文件 1 的 1:bond.sol
pragma solidity 0.7.5;
interface IOwnable {
function policy() external view returns (address);
function renounceManagement() external;
function pushManagement( address newOwner_ ) external;
function pullManagement() external;
}
contract Ownable is IOwnable {
address internal _owner;
address internal _newOwner;
event OwnershipPushed(address indexed previousOwner, address indexed newOwner);
event OwnershipPulled(address indexed previousOwner, address indexed newOwner);
constructor () {
_owner = msg.sender;
emit OwnershipPushed( address(0), _owner );
}
function policy() public view override returns (address) {
return _owner;
}
modifier onlyPolicy() {
require( _owner == msg.sender, "Ownable: caller is not the owner" );
_;
}
function renounceManagement() public virtual override onlyPolicy() {
emit OwnershipPushed( _owner, address(0) );
_owner = address(0);
}
function pushManagement( address newOwner_ ) public virtual override onlyPolicy() {
require( newOwner_ != address(0), "Ownable: new owner is the zero address");
emit OwnershipPushed( _owner, newOwner_ );
_newOwner = newOwner_;
}
function pullManagement() public virtual override {
require( msg.sender == _newOwner, "Ownable: must be new owner to pull");
emit OwnershipPulled( _owner, _newOwner );
_owner = _newOwner;
}
}
library SafeMath {
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
return c;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
function sqrrt(uint256 a) internal pure returns (uint c) {
if (a > 3) {
c = a;
uint b = add( div( a, 2), 1 );
while (b < c) {
c = b;
b = div( add( div( a, b ), b), 2 );
}
} else if (a != 0) {
c = 1;
}
}
}
library Address {
function isContract(address account) internal view returns (bool) {
uint256 size;
assembly { size := extcodesize(account) }
return size > 0;
}
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
if (returndata.length > 0) {
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
if (returndata.length > 0) {
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
function addressToString(address _address) internal pure returns(string memory) {
bytes32 _bytes = bytes32(uint256(_address));
bytes memory HEX = "0123456789abcdef";
bytes memory _addr = new bytes(42);
_addr[0] = '0';
_addr[1] = 'x';
for(uint256 i = 0; i < 20; i++) {
_addr[2+i*2] = HEX[uint8(_bytes[i + 12] >> 4)];
_addr[3+i*2] = HEX[uint8(_bytes[i + 12] & 0x0f)];
}
return string(_addr);
}
}
interface IERC20 {
function decimals() external view returns (uint8);
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
abstract contract ERC20 is IERC20 {
using SafeMath for uint256;
bytes32 constant private ERC20TOKEN_ERC1820_INTERFACE_ID = keccak256( "ERC20Token" );
mapping (address => uint256) internal _balances;
mapping (address => mapping (address => uint256)) internal _allowances;
uint256 internal _totalSupply;
string internal _name;
string internal _symbol;
uint8 internal _decimals;
constructor (string memory name_, string memory symbol_, uint8 decimals_) {
_name = name_;
_symbol = symbol_;
_decimals = decimals_;
}
function name() public view returns (string memory) {
return _name;
}
function symbol() public view returns (string memory) {
return _symbol;
}
function decimals() public view override returns (uint8) {
return _decimals;
}
function totalSupply() public view override returns (uint256) {
return _totalSupply;
}
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(msg.sender, spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
return true;
}
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
function _mint(address account_, uint256 ammount_) internal virtual {
require(account_ != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address( this ), account_, ammount_);
_totalSupply = _totalSupply.add(ammount_);
_balances[account_] = _balances[account_].add(ammount_);
emit Transfer(address( this ), account_, ammount_);
}
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
function _beforeTokenTransfer( address from_, address to_, uint256 amount_ ) internal virtual { }
}
interface IERC2612Permit {
function permit(
address owner,
address spender,
uint256 amount,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
function nonces(address owner) external view returns (uint256);
}
library Counters {
using SafeMath for uint256;
struct Counter {
uint256 _value;
}
function current(Counter storage counter) internal view returns (uint256) {
