// ███████╗░█████╗░██████╗░██████╗░███████╗██████╗░░░░███████╗██╗
// ╚════██║██╔══██╗██╔══██╗██╔══██╗██╔════╝██╔══██╗░░░██╔════╝██║
// ░░███╔═╝███████║██████╔╝██████╔╝█████╗░░██████╔╝░░░█████╗░░██║
// ██╔══╝░░██╔══██║██╔═══╝░██╔═══╝░██╔══╝░░██╔══██╗░░░██╔══╝░░██║
// ███████╗██║░░██║██║░░░░░██║░░░░░███████╗██║░░██║██╗██║░░░░░██║
// ╚══════╝╚═╝░░╚═╝╚═╝░░░░░╚═╝░░░░░╚══════╝╚═╝░░╚═╝╚═╝╚═╝░░░░░╚═╝
// Copyright (C) 2020 zapper, nodar, suhail, seb, sumit, apoorv
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
///@author Zapper
///@notice This contract adds liquidity to Curve stablecoin and BTC liquidity pools in one transaction with ETH or ERC tokens.
// File: Context.sol
pragma solidity ^0.5.5;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
contract Context {
// Empty internal constructor, to prevent people from mistakenly deploying
// an instance of this contract, which should be used via inheritance.
constructor() internal {}
// solhint-disable-previous-line no-empty-blocks
function _msgSender() internal view returns (address payable) {
return msg.sender;
}
function _msgData() internal view returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File: OpenZepplinOwnable.sol
pragma solidity ^0.5.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address payable public _owner;
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() internal {
address payable msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(isOwner(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Returns true if the caller is the current owner.
*/
function isOwner() public view returns (bool) {
return _msgSender() == _owner;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address payable newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
*/
function _transferOwnership(address payable newOwner) internal {
require(
newOwner != address(0),
"Ownable: new owner is the zero address"
);
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// File: OpenZepplinSafeMath.sol
pragma solidity ^0.5.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*
* _Available since v2.4.0._
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File: OpenZepplinIERC20.sol
pragma solidity ^0.5.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see {ERC20Detailed}.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount)
external
returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender)
external
view
returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
// File: OpenZepplinReentrancyGuard.sol
pragma solidity ^0.5.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* _Since v2.5.0:_ this module is now much more gas efficient, given net gas
* metering changes introduced in the Istanbul hardfork.
*/
contract ReentrancyGuard {
bool private _notEntered;
constructor() internal {
// Storing an initial non-zero value makes deployment a bit more
// expensive, but in exchange the refund on every call to nonReentrant
// will be lower in amount. Since refunds are capped to a percetange of
// the total transaction's gas, it is best to keep them low in cases
// like this one, to increase the likelihood of the full refund coming
// into effect.
_notEntered = true;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_notEntered, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_notEntered = false;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_notEntered = true;
}
}
// File: @openzeppelin/contracts/utils/Address.sol
pragma solidity ^0.5.5;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash
= 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly {
codehash := extcodehash(account)
}
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Converts an `address` into `address payable`. Note that this is
* simply a type cast: the actual underlying value is not changed.
*
* _Available since v2.4.0._
*/
function toPayable(address account)
internal
pure
returns (address payable)
{
return address(uint160(account));
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*
* _Available since v2.4.0._
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(
address(this).balance >= amount,
"Address: insufficient balance"
);
// solhint-disable-next-line avoid-call-value
(bool success, ) = recipient.call.value(amount)("");
require(
success,
"Address: unable to send value, recipient may have reverted"
);
}
}
// File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol
pragma solidity ^0.5.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
callOptionalReturn(
token,
abi.encodeWithSelector(token.transfer.selector, to, value)
);
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
callOptionalReturn(
token,
abi.encodeWithSelector(token.transferFrom.selector, from, to, value)
);
}
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(
token,
abi.encodeWithSelector(token.approve.selector, spender, value)
);
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(
value
);
callOptionalReturn(
token,
abi.encodeWithSelector(
token.approve.selector,
spender,
newAllowance
)
);
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(
value,
"SafeERC20: decreased allowance below zero"
);
callOptionalReturn(
token,
abi.encodeWithSelector(
token.approve.selector,
spender,
newAllowance
)
);
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves.
// A Solidity high level call has three parts:
// 1. The target address is checked to verify it contains contract code
// 2. The call itself is made, and success asserted
// 3. The return value is decoded, which in turn checks the size of the returned data.
