账户
0xbd...ff39
0xbD...FF39

0xbD...FF39

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.18+commit.87f61d96
语言
Solidity
合同源代码
文件 1 的 12:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
合同源代码
文件 2 的 12:ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}
合同源代码
文件 3 的 12:HoodieMint.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

import {IERC721Mintable} from "./interfaces/IERC721Mintable.sol";
import {IERC1155Mintable} from "./interfaces/IERC1155Mintable.sol";
import {SupplyControl} from "./libraries/SupplyControl.sol";
import {LimitPerWallet} from "./libraries/LimitPerWallet.sol";
import {SignatureProtectedCrossmint} from "./libraries/SignatureProtectedCrossmint.sol";
import {RandomGenerator} from "./libraries/RandomGenerator.sol";

// @author: NFT Studios

contract HoodieMint is SupplyControl, LimitPerWallet, SignatureProtectedCrossmint, RandomGenerator {
    uint256 public constant RECEIPT_ID = 1;

    IERC721Mintable public hoodiesContract;
    IERC1155Mintable public receiptContract;

    mapping(uint256 => uint256) private tokenMatrix;
    mapping(address => bool) public allowedWithdrawers;
    address private withdrawalReceiptAddress;

    constructor(
        uint256 _maxSupply,
        address _signerAddress,
        address _withdrawerAddress,
        address _withdrawalReceiptAddress,
        address _hoodiesContractAddress,
        address _receiptContractAddress
    ) SupplyControl(_maxSupply) SignatureProtectedCrossmint(_signerAddress) {
        allowedWithdrawers[_withdrawerAddress] = true;
        withdrawalReceiptAddress = _withdrawalReceiptAddress;
        hoodiesContract = IERC721Mintable(_hoodiesContractAddress);
        receiptContract = IERC1155Mintable(_receiptContractAddress);
    }

    function ownerMint(address _recipient, uint256 _amount) external onlyOwner {
        uint256 totalSupply = hoodiesContract.totalSupply();
        _amount = getAvailableTokens(_amount, totalSupply);

        _mint(_recipient, _amount, totalSupply);
    }

    function mint(
        address _recipient,
        uint256 _amount,
        uint256 _maxPerWallet,
        uint256 _pricePerToken,
        bytes calldata _signature
    ) external payable {
        validateSignature(abi.encodePacked(_recipient, _maxPerWallet, _pricePerToken), _signature);

        uint256 totalSupply = hoodiesContract.totalSupply();
        _amount = getAvailableTokens(_amount, totalSupply);
        _amount = getAvailableForWallet(_recipient, _amount, _maxPerWallet);

        checkSentEther(_amount * _pricePerToken);

        _mint(_recipient, _amount, totalSupply);
    }

    function _mint(address _recipient, uint256 _amount, uint256 _totalSupply) internal {
        uint256[] memory ids = new uint256[](_amount);
        for (uint256 i; i < ids.length; i++) {
            ids[i] = getTokenToBeMinted(_totalSupply, maxSupply);
            _totalSupply++;
        }

        hoodiesContract.mint(_recipient, ids);

        // Mint Receipts
        uint256[] memory receiptIds = new uint256[](1);
        uint256[] memory receiptAmounts = new uint256[](1);

        receiptIds[0] = RECEIPT_ID;
        receiptAmounts[0] = _amount;

        receiptContract.mint(_recipient, receiptIds, receiptAmounts);
    }

    function getAvailableTokens() public view returns (uint256 total) {
        (bool success, bytes memory totalSupply) = address(hoodiesContract).staticcall(
            abi.encodeWithSignature("totalSupply()")
        );

        require(success, "Call to totalSupply failed");

        total = maxSupply - abi.decode(totalSupply, (uint256));
    }

    /**
     * @dev Returns a random available token to be minted
     */
    function getTokenToBeMinted(uint256 _totalSupply, uint256 _maxSupply) internal returns (uint256) {
        uint256 maxIndex = _maxSupply - _totalSupply;
        uint256 random = getRandomNumber(maxIndex, _totalSupply);