return counter._value;
}
function increment(Counter storage counter) internal {
counter._value += 1;
}
function decrement(Counter storage counter) internal {
counter._value = counter._value.sub(1);
}
}
abstract contract ERC20Permit is ERC20, IERC2612Permit {
using Counters for Counters.Counter;
mapping(address => Counters.Counter) private _nonces;
bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
bytes32 public DOMAIN_SEPARATOR;
constructor() {
uint256 chainID;
assembly {
chainID := chainid()
}
DOMAIN_SEPARATOR = keccak256(
abi.encode(
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
keccak256(bytes(name())),
keccak256(bytes("1")),
chainID,
address(this)
)
);
}
function permit(
address owner,
address spender,
uint256 amount,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual override {
require(block.timestamp <= deadline, "Permit: expired deadline");
bytes32 hashStruct =
keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, amount, _nonces[owner].current(), deadline));
bytes32 _hash = keccak256(abi.encodePacked(uint16(0x1901), DOMAIN_SEPARATOR, hashStruct));
address signer = ecrecover(_hash, v, r, s);
require(signer != address(0) && signer == owner, "ZeroSwapPermit: Invalid signature");
_nonces[owner].increment();
_approve(owner, spender, amount);
}
function nonces(address owner) public view override returns (uint256) {
return _nonces[owner].current();
}
}
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function _callOptionalReturn(IERC20 token, bytes memory data) private {
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
library FullMath {
function fullMul(uint256 x, uint256 y) private pure returns (uint256 l, uint256 h) {
uint256 mm = mulmod(x, y, uint256(-1));
l = x * y;
h = mm - l;
if (mm < l) h -= 1;
}
function fullDiv(
uint256 l,
uint256 h,
uint256 d
) private pure returns (uint256) {
uint256 pow2 = d & -d;
d /= pow2;
l /= pow2;
l += h * ((-pow2) / pow2 + 1);
uint256 r = 1;
r *= 2 - d * r;
r *= 2 - d * r;
r *= 2 - d * r;
r *= 2 - d * r;
r *= 2 - d * r;
r *= 2 - d * r;
r *= 2 - d * r;
r *= 2 - d * r;
return l * r;
}
function mulDiv(
uint256 x,
uint256 y,
uint256 d
) internal pure returns (uint256) {
(uint256 l, uint256 h) = fullMul(x, y);
uint256 mm = mulmod(x, y, d);
if (mm > l) h -= 1;
l -= mm;
require(h < d, 'FullMath::mulDiv: overflow');
return fullDiv(l, h, d);
}
}
library FixedPoint {
struct uq112x112 {
uint224 _x;
}
struct uq144x112 {
uint256 _x;
}
uint8 private constant RESOLUTION = 112;
uint256 private constant Q112 = 0x10000000000000000000000000000;
uint256 private constant Q224 = 0x100000000000000000000000000000000000000000000000000000000;
uint256 private constant LOWER_MASK = 0xffffffffffffffffffffffffffff;
function decode(uq112x112 memory self) internal pure returns (uint112) {
return uint112(self._x >> RESOLUTION);
}
function decode112with18(uq112x112 memory self) internal pure returns (uint) {
return uint(self._x) / 5192296858534827;
}
function fraction(uint256 numerator, uint256 denominator) internal pure returns (uq112x112 memory) {
require(denominator > 0, 'FixedPoint::fraction: division by zero');
if (numerator == 0) return FixedPoint.uq112x112(0);
if (numerator <= uint144(-1)) {
uint256 result = (numerator << RESOLUTION) / denominator;
require(result <= uint224(-1), 'FixedPoint::fraction: overflow');
return uq112x112(uint224(result));
} else {
uint256 result = FullMath.mulDiv(numerator, Q112, denominator);
require(result <= uint224(-1), 'FixedPoint::fraction: overflow');
return uq112x112(uint224(result));
}
}
}
interface ITreasury {
function deposit( uint _amount, address _token, uint _profit ) external returns ( bool );
function valueOf( address _token, uint _amount ) external view returns ( uint value_ );
}
interface IBondCalculator {
function valuation( address _LP, uint _amount ) external view returns ( uint );
function markdown( address _LP ) external view returns ( uint );
}
interface IStaking {
function stake( uint _amount, address _recipient ) external returns ( bool );
}
interface IStakingHelper {
function stake( uint _amount, address _recipient ) external;
}
contract OlympusBondDepository is Ownable {
using FixedPoint for *;
using SafeERC20 for IERC20;
using SafeMath for uint;
event BondCreated( uint deposit, uint indexed payout, uint indexed expires, uint indexed priceInUSD );
event BondRedeemed( address indexed recipient, uint payout, uint remaining );
