleProof, merkleRoot, leaf);
    }

    /**
     * @notice Calculates the number of tokens to transfer based on the deposited amount and tiers.
     * @dev This function accounts for multiple tiers and computes tokens across them if necessary.
     * @param _amount The amount deposited by the user.
     * @param _totalFundsCollected The total funds collected so far.
     * @param _activeTierIndex The index of the current active tier.
     * @param _tiers An array containing the details of each tier.
     * @return A tuple containing:
     *         - `resultingTokens_` The total number of tokens to transfer.
     *         - `remainingAmount_` The remaining amount after token computation.
     *         - `resultingTierIndex_` The updated active tier index after processing.
     */
    function _calculateTokensToTransfer(
        uint256 _amount,
        uint256 _totalFundsCollected,
        uint256 _activeTierIndex,
        Tier[4] memory _tiers
    ) private pure returns (uint256, uint256, uint256) {
        Tier memory _tier = _tiers[_activeTierIndex];
        uint256 _remainingTierCap = _tier.cap - _totalFundsCollected;

        // If amount is within the current tier cap we don't need to split the price into multiple tiers
        if (_amount <= _remainingTierCap) {
            return (_computeTokens(_amount, _tier.price), 0, _activeTierIndex);
        }

        // We're starting to compute the resulting tokens from the current tier
        uint256 remainingAmount_ = _amount;
        uint256 resultingTokens_ = 0;
        uint256 resultingTierIndex_ = _activeTierIndex;

        // By this point we know the amount is larger than the remaining tier cap
        resultingTokens_ += _computeTokens(_remainingTierCap, _tier.price);
        remainingAmount_ -= _remainingTierCap;

        uint256 prevTierCap = _tier.cap;
        uint256 currTierCap = 0;

        // And we continue to compute the resulting tokens based on the next tiers prices
        for (uint256 i = (_activeTierIndex + 1); i < _tiers.length; i++) {
            _tier = _tiers[i];
            resultingTierIndex_ = i;
            currTierCap = _tier.cap - prevTierCap;

            if (remainingAmount_ <= currTierCap) {
                resultingTokens_ += _computeTokens(remainingAmount_, _tier.price);
                remainingAmount_ = 0;
                break;
            }

            resultingTokens_ += _computeTokens(currTierCap, _tier.price);
            remainingAmount_ -= currTierCap;
            prevTierCap = _tier.cap;
        }

        return (resultingTokens_, remainingAmount_, resultingTierIndex_);
    }

    /**
     * @param _amount The amount in USD
     * @param _price The price of the token in USD
     */
    function _computeTokens(uint256 _amount, uint256 _price) private pure returns (uint256) {
        // _price = price * 10^18 --> precision scaling
        // _amount = (input_amount * 10^6 (USDC/T)) * 10^18 (_price)
        // (_amount * 1e18) / _price = (10^6 * 10^18) / 10^18 = 10^6 precision
        // 10^6 * 10^12 = 10^18 --> scale for future token's decimals
        return ((_amount * 1e18) / _price) * 1e12;
    }

    /**
     * @notice Retrieve the current stage of the sale.
     * @dev Evaluates the current timestamp against the predefined sale schedule stages.
     * @return The current stage which can be one of the stages:
     *         - `Stages.ComingSoon`: Sale has not started yet.
     *         - `Stages.OnlyKyc`: Only KYC available, purchase not yet allowed.
     *         - `Stages.TokenPurchase`: Sale is active, allowing token purchases.
     *         - `Stages.Completed`: Sale has ended.
     */
    function _getCurrentStage() private view returns (Stages) {
        if (block.timestamp < saleSchedule.comingSoon) return Stages.ComingSoon;
        if (block.timestamp < saleSchedule.onlyKyc) return Stages.OnlyKyc;
        if (block.timestamp < saleSchedule.tokenPurchase) return Stages.TokenPurchase;

        return Stages.Completed;
    }

    /**
     * @notice Get the remaining cap for the total funds that can be collected.
     * @dev This function computes the remaining amount of funds that can be collected
     *      by subtracting the total funds already collected from the maximum allowed funds.
     * @return The remaining cap amount.
     */
    function _getRemainingCap() private view returns (uint256) {
        return maxTotalFunds - totalFundsCollected;
    }

    /*//////////////////////////////////////////////////////////////
                                 VIEWS
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Retrieve the current stage of the sale.
     * @dev Evaluates the current timestamp against the predefined sale schedule stages.
     * @return The current stage which can be one of the stages:
     *         - `Stages.ComingSoon`: Sale has not started yet.
     *         - `Stages.OnlyKyc`: Only KYC available, purchase not yet allowed.
     *         - `Stages.TokenPurchase`: Sale is active, allowing token purchases.
     *         - `Stages.Completed`: Sale has ended.
     */
    function getCurrentStage() external view returns (Stages) {
        return _getCurrentStage();
    }

    /**
     * @notice Check if user able to deposit
     * @param user Address of user
     * @param merkleProof Proof for user
     */
    function verifyUser(address user, bytes32[] calldata merkleProof) external view returns (bool) {
        return _verifyUser(user, merkleProof);
    }

