// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;
import {IFeeManager} from "./interfaces/IFeeManager.sol";
import {FullMath} from "@arrakisfi/v3-lib-0.8/contracts/LiquidityAmounts.sol";
import {
IERC20,
SafeERC20
} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IV3SwapRouter} from "./univ3-0.8/IV3SwapRouter.sol";
import {ISwapRouter02} from "./univ3-0.8/ISwapRouter02.sol";
import {TransferHelper} from "./univ3-0.8/TransferHelper.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
contract FeeManager is IFeeManager, Ownable {
using SafeERC20 for IERC20;
uint256 public rate;
IERC20 public immutable chaos;
IERC20 public immutable vault;
IERC20 public immutable usdc;
ISwapRouter02 public immutable router;
uint256 public accumulatedRewardsPerShare;
mapping(address => uint256) public rewardDebt;
uint256 public constant REWARDS_PRECISION = 1e24;
uint8 private constant _USDC_DECIMALS = 6;
uint8 private constant _CHAOS_DECIMALS = 18;
uint24 public immutable feeTier;
event RewardsClaimed(
address indexed user,
uint256 usdcAmount,
uint256 chaosAmount
);
event RewardsConvertedToUsdc(
uint256 usdcAmount
);
modifier onlyVault() {
require(address(vault) == msg.sender, "Only vault can call");
_;
}
constructor(
address vault_,
address usdc_,
address chaos_,
address uniSwapRouter_,
uint24 feeTier_
) {
require(vault_ != address(0), "FeeManager: Invalid vault_ address");
require(usdc_ != address(0), "FeeManager: Invalid usdc_ address");
require(
uniSwapRouter_ != address(0),
"FeeManager: uniSwapRouter_ address"
);
feeTier = feeTier_;
vault = IERC20(vault_);
usdc = IERC20(usdc_);
chaos = IERC20(chaos_);
router = ISwapRouter02(uniSwapRouter_);
transferOwnership(msg.sender);
}
/// @dev Emergency withdraw only called by owner
function withdrawEmergency() external onlyOwner {
uint256 balance = usdc.balanceOf(address(this));
require(balance > 0, "FeeManager: No USDC to withdraw");
usdc.safeTransfer(owner(), balance);
}
function withdrawalChaos() external onlyOwner {
uint256 balance = chaos.balanceOf(address(this));
require(balance > 0, "FeeManager: No balance to withdrawal");
IERC20(chaos).transfer(owner(), balance);
}
function setRate(uint256 newRate) external onlyOwner {
rate = newRate;
}
function setRewardDebt(address _user, uint256 _amount) external onlyVault {
rewardDebt[_user] = _amount;
}
function depositFees(
address token0,
uint256 fees0,
address token1,
uint256 fees1
) public onlyVault {
if (fees0 > 0) {
IERC20(token0).safeTransferFrom(
address(vault),
address(this),
fees0
);
}
if (fees1 > 0) {
IERC20(token1).safeTransferFrom(
address(vault),
address(this),
fees1
);
}
uint256 rewards = _convertFeesToUSDC(token0, fees0, token1, fees1);
accumulatedRewardsPerShare =
accumulatedRewardsPerShare +
FullMath.mulDiv(rewards, REWARDS_PRECISION, vault.totalSupply());
emit RewardsConvertedToUsdc(rewards);
}
function claimFees(address claimer) public {
uint256 userBalance = vault.balanceOf(claimer);
uint256 totalReward = FullMath.mulDiv(
userBalance,
accumulatedRewardsPerShare,
REWARDS_PRECISION
);
uint256 rewardsToHarvest = totalReward - rewardDebt[claimer];
if (rewardsToHarvest == 0) {
rewardDebt[claimer] = totalReward;
return;
}
rewardDebt[claimer] = totalReward;
uint256 rewardsToHarvestInChaos = (rewardsToHarvest *
rate *
10**(_CHAOS_DECIMALS - _USDC_DECIMALS)) / 100;
usdc.safeTransfer(claimer, rewardsToHarvest);
if (rewardsToHarvestInChaos > 0) {
chaos.safeTransfer(claimer, rewardsToHarvestInChaos);
}
emit RewardsClaimed(claimer, rewardsToHarvest, rewardsToHarvestInChaos);
}
function _swapToUSDC(address token, uint256 feesToken)
private
returns (uint256 feesUSDC)
{
if (feesToken == 0) {
return 0;
}
TransferHelper.safeApprove(token, address(router), feesToken);
IV3SwapRouter.ExactInputSingleParams memory params = IV3SwapRouter
.ExactInputSingleParams({
tokenIn: address(token),
tokenOut: address(usdc),
fee: feeTier,
recipient: address(this),
amountIn: feesToken,
amountOutMinimum: 0,
sqrtPriceLimitX96: 0
});
feesUSDC = router.exactInputSingle(params);
}
function _convertFeesToUSDC(
address token0,
uint256 fee0,
address token1,
uint256 fee1
) private returns (uint256 usdcFee) {
if (address(token0) != address(usdc)) {
usdcFee += _swapToUSDC(address(token0), fee0);
} else {
usdcFee += fee0;
}
if (address(token1) != address(usdc)) {
usdcFee += _swapToUSDC(address(token1), fee1);
} else {
usdcFee += fee1;
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;
/// @title FixedPoint96
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
/// @dev Used in SqrtPriceMath.sol
library FixedPoint96 {
uint8 internal constant RESOLUTION = 96;
uint256 internal constant Q96 = 0x1000000000000000000000000;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
// EDIT for 0.8 compatibility:
// see: https://ethereum.stackexchange.com/questions/96642/unary-operator-cannot-be-applied-to-type-uint256
uint256 twos = denominator & (~denominator + 1);
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivRoundingUp(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
result = mulDiv(a, b, denominator);
if (mulmod(a, b, denominator) > 0) {
require(result < type(uint256).max);
result++;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
interface IFeeManager {
// Getter for the vault address
function vault() external view returns (IERC20);
// Getter for the USDC address
function usdc() external view returns (IERC20);
// Getter for accumulatedRewardsPerShare
function accumulatedRewardsPerShare() external view returns (uint256);
// Getter for a user's rewardDebt
function rewardDebt(address _user) external view returns (uint256);
// Getter for REWARDS_PRECISION
function REWARDS_PRECISION() external view returns (uint256);
// Function to emergency withdraw all the USDC of the contract (Only Owner)
function withdrawEmergency() external;
// Function to withdraw all CHAOS of the contract (Only Owner)
function withdrawalChaos() external;
// Set conversion rate between USDC and CHAOS (Only Owner)
function setRate(uint256 rate) external;
// Setter for a user's rewardDebt (can only be called by the vault)
function setRewardDebt(address _user, uint256 _amount) external;
// Function for users to claim their fees
function claimFees(address claimer) external;
// Function to deposit fees, can only be called by the vault
function depositFees(
address token0,
uint256 fees0,
address token1,
uint256 fees1
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.13;
pragma abicoder v2;
import "./IV3SwapRouter.sol";
/// @title Router token swapping functionality
interface ISwapRouter02 is IV3SwapRouter {
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IUniswapV3PoolActions#swap
/// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
interface IUniswapV3SwapCallback {
/// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
/// @dev In the implementation you must pay the pool tokens owed for the swap.
/// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
/// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
/// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
/// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
/// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
function uniswapV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.13;
pragma abicoder v2;
import "@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol";
/// @title Router token swapping functionality
/// @notice Functions for swapping tokens via Uniswap V3
interface IV3SwapRouter is IUniswapV3SwapCallback {
struct ExactInputSingleParams {
address tokenIn;
address tokenOut;
uint24 fee;
address recipient;
uint256 amountIn;
uint256 amountOutMinimum;
uint160 sqrtPriceLimitX96;
}
struct ExactInputParams {
bytes path;
address recipient;
uint256 amountIn;
uint256 amountOutMinimum;
}
/// @notice Swaps `amountIn` of one token for as much as possible of another token
/// @dev Setting `amountIn` to 0 will cause the contract to look up its own balance,
/// and swap the entire amount, enabling contracts to send tokens before calling this function.
/// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
/// @return amountOut The amount of the received token
function exactInputSingle(ExactInputSingleParams calldata params)
external
payable
returns (uint256 amountOut);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.8.0;
import {FullMath} from "./FullMath.sol";
import {FixedPoint96} from "@uniswap/v3-core/contracts/libraries/FixedPoint96.sol";
/// @title Liquidity amount functions
/// @notice Provides functions for computing liquidity amounts from token amounts and prices
library LiquidityAmounts {
function toUint128(uint256 x) private pure returns (uint128 y) {
require((y = uint128(x)) == x);
}
/// @notice Computes the amount of liquidity received for a given amount of token0 and price range
/// @dev Calculates amount0 * (sqrt(upper) * sqrt(lower)) / (sqrt(upper) - sqrt(lower)).
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param amount0 The amount0 being sent in
/// @return liquidity The amount of returned liquidity
function getLiquidityForAmount0(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint256 amount0
) internal pure returns (uint128 liquidity) {
if (sqrtRatioAX96 > sqrtRatioBX96)
(sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
uint256 intermediate = FullMath.mulDiv(
sqrtRatioAX96,
sqrtRatioBX96,
FixedPoint96.Q96
);
return
toUint128(
FullMath.mulDiv(
amount0,
intermediate,
sqrtRatioBX96 - sqrtRatioAX96
)
);
}
/// @notice Computes the amount of liquidity received for a given amount of token1 and price range
/// @dev Calculates amount1 / (sqrt(upper) - sqrt(lower)).