event BondPriceChanged( uint indexed priceInUSD, uint indexed internalPrice, uint indexed debtRatio );
event ControlVariableAdjustment( uint initialBCV, uint newBCV, uint adjustment, bool addition );
address public immutable OHM;
address public immutable principle;
address public immutable treasury;
address public immutable DAO;
bool public immutable isLiquidityBond;
address public immutable bondCalculator;
address public staking;
address public stakingHelper;
bool public useHelper;
Terms public terms;
Adjust public adjustment;
mapping( address => Bond ) public bondInfo;
uint public totalDebt;
uint public lastDecay;
struct Terms {
uint controlVariable;
uint vestingTerm;
uint minimumPrice;
uint maxPayout;
uint fee;
uint maxDebt;
}
struct Bond {
uint payout;
uint vesting;
uint lastBlock;
uint pricePaid;
}
struct Adjust {
bool add;
uint rate;
uint target;
uint buffer;
uint lastBlock;
}
constructor (
address _OHM,
address _principle,
address _treasury,
address _DAO,
address _bondCalculator
) {
require( _OHM != address(0) );
OHM = _OHM;
require( _principle != address(0) );
principle = _principle;
require( _treasury != address(0) );
treasury = _treasury;
require( _DAO != address(0) );
DAO = _DAO;
bondCalculator = _bondCalculator;
isLiquidityBond = ( _bondCalculator != address(0) );
}
function initializeBondTerms(
uint _controlVariable,
uint _vestingTerm,
uint _minimumPrice,
uint _maxPayout,
uint _fee,
uint _maxDebt,
uint _initialDebt
) external onlyPolicy() {
require( terms.controlVariable == 0, "Bonds must be initialized from 0" );
terms = Terms ({
controlVariable: _controlVariable,
vestingTerm: _vestingTerm,
minimumPrice: _minimumPrice,
maxPayout: _maxPayout,
fee: _fee,
maxDebt: _maxDebt
});
totalDebt = _initialDebt;
lastDecay = block.number;
}
enum PARAMETER { VESTING, PAYOUT, FEE, DEBT }
function setBondTerms ( PARAMETER _parameter, uint _input ) external onlyPolicy() {
if ( _parameter == PARAMETER.VESTING ) {
require( _input >= 10000, "Vesting must be longer than 36 hours" );
terms.vestingTerm = _input;
} else if ( _parameter == PARAMETER.PAYOUT ) {
require( _input <= 1000, "Payout cannot be above 1 percent" );
terms.maxPayout = _input;
} else if ( _parameter == PARAMETER.FEE ) {
require( _input <= 10000, "DAO fee cannot exceed payout" );
terms.fee = _input;
} else if ( _parameter == PARAMETER.DEBT ) {
terms.maxDebt = _input;
}
}
function setAdjustment (
bool _addition,
uint _increment,
uint _target,
uint _buffer
) external onlyPolicy() {
require( _increment <= terms.controlVariable.mul( 25 ).div( 1000 ), "Increment too large" );
adjustment = Adjust({
add: _addition,
rate: _increment,
target: _target,
buffer: _buffer,
lastBlock: block.number
});
}
function setStaking( address _staking, bool _helper ) external onlyPolicy() {
require( _staking != address(0) );
if ( _helper ) {
useHelper = true;
stakingHelper = _staking;
} else {
useHelper = false;
staking = _staking;
}
}
function deposit(
uint _amount,
uint _maxPrice,
address _depositor
) external returns ( uint ) {
require( _depositor != address(0), "Invalid address" );
decayDebt();
require( totalDebt <= terms.maxDebt, "Max capacity reached" );
uint priceInUSD = bondPriceInUSD();
uint nativePrice = _bondPrice();
require( _maxPrice >= nativePrice, "Slippage limit: more than max price" );
uint value = ITreasury( treasury ).valueOf( principle, _amount );
uint payout = payoutFor( value );
require( payout >= 10000000, "Bond too small" );
require( payout <= maxPayout(), "Bond too large");
uint fee = payout.mul( terms.fee ).div( 10000 );
uint profit = value.sub( payout ).sub( fee );
IERC20( principle ).safeTransferFrom( msg.sender, address(this), _amount );
IERC20( principle ).approve( address( treasury ), _amount );
ITreasury( treasury ).deposit( _amount, principle, profit );
if ( fee != 0 ) {
IERC20( OHM ).safeTransfer( DAO, fee );
}
totalDebt = totalDebt.add( value );
bondInfo[ _depositor ] = Bond({
payout: bondInfo[ _depositor ].payout.add( payout ),
vesting: terms.vestingTerm,
lastBlock: block.number,
pricePaid: priceInUSD
});
emit BondCreated( _amount, payout, block.number.add( terms.vestingTerm ), priceInUSD );
emit BondPriceChanged( bondPriceInUSD(), _bondPrice(), debtRatio() );
adjust();
return payout;
}
function redeem( address _recipient, bool _stake ) external returns ( uint ) {
Bond memory info = bondInfo[ _recipient ];
uint percentVested = percentVestedFor( _recipient );