    /**
     * @notice Get the remaining deposit amount for a given user.
     * @param _user Address of the user.
     * @return The remaining deposit amount that the user can still deposit.
     */
    function getRemainingDepositAmount(address _user) external view returns (uint256) {
        return saleParameters.maxDepositAmount - userDeposits[_user].amountDeposited;
    }

    /**
     * @notice Get the remaining cap for the sale.
     * @return The remaining cap amount for the total funds collected in the sale.
     */
    function getRemainingCap() external view returns (uint256) {
        return _getRemainingCap();
    }
}
设置
{
  "compilationTarget": {
    "contracts/SuperSaleDeposit.sol": "SuperSaleDeposit"
  },
  "evmVersion": "paris",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "none"
  },
  "optimizer": {
    "enabled": true,
    "runs": 800
  },
  "remappings": []
}
ABI
[{"inputs":[{"internalType":"address","name":"_superAdmin","type":"address"},{"internalType":"address","name":"_admin","type":"address"},{"internalType":"address","name":"_operator","type":"address"},{"internalType":"address","name":"_treasury","type":"address"},{"internalType":"contract IERC20","name":"_usdc","type":"address"},{"internalType":"contract IERC20","name":"_usdt","type":"address"},{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[{"internalType":"bytes4","name":"_selector","type":"bytes4"},{"internalType":"bytes32","name":"_input","type":"bytes32"}],"name":"InvalidInput","type":"error"},{"inputs":[{"internalType":"bytes4","name":"_selector","type":"bytes4"},{"internalType":"bytes32","name":"_input","type":"bytes32"},{"internalType":"bytes32","name":"_message","type":"bytes32"},{"internalType":"uint256","name":"_suggestedInput","type":"uint256"}],"name":"InvalidPurchaseInput","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"bytes4","name":"_selector","type":"bytes4"},{"internalType":"address","name":"_user","type":"address"}],"name":"UserNotVerified","type":"error"},{"inputs":[{"internalType":"bytes4","name":"_selector","type":"bytes4"},{"internalType":"enum SuperSaleDeposit.Stages","name":"_currentStage","type":"uint8"},{"internalType":"enum SuperSaleDeposit.Stages","name":"_requiredStage","type":"uint8"}],"name":"WrongStage","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"oldTierIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newTierIndex","type":"uint256"}],"name":"ActiveTierUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"address","name":"treasury","type":"address"},{"indexed":false,"internalType":"contract IERC20","name":"usdc","type":"address"},{"indexed":false,"internalType":"contract IERC20","name":"usdt","type":"address"}],"name":"ExternalContractsSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"bytes32","name":"newRoot","type":"bytes32"}],"name":"MerkleRootUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[],"name":"SaleCompleted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"minDepositAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"maxDepositAmount","type":"uint256"}],"name":"SaleParametersUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"comingSoon","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"onlyKyc","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenPurchase","type":"uint256"}],"name":"SaleScheduleUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"components":[{"internalType":"uint256","name":"price","type":"uint256"},{"internalType":"uint256","name":"cap","type":"uint256"}],"indexed":false,"internalType":"struct SuperSaleDeposit.Tier[4]","name":"tiers","type":"tuple[4]"}],"name":"TiersUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"depositedAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"purchasedTokens","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalFundsCollected","type":"uint256"}],"name":"TokensPurchase","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"asset","type":"address"},{"indexed":false,"internalType":"address","name":"withdrawTo","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"WithdrawAsset","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"activeTierIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"depositUSDC","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"depositUSDT","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getCurrentStage","outputs":[{"internalType":"enum SuperSaleDeposit.Stages","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRemainingCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"getRemainingDepositAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxTotalFunds","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"merkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"saleParameters","outputs":[{"internalType":"uint256","name":"minDepositAmount","type":"uint256"},{"internalType":"uint256","name":"maxDepositAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"saleSchedule","outputs":[{"internalType":"uint256","name":"comingSoon","type":"uint256"},{"internalType":"uint256","name":"onlyKyc","type":"uint256"},{"internalType":"uint256","name":"tokenPurchase","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_newRoot","type":"bytes32"}],"name":"setMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_minDepositAmount","type":"uint256"},{"internalType":"uint256","name":"_maxDepositAmount","type":"uint256"}],"name":"setSaleParameters","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_comingSoon","type":"uint256"},{"internalType":"uint256","name":"_onlyKyc","type":"uint256"},{"internalType":"uint256","name":"_tokenPurchase","type":"uint256"}],"name":"setSaleSchedule","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"price","type":"uint256"},{"internalType":"uint256","name":"cap","type":"uint256"}],"internalType":"struct SuperSaleDeposit.Tier[4]","name":"_tiers","type":"tuple[4]"}],"name":"setTiers","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tiers","outputs":[{"internalType":"uint256","name":"price","type":"uint256"},{"internalType":"uint256","name":"cap","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalFundsCollected","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userDeposits","outputs":[{"internalType":"uint256","name":"amountDeposited","type":"uint256"},{"internalType":"uint256","name":"purchasedTokens","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"verifyUser","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"contract IERC20","name":"asset","type":"address"}],"name":"withdrawAssets","outputs":[],"stateMutability":"nonpayable","type":"function"}]