        uint256 tokenId = tokenMatrix[random];
        if (tokenMatrix[random] == 0) {
            tokenId = random;
        }

        tokenMatrix[maxIndex - 1] == 0 ? tokenMatrix[random] = maxIndex - 1 : tokenMatrix[random] = tokenMatrix[
            maxIndex - 1
        ];

        return tokenId;
    }

    function checkSentEther(uint256 _totalPrice) internal {
        require(msg.value >= _totalPrice, "HoodieMint: Not enough Ether provided to mint");
        if (msg.value > _totalPrice) {
            payable(msg.sender).transfer(msg.value - _totalPrice);
        }
    }

    modifier onlyWithdrawerOrOwner() {
        require(
            allowedWithdrawers[msg.sender] || owner() == msg.sender,
            "Access Protected: The caller is not the withdrawer"
        );
        _;
    }

    function withdraw() external onlyWithdrawerOrOwner {
        (bool success, ) = address(withdrawalReceiptAddress).call{value: address(this).balance}("");

        require(success, "HoodieMint: Transfer failed");
    }

    function addWithdrawer(address _withdrawerAddress) external onlyOwner {
        allowedWithdrawers[_withdrawerAddress] = true;
    }

    function removeWithdrawer(address _withdrawerAddress) external onlyOwner {
        allowedWithdrawers[_withdrawerAddress] = false;
    }

    function setWithdrawalReceipt(address _withdrawalReceiptAddress) external onlyOwner {
        withdrawalReceiptAddress = _withdrawalReceiptAddress;
    }
}
合同源代码
文件 4 的 12:IERC1155Mintable.sol
// SPDX-License-Identifier: MIT
// @author: NFT Studios

pragma solidity ^0.8.18;

interface IERC1155Mintable {
    function mint(
        address _to,
        uint256[] memory _ids,
        uint256[] memory _amounts
    ) external;
}
合同源代码
文件 5 的 12:IERC721Mintable.sol
// SPDX-License-Identifier: MIT
// @author: NFT Studios

pragma solidity ^0.8.18;

interface IERC721Mintable {
    function mint(address _to, uint256[] memory _ids) external;

    function totalSupply() external returns (uint256);
}
合同源代码
文件 6 的 12:LimitPerWallet.sol
// SPDX-License-Identifier: MIT
// @author: NFT Studios

pragma solidity ^0.8.18;

abstract contract LimitPerWallet {
    mapping(address => uint256) public mintsPerWallet;

    /**
     * @dev Checks if the given wallet address can mint more tokens.
     * If the desired amount to be minted exceeds the amount of tokens left allowed to be minted by the given address
     * it will return the maximum amount of tokens that address can mint.
     *
     * If the given address can not mint more tokens it will revert the transaction.
     */
    function getAvailableForWallet(
        address _recipient,
        uint256 _amount,
        uint256 _maxPerWallet
    ) internal returns (uint256) {
        // If maxPerWallet is 0 it means that there is no limit per wallet.
        if (_maxPerWallet == 0) {
            return _amount;
        }

        if (mintsPerWallet[_recipient] + _amount > _maxPerWallet) {
            _amount = _maxPerWallet - mintsPerWallet[_recipient];
        }

        require(_amount > 0, "LimitPerWallet: The caller address can not mint more tokens");

        mintsPerWallet[_recipient] += _amount;

        return _amount;
    }
}
合同源代码
文件 7 的 12:Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}
合同源代码
文件 8 的 12:Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
合同源代码
文件 9 的 12:RandomGenerator.sol
// SPDX-License-Identifier: MIT
// @author: NFT Studios

pragma solidity ^0.8.18;