if ( percentVested >= 10000 ) {
delete bondInfo[ _recipient ];
emit BondRedeemed( _recipient, info.payout, 0 );
return stakeOrSend( _recipient, _stake, info.payout );
} else {
uint payout = info.payout.mul( percentVested ).div( 10000 );
bondInfo[ _recipient ] = Bond({
payout: info.payout.sub( payout ),
vesting: info.vesting.sub( block.number.sub( info.lastBlock ) ),
lastBlock: block.number,
pricePaid: info.pricePaid
});
emit BondRedeemed( _recipient, payout, bondInfo[ _recipient ].payout );
return stakeOrSend( _recipient, _stake, payout );
}
}
function stakeOrSend( address _recipient, bool _stake, uint _amount ) internal returns ( uint ) {
if ( !_stake ) {
IERC20( OHM ).transfer( _recipient, _amount );
} else {
if ( useHelper ) {
IERC20( OHM ).approve( stakingHelper, _amount );
IStakingHelper( stakingHelper ).stake( _amount, _recipient );
} else {
IERC20( OHM ).approve( staking, _amount );
IStaking( staking ).stake( _amount, _recipient );
}
}
return _amount;
}
function adjust() internal {
uint blockCanAdjust = adjustment.lastBlock.add( adjustment.buffer );
if( adjustment.rate != 0 && block.number >= blockCanAdjust ) {
uint initial = terms.controlVariable;
if ( adjustment.add ) {
terms.controlVariable = terms.controlVariable.add( adjustment.rate );
if ( terms.controlVariable >= adjustment.target ) {
adjustment.rate = 0;
}
} else {
terms.controlVariable = terms.controlVariable.sub( adjustment.rate );
if ( terms.controlVariable <= adjustment.target ) {
adjustment.rate = 0;
}
}
adjustment.lastBlock = block.number;
emit ControlVariableAdjustment( initial, terms.controlVariable, adjustment.rate, adjustment.add );
}
}
function decayDebt() internal {
totalDebt = totalDebt.sub( debtDecay() );
lastDecay = block.number;
}
function maxPayout() public view returns ( uint ) {
return IERC20( OHM ).totalSupply().mul( terms.maxPayout ).div( 100000 );
}
function payoutFor( uint _value ) public view returns ( uint ) {
return FixedPoint.fraction( _value, bondPrice() ).decode112with18().div( 1e16 );
}
function bondPrice() public view returns ( uint price_ ) {
price_ = terms.controlVariable.mul( debtRatio() ).add( 1000000000 ).div( 1e7 );
if ( price_ < terms.minimumPrice ) {
price_ = terms.minimumPrice;
}
}
function _bondPrice() internal returns ( uint price_ ) {
price_ = terms.controlVariable.mul( debtRatio() ).add( 1000000000 ).div( 1e7 );
if ( price_ < terms.minimumPrice ) {
price_ = terms.minimumPrice;
} else if ( terms.minimumPrice != 0 ) {
terms.minimumPrice = 0;
}
}
function bondPriceInUSD() public view returns ( uint price_ ) {
if( isLiquidityBond ) {
price_ = bondPrice().mul( IBondCalculator( bondCalculator ).markdown( principle ) ).div( 100 );
} else {
price_ = bondPrice().mul( 10 ** IERC20( principle ).decimals() ).div( 100 );
}
}
function debtRatio() public view returns ( uint debtRatio_ ) {
uint supply = IERC20( OHM ).totalSupply();
debtRatio_ = FixedPoint.fraction(
currentDebt().mul( 1e9 ),
supply
).decode112with18().div( 1e18 );
}
function standardizedDebtRatio() external view returns ( uint ) {
if ( isLiquidityBond ) {
return debtRatio().mul( IBondCalculator( bondCalculator ).markdown( principle ) ).div( 1e9 );
} else {
return debtRatio();
}
}
function currentDebt() public view returns ( uint ) {
return totalDebt.sub( debtDecay() );
}
function debtDecay() public view returns ( uint decay_ ) {
uint blocksSinceLast = block.number.sub( lastDecay );
decay_ = totalDebt.mul( blocksSinceLast ).div( terms.vestingTerm );
if ( decay_ > totalDebt ) {
decay_ = totalDebt;
}
}
function percentVestedFor( address _depositor ) public view returns ( uint percentVested_ ) {
Bond memory bond = bondInfo[ _depositor ];
uint blocksSinceLast = block.number.sub( bond.lastBlock );
uint vesting = bond.vesting;
if ( vesting > 0 ) {
percentVested_ = blocksSinceLast.mul( 10000 ).div( vesting );
} else {
percentVested_ = 0;
}
}
function pendingPayoutFor( address _depositor ) external view returns ( uint pendingPayout_ ) {
uint percentVested = percentVestedFor( _depositor );
uint payout = bondInfo[ _depositor ].payout;
if ( percentVested >= 10000 ) {
pendingPayout_ = payout;
} else {
pendingPayout_ = payout.mul( percentVested ).div( 10000 );
}
}
function recoverLostToken( address _token ) external returns ( bool ) {
require( _token != OHM );
require( _token != principle );
IERC20( _token ).safeTransfer( DAO, IERC20( _token ).balanceOf( address(this) ) );
return true;
}
}