// solhint-disable-next-line max-line-length
require(address(token).isContract(), "SafeERC20: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
// solhint-disable-next-line max-line-length
require(
abi.decode(returndata, (bool)),
"SafeERC20: ERC20 operation did not succeed"
);
}
}
}
interface IUniswapV2Factory {
function getPair(address tokenA, address tokenB)
external
view
returns (address);
}
interface IUniswapRouter02 {
//get estimated amountOut
function getAmountsOut(uint256 amountIn, address[] calldata path)
external
view
returns (uint256[] memory amounts);
function getAmountsIn(uint256 amountOut, address[] calldata path)
external
view
returns (uint256[] memory amounts);
//token 2 token
function swapExactTokensForTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapTokensForExactTokens(
uint256 amountOut,
uint256 amountInMax,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
//eth 2 token
function swapExactETHForTokens(
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external payable returns (uint256[] memory amounts);
function swapETHForExactTokens(
uint256 amountOut,
address[] calldata path,
address to,
uint256 deadline
) external payable returns (uint256[] memory amounts);
//token 2 eth
function swapTokensForExactETH(
uint256 amountOut,
uint256 amountInMax,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapExactTokensForETH(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
}
interface ICurveSwap {
function coins(int128 arg0) external view returns (address);
function underlying_coins(int128 arg0) external view returns (address);
function add_liquidity(uint256[4] calldata amounts, uint256 min_mint_amount)
external;
function add_liquidity(uint256[3] calldata amounts, uint256 min_mint_amount)
external;
function add_liquidity(uint256[2] calldata amounts, uint256 min_mint_amount)
external;
}
interface yERC20 {
function deposit(uint256 _amount) external;
}
interface IBalancer {
function swapExactAmountIn(
address tokenIn,
uint256 tokenAmountIn,
address tokenOut,
uint256 minAmountOut,
uint256 maxPrice
) external returns (uint256 tokenAmountOut, uint256 spotPriceAfter);
}
interface IWETH {
function deposit() external payable;
function transfer(address to, uint256 value) external returns (bool);
function withdraw(uint256) external;
}
contract Curve_ZapIn_General_V1_9 is ReentrancyGuard, Ownable {
using SafeMath for uint256;
using SafeERC20 for IERC20;
bool public stopped = false;
uint16 public goodwill = 0;
address
public zgoodwillAddress = 0xE737b6AfEC2320f616297e59445b60a11e3eF75F;
IUniswapV2Factory
private constant UniSwapV2FactoryAddress = IUniswapV2Factory(
0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f
);
IUniswapRouter02 private constant uniswapRouter = IUniswapRouter02(
0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
);
IBalancer private BalWBTCPool = IBalancer(
0x1efF8aF5D577060BA4ac8A29A13525bb0Ee2A3D5
);
address
private constant wethToken = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
address
private constant wbtcToken = 0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599;
address
public intermediateStable = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;
uint256
private constant deadline = 0xf000000000000000000000000000000000000000000000000000000000000000;
struct Pool {
address swapAddress;
address tokenAddress;
address[4] poolTokens;
bool isMetaPool;
}
mapping(address => Pool) public curvePools;
mapping(address => address) private metaPools; //Token address => swap address
// circuit breaker modifiers
modifier stopInEmergency {
if (stopped) {
revert("Temporarily Paused");
} else {
_;
}
}
/**
@notice This function adds liquidity to a Curve pool with ETH or ERC20 tokens
@param toWhomToIssue The address to return the Curve LP tokens to
@param fromToken The ERC20 token used for investment (address(0x00) if ether)
@param swapAddress Curve swap address for the pool
@param incomingTokenQty The amount of fromToken to invest
@param minPoolTokens The minimum acceptable quantity of tokens to receive. Reverts otherwise
@return Amount of Curve LP tokens received
*/
function ZapIn(
address toWhomToIssue,
address fromToken,
address swapAddress,
uint256 incomingTokenQty,
uint256 minPoolTokens
)
external
payable
stopInEmergency
nonReentrant
returns (uint256 crvTokensBought)
{
uint256 toInvest;
if (fromToken == address(0)) {