abstract contract RandomGenerator {
    /**
     * @dev Generates a pseudo-random number.
     */
    function getRandomNumber(
        uint256 _upper,
        uint256 _variable // This value should change in between calls to this function within the same block to avoid generating the same number.
    ) internal view returns (uint256) {
        uint256 random = uint256(
            keccak256(
                abi.encodePacked(
                    _variable,
                    blockhash(block.number - 1),
                    block.coinbase,
                    block.prevrandao,
                    msg.sender
                )
            )
        );

        return (random % _upper);
    }
}
合同源代码
文件 10 的 12:SignatureProtectedCrossmint.sol
// SPDX-License-Identifier: MIT
// @author: NFT Studios

pragma solidity ^0.8.18;

import "@openzeppelin/contracts/access/Ownable.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";

abstract contract SignatureProtectedCrossmint is Ownable {
    address public signerAddress;

    constructor(address _signerAddress) {
        signerAddress = _signerAddress;
    }

    function setSignerAddress(address _signerAddress) external onlyOwner {
        signerAddress = _signerAddress;
    }

    function validateSignature(bytes memory packedParams, bytes calldata signature) internal view {
        require(
            ECDSA.recover(generateHash(packedParams), signature) == signerAddress,
            "SignatureProtected: Invalid signature for the caller"
        );
    }

    function generateHash(bytes memory packedParams) private view returns (bytes32) {
        bytes32 _hash = keccak256(bytes.concat(abi.encodePacked(address(this)), packedParams));

        bytes memory result = abi.encodePacked("\x19Ethereum Signed Message:\n32", _hash);

        return keccak256(result);
    }
}
合同源代码
文件 11 的 12:Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}
合同源代码
文件 12 的 12:SupplyControl.sol
// SPDX-License-Identifier: MIT
// @author: NFT Studios

pragma solidity ^0.8.18;

abstract contract SupplyControl {
    uint256 public maxSupply;

    constructor(uint256 _maxSupply) {
        maxSupply = _maxSupply;
    }

    /**
     * @dev Checks if there are tokens left to be minted.
     * If there are not enough tokens for the given amount to mint, it will return whatever is left.
     *
     * If there are no tokens left to be minted it will revert the transaction.
     */
    function getAvailableTokens(
        uint256 _amountToMint,
        uint256 _totalSupply
    ) internal view returns (uint256) {
        uint256 availableTokens = maxSupply - _totalSupply;
        require(availableTokens > 0, "SupplyControl: No tokens left to mint");

        if (availableTokens < _amountToMint) {
            return availableTokens;
        }

        return _amountToMint;
    }
}
设置
{
  "compilationTarget": {
    "contracts/HoodieMint.sol": "HoodieMint"
  },
  "evmVersion": "paris",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs",
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "remappings": []
}
ABI
[{"inputs":[{"internalType":"uint256","name":"_maxSupply","type":"uint256"},{"internalType":"address","name":"_signerAddress","type":"address"},{"internalType":"address","name":"_withdrawerAddress","type":"address"},{"internalType":"address","name":"_withdrawalReceiptAddress","type":"address"},{"internalType":"address","name":"_hoodiesContractAddress","type":"address"},{"internalType":"address","name":"_receiptContractAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"RECEIPT_ID","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_withdrawerAddress","type":"address"}],"name":"addWithdrawer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"allowedWithdrawers","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAvailableTokens","outputs":[{"internalType":"uint256","name":"total","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"hoodiesContract","outputs":[{"internalType":"contract IERC721Mintable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_recipient","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_maxPerWallet","type":"uint256"},{"internalType":"uint256","name":"_pricePerToken","type":"uint256"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"mintsPerWallet","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_recipient","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"ownerMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"receiptContract","outputs":[{"internalType":"contract IERC1155Mintable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_withdrawerAddress","type":"address"}],"name":"removeWithdrawer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_signerAddress","type":"address"}],"name":"setSignerAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_withdrawalReceiptAddress","type":"address"}],"name":"setWithdrawalReceipt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signerAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]