// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
assembly {
size := extcodesize(account)
}
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastvalue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastvalue;
// Update the index for the moved value
set._indexes[lastvalue] = valueIndex; // Replace lastvalue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
return _values(set._inner);
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.11;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
/**
* @title Exchange pool processor abstract contract.
* @dev Keeps an enumerable set of designated exchange addresses as well as a single primary pool address.
*/
abstract contract ExchangePoolProcessor is Ownable {
using EnumerableSet for EnumerableSet.AddressSet;
/// @dev Set of exchange pool addresses.
EnumerableSet.AddressSet internal _exchangePools;
/// @notice Primary exchange pool address.
address public primaryPool;
/// @notice Emitted when an exchange pool address is added to the set of tracked pool addresses.
event ExchangePoolAdded(address exchangePool);
/// @notice Emitted when an exchange pool address is removed from the set of tracked pool addresses.
event ExchangePoolRemoved(address exchangePool);
/// @notice Emitted when the primary pool address is updated.
event PrimaryPoolUpdated(address oldPrimaryPool, address newPrimaryPool);
/**
* @notice Get list of addresses designated as exchange pools.
* @return An array of exchange pool addresses.
*/
function getExchangePoolAddresses() external view returns (address[] memory) {
return _exchangePools.values();
}
/**
* @notice Add an address to the set of exchange pool addresses.
* @dev Nothing happens if the pool already exists in the set.
* @param exchangePool Address of exchange pool to add.
*/
function addExchangePool(address exchangePool) external onlyOwner {
if (_exchangePools.add(exchangePool)) {
emit ExchangePoolAdded(exchangePool);
}
}
/**
* @notice Remove an address from the set of exchange pool addresses.
* @dev Nothing happens if the pool doesn't exist in the set..
* @param exchangePool Address of exchange pool to remove.
*/
function removeExchangePool(address exchangePool) external onlyOwner {
if (_exchangePools.remove(exchangePool)) {
emit ExchangePoolRemoved(exchangePool);
}
}
/**
* @notice Set exchange pool address as primary pool.
* @dev To prevent issues, only addresses inside the set of exchange pool addresses can be selected as primary pool.
* @param exchangePool Address of exchange pool to set as primary pool.
*/
function setPrimaryPool(address exchangePool) external onlyOwner {
require(
_exchangePools.contains(exchangePool),
"ExchangePoolProcessor:setPrimaryPool:INVALID_POOL: Given address is not registered as exchange pool."
);
require(
primaryPool != exchangePool,
"ExchangePoolProcessor:setPrimaryPool:ALREADY_SET: This address is already the primary pool address."
);
address oldPrimaryPool = primaryPool;
primaryPool = exchangePool;
emit PrimaryPoolUpdated(oldPrimaryPool, exchangePool);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.11;
/**
* @title Treasury handler interface
* @dev Any class that implements this interface can be used for protocol-specific operations pertaining to the treasury.
*/
interface ITreasuryHandler {
/**
* @notice Perform operations before a transfer is executed.
* @param benefactor Address of the benefactor.
* @param beneficiary Address of the beneficiary.
* @param amount Number of tokens in the transfer.
*/
function beforeTransferHandler(
address benefactor,
address beneficiary,
uint256 amount
) external;
/**
* @notice Perform operations after a transfer is executed.
* @param benefactor Address of the benefactor.
* @param beneficiary Address of the beneficiary.
* @param amount Number of tokens in the transfer.
*/
function afterTransferHandler(
address benefactor,
address beneficiary,
uint256 amount
) external;
}
pragma solidity >=0.6.2;
interface IUniswapV2Router01 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);
function removeLiquidityETH(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);
function removeLiquidityETHWithPermit(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}
pragma solidity >=0.6.2;
import './IUniswapV2Router01.sol';
interface IUniswapV2Router02 is IUniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountETH);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.11;
/**
* @title Lenient Reentrancy Guard
* @dev A near carbon copy of OpenZeppelin's ReentrancyGuard contract. The difference between the two being that this
* contract will silently return instead of failing.
*/
abstract contract LenientReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
if (_status == _ENTERED) {
return;
}
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_setOwner(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_