require(msg.value > 0, "Error: ETH not sent");
toInvest = msg.value;
} else {
require(msg.value == 0, "Error: ETH sent");
require(incomingTokenQty > 0, "Error: Invalid ERC amount");
IERC20(fromToken).safeTransferFrom(
msg.sender,
address(this),
incomingTokenQty
);
toInvest = incomingTokenQty;
}
(bool isUnderlying, uint8 underlyingIndex) = _isUnderlyingToken(
swapAddress,
fromToken
);
if (isUnderlying) {
crvTokensBought = _enterCurve(
swapAddress,
toInvest,
underlyingIndex
);
} else {
(uint256 tokensBought, uint8 index) = _getIntermediate(
swapAddress,
fromToken,
toInvest
);
crvTokensBought = _enterCurve(swapAddress, tokensBought, index);
}
require(
crvTokensBought > minPoolTokens,
"Received less than minPoolTokens"
);
address poolTokenAddress = curvePools[swapAddress].tokenAddress;
uint256 goodwillPortion;
if (goodwill > 0) {
goodwillPortion = SafeMath.div(
SafeMath.mul(crvTokensBought, goodwill),
10000
);
IERC20(poolTokenAddress).safeTransfer(
zgoodwillAddress,
goodwillPortion
);
}
IERC20(poolTokenAddress).transfer(
toWhomToIssue,
SafeMath.sub(crvTokensBought, goodwillPortion)
);
}
/**
@notice This function swaps to an appropriate intermediate token to be used to add liquidity
@param swapAddress Curve swap address for the pool
@param fromToken The ERC20 token used for investment (address(0x00) if ether)
@param amount The amount of fromToken to invest
@return Amount of tokens (or LP) bought, token index for add_liquidity call
*/
function _getIntermediate(
address swapAddress,
address fromToken,
uint256 amount
) internal returns (uint256 tokensBought, uint8 index) {
Pool memory pool2Enter = curvePools[swapAddress];
address[4] memory poolTokens = pool2Enter.poolTokens;
if (pool2Enter.isMetaPool) {
for (uint8 i = 0; i < 4; i++) {
if (metaPools[poolTokens[i]] != address(0)) {
address intermediateSwapAddress = metaPools[poolTokens[i]];
(
bool isUnderlying,
uint8 underlyingIndex
) = _isUnderlyingToken(intermediateSwapAddress, fromToken);
if (isUnderlying) {
tokensBought = _enterCurve(
intermediateSwapAddress,
amount,
underlyingIndex
);
return (tokensBought, i);
}
uint256 intermediateTokenBought;
if (_isBtcPool(intermediateSwapAddress)) {
intermediateTokenBought = _token2Token(
fromToken,
wbtcToken,
amount
);
(, index) = _isUnderlyingToken(
intermediateSwapAddress,
wbtcToken
);
} else {
intermediateTokenBought = _token2Token(
fromToken,
intermediateStable,
amount
);
(, index) = _isUnderlyingToken(
intermediateSwapAddress,
intermediateStable
);
}
tokensBought = _enterCurve(
intermediateSwapAddress,
intermediateTokenBought,
index
);
return (tokensBought, i);
}
}
} else {
if (_isBtcPool(swapAddress)) {
tokensBought = _token2Token(fromToken, wbtcToken, amount);
(, index) = _isUnderlyingToken(swapAddress, wbtcToken);
return (tokensBought, index);
}
tokensBought = _token2Token(fromToken, intermediateStable, amount);
(, index) = _isUnderlyingToken(swapAddress, intermediateStable);
}
}
/**
@notice This function is used to swap ETH/ERC20 <> ETH/ERC20
@param fromToken The token address to swap from. (0x00 for ETH)
@param toToken The token address to swap to. (0x00 for ETH)
@param tokens2Trade The amount of tokens to swap
@return tokenBought The quantity of tokens bought
*/
function _token2Token(
address fromToken,
address toToken,
uint256 tokens2Trade
) internal returns (uint256 tokenBought) {
if (fromToken == address(0)) {
address[] memory path = new address[](2);
path[0] = wethToken;
path[1] = toToken;
tokenBought = uniswapRouter.swapExactETHForTokens.value(
tokens2Trade
)(1, path, address(this), deadline)[path.length - 1];
} else {
IERC20(fromToken).safeIncreaseAllowance(
address(uniswapRouter),
tokens2Trade
);
if (fromToken != wethToken) {
// check output via tokenA -> tokenB
address pairA = UniSwapV2FactoryAddress.getPair(
fromToken,
toToken
);
address[] memory pathA = new address[](2);
pathA[0] = fromToken;
pathA[1] = toToken;
uint256 amtA;
if (pairA != address(0)) {
amtA = uniswapRouter.getAmountsOut(tokens2Trade, pathA)[1];
}
// check output via tokenA -> weth -> tokenB
address[] memory pathB = new address[](3);
pathB[0] = fromToken;
pathB[1] = wethToken;
pathB[2] = toToken;
uint256 amtB = uniswapRouter.getAmountsOut(
tokens2Trade,
pathB
)[2];
if (amtA >= amtB) {
tokenBought = uniswapRouter.swapExactTokensForTokens(
tokens2Trade,
1,
pathA,
address(this),