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param amount1 The amount1 being sent in
/// @return liquidity The amount of returned liquidity
function getLiquidityForAmount1(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint256 amount1
) internal pure returns (uint128 liquidity) {
if (sqrtRatioAX96 > sqrtRatioBX96)
(sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
return
toUint128(
FullMath.mulDiv(
amount1,
FixedPoint96.Q96,
sqrtRatioBX96 - sqrtRatioAX96
)
);
}
/// @notice Computes the maximum amount of liquidity received for a given amount of token0, token1, the current
/// pool prices and the prices at the tick boundaries
function getLiquidityForAmounts(
uint160 sqrtRatioX96,
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint256 amount0,
uint256 amount1
) internal pure returns (uint128 liquidity) {
if (sqrtRatioAX96 > sqrtRatioBX96)
(sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
if (sqrtRatioX96 <= sqrtRatioAX96) {
liquidity = getLiquidityForAmount0(
sqrtRatioAX96,
sqrtRatioBX96,
amount0
);
} else if (sqrtRatioX96 < sqrtRatioBX96) {
uint128 liquidity0 = getLiquidityForAmount0(
sqrtRatioX96,
sqrtRatioBX96,
amount0
);
uint128 liquidity1 = getLiquidityForAmount1(
sqrtRatioAX96,
sqrtRatioX96,
amount1
);
liquidity = liquidity0 < liquidity1 ? liquidity0 : liquidity1;
} else {
liquidity = getLiquidityForAmount1(
sqrtRatioAX96,
sqrtRatioBX96,
amount1
);
}
}
/// @notice Computes the amount of token0 for a given amount of liquidity and a price range
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The liquidity being valued
/// @return amount0 The amount0
function getAmount0ForLiquidity(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity
) internal pure returns (uint256 amount0) {
if (sqrtRatioAX96 > sqrtRatioBX96)
(sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
return
FullMath.mulDiv(
uint256(liquidity) << FixedPoint96.RESOLUTION,
sqrtRatioBX96 - sqrtRatioAX96,
sqrtRatioBX96
) / sqrtRatioAX96;
}
/// @notice Computes the amount of token1 for a given amount of liquidity and a price range
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The liquidity being valued
/// @return amount1 The amount1
function getAmount1ForLiquidity(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity
) internal pure returns (uint256 amount1) {
if (sqrtRatioAX96 > sqrtRatioBX96)
(sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
return
FullMath.mulDiv(
liquidity,
sqrtRatioBX96 - sqrtRatioAX96,
FixedPoint96.Q96
);
}
/// @notice Computes the token0 and token1 value for a given amount of liquidity, the current
/// pool prices and the prices at the tick boundaries
function getAmountsForLiquidity(
uint160 sqrtRatioX96,
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity
) internal pure returns (uint256 amount0, uint256 amount1) {
if (sqrtRatioAX96 > sqrtRatioBX96)
(sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
if (sqrtRatioX96 <= sqrtRatioAX96) {
amount0 = getAmount0ForLiquidity(
sqrtRatioAX96,
sqrtRatioBX96,
liquidity
);
} else if (sqrtRatioX96 < sqrtRatioBX96) {
amount0 = getAmount0ForLiquidity(
sqrtRatioX96,
sqrtRatioBX96,
liquidity
);
amount1 = getAmount1ForLiquidity(
sqrtRatioAX96,
sqrtRatioX96,
liquidity
);
} else {
amount1 = getAmount1ForLiquidity(
sqrtRatioAX96,
sqrtRatioBX96,
liquidity
);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.13;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
library TransferHelper {
/// @notice Approves the stipulated contract to spend the given allowance in the given token
/// @dev Errors with 'SA' if transfer fails
/// @param token The contract address of the token to be approved
/// @param to The target of the approval
/// @param value The amount of the given token the target will be allowed to spend
function safeApprove(
address token,
address to,
uint256 value
) internal {
(bool success, bytes memory data) = token.call(
abi.encodeWithSelector(IERC20.approve.selector, to, value)
);
require(
success && (data.length == 0 || abi.decode(data, (bool))),
"SA"
);
}
}
{
"compilationTarget": {
"contracts/FeeManager.sol": "FeeManager"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 50
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"vault_","type":"address"},{"internalType":"address","name":"usdc_","type":"address"},{"internalType":"address","name":"chaos_","type":"address"},{"internalType":"address","name":"uniSwapRouter_","type":"address"},{"internalType":"uint24","name":"feeTier_","type":"uint24"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"usdcAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"chaosAmount","type":"uint256"}],"name":"RewardsClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"usdcAmount","type":"uint256"}],"name":"RewardsConvertedToUsdc","type":"event"},{"inputs":[],"name":"REWARDS_PRECISION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accumulatedRewardsPerShare","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"chaos","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"claimer","type":"address"}],"name":"claimFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token0","type":"address"},{"internalType":"uint256","name":"fees0","type":"uint256"},{"internalType":"address","name":"token1","type":"address"},{"internalType":"uint256","name":"fees1","type":"uint256"}],"name":"depositFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"feeTier","outputs":[{"internalType":"uint24","name":"","type":"uint24"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"rewardDebt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"router","outputs":[{"internalType":"contract ISwapRouter02","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"newRate","type":"uint256"}],"name":"setRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"setRewardDebt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"usdc","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vault","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdrawEmergency","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawalChaos","outputs":[],"stateMutability":"nonpayable","type":"function"}]