deadline
)[pathA.length - 1];
} else {
tokenBought = uniswapRouter.swapExactTokensForTokens(
tokens2Trade,
1,
pathB,
address(this),
deadline
)[pathB.length - 1];
}
} else {
address[] memory path = new address[](2);
path[0] = wethToken;
path[1] = toToken;
tokenBought = uniswapRouter.swapExactTokensForTokens(
tokens2Trade,
1,
path,
address(this),
deadline
)[path.length - 1];
}
}
require(tokenBought > 0, "Error Swapping Tokens");
}
/**
@notice This function adds liquidity to a curve pool
@param swapAddress Curve swap address for the pool
@param amount The quantity of tokens being added as liquidity
@param index The token index for the add_liquidity call
@return tokenBought The quantity of curve LP tokens received
*/
function _enterCurve(
address swapAddress,
uint256 amount,
uint8 index
) internal returns (uint256 crvTokensBought) {
address tokenAddress = curvePools[swapAddress].tokenAddress;
uint256 iniTokenBal = IERC20(tokenAddress).balanceOf(address(this));
address entryToken = curvePools[swapAddress].poolTokens[index];
IERC20(entryToken).safeIncreaseAllowance(address(swapAddress), amount);
uint256 numTokens = _getNumTokens(swapAddress);
if (numTokens == 4) {
uint256[4] memory amounts;
amounts[index] = amount;
ICurveSwap(swapAddress).add_liquidity(amounts, 0);
} else if (numTokens == 3) {
uint256[3] memory amounts;
amounts[index] = amount;
ICurveSwap(swapAddress).add_liquidity(amounts, 0);
} else {
uint256[2] memory amounts;
amounts[index] = amount;
ICurveSwap(swapAddress).add_liquidity(amounts, 0);
}
crvTokensBought = (IERC20(tokenAddress).balanceOf(address(this))).sub(
iniTokenBal
);
}
/**
@notice This function checks if the curve pool contains WBTC
@param swapAddress Curve swap address for the pool
@return true if the pool contains WBTC, false otherwise
*/
function _isBtcPool(address swapAddress) internal view returns (bool) {
address[4] memory poolTokens = getPoolTokens(swapAddress);
for (uint8 i = 0; i < 4; i++) {
if (poolTokens[i] == wbtcToken) return true;
}
return false;
}
function _getNumTokens(address swapAddress)
internal
view
returns (uint256 numTokens)
{
address[4] memory poolTokens = getPoolTokens(swapAddress);
if (poolTokens[2] == address(0)) return 2;
if (poolTokens[3] == address(0)) return 3;
return 4;
}
function _isUnderlyingToken(
address swapAddress,
address fromTokenContractAddress
) internal view returns (bool, uint8) {
address[4] memory poolTokens = getPoolTokens(swapAddress);
for (uint8 i = 0; i < 4; i++) {
if (poolTokens[i] == address(0)) return (false, 0);
if (poolTokens[i] == fromTokenContractAddress) return (true, i);
}
}
/**
@notice This function adds a new supported pool
@param swapAddress Curve swap address for the pool
@param tokenAddress Curve token address for the pool
@param poolTokens token (or LP) contract addresses of underlying tokens
@dev poolTokens should be unwrapped tokens (e.g. DAI not yDAI)
@dev poolTokens should use 0 address for pools with < 4 tokens
@param isMetaPool true if pool contains a curve LP token as a pool token
*/
function addPool(
address swapAddress,
address tokenAddress,
address[4] calldata poolTokens,
bool isMetaPool
) external onlyOwner {
require(
curvePools[swapAddress].swapAddress == address(0),
"Pool exists"
);
Pool memory newPool = Pool(
swapAddress,
tokenAddress,
poolTokens,
isMetaPool
);
curvePools[swapAddress] = newPool;
metaPools[tokenAddress] = swapAddress;
}
/**
@notice This function updates an existing supported pool
@param swapAddress Curve swap address for the pool
@param tokenAddress Curve token address for the pool
@param poolTokens token (or LP) contract addresses of underlying tokens
@dev poolTokens should be unwrapped tokens (e.g. DAI not yDAI)
@dev poolTokens should use 0 address for pools with < 4 tokens
@param isMetaPool true if pool contains a curve LP token as a pool token
*/
function updatePool(
address swapAddress,
address tokenAddress,
address[4] calldata poolTokens,
bool isMetaPool
) external onlyOwner {
require(
curvePools[swapAddress].swapAddress == swapAddress,
"Pool doesn't exist"
);
Pool storage pool2Update = curvePools[swapAddress];
pool2Update.tokenAddress = tokenAddress;
pool2Update.poolTokens = poolTokens;
pool2Update.isMetaPool = isMetaPool;
metaPools[tokenAddress] = swapAddress;
}
/**
@notice This function returns an array of underlying pool token addresses
@param swapAddress Curve swap address for the pool
@return returns a 4 element array containing the addresses of the pool tokens (0 address if pool contains < 4 tokens)
*/
function getPoolTokens(address swapAddress)
public
view
returns (address[4] memory poolTokens)
{
poolTokens = curvePools[swapAddress].poolTokens;
}
function inCaseTokengetsStuck(IERC20 _TokenAddress) external onlyOwner {
uint256 qty = _TokenAddress.balanceOf(address(this));
IERC20(_TokenAddress).safeTransfer(_owner, qty);
}
function set_new_goodwill(uint16 _new_goodwill) external onlyOwner {
require(
_new_goodwill >= 0 && _new_goodwill < 10000,
"GoodWill Value not allowed"
);
goodwill = _new_goodwill;
}
function set_new_zgoodwillAddress(address _new_zgoodwillAddress)
external
onlyOwner
{
zgoodwillAddress = _new_zgoodwillAddress;
}
function updateIntermediateStable(address newIntermediate)
external
onlyOwner
{
require(
newIntermediate != intermediateStable,
"Already using this intermediate"
);
intermediateStable = newIntermediate;
}
// - to Pause the contract
function toggleContractActive() external onlyOwner {
stopped = !stopped;
}
// - to withdraw any ETH balance sitting in the contract
function withdraw() external onlyOwner {
_owner.transfer(address(this).balance);
}
function() external payable {
require(msg.sender != tx.origin, "Do not send ETH directly");
}
}
{
"compilationTarget": {
"Curve_ZapIn_General_V1_9.sol": "Curve_ZapIn_General_V1_9"
},
"evmVersion": "istanbul",
"libraries": {},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"payable":true,"stateMutability":"payable","type":"fallback"},{"constant":false,"inputs":[{"internalType":"address","name":"toWhomToIssue","type":"address"},{"internalType":"address","name":"fromToken","type":"address"},{"internalType":"address","name":"swapAddress","type":"address"},{"internalType":"uint256","name":"incomingTokenQty","type":"uint256"},{"internalType":"uint256","name":"minPoolTokens","type":"uint256"}],"name":"ZapIn","outputs":[{"internalType":"uint256","name":"crvTokensBought","type":"uint256"}],"payable":true,"stateMutability":"payable","type":"function"},{"constant":true,"inputs":[],"name":"_owner","outputs":[{"internalType":"address payable","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"swapAddress","type":"address"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"address[4]","name":"poolTokens","type":"address[4]"},{"internalType":"bool","name":"isMetaPool","type":"bool"}],"name":"addPool","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"curvePools","outputs":[{"internalType":"address","name":"swapAddress","type":"address"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"bool","name":"isMetaPool","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"swapAddress","type":"address"}],"name":"getPoolTokens","outputs":[{"internalType":"address[4]","name":"poolTokens","type":"address[4]"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"goodwill","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"contract IERC20","name":"_TokenAddress","type":"address"}],"name":"inCaseTokengetsStuck","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"intermediateStable","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"isOwner","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"renounceOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint16","name":"_new_goodwill","type":"uint16"}],"name":"set_new_goodwill","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"_new_zgoodwillAddress","type":"address"}],"name":"set_new_zgoodwillAddress","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"stopped","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"toggleContractActive","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address payable","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"newIntermediate","type":"address"}],"name":"updateIntermediateStable","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"swapAddress","type":"address"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"address[4]","name":"poolTokens","type":"address[4]"},{"internalType":"bool","name":"isMetaPool","type":"bool"}],"name":"updatePool","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"withdraw","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"zgoodwillAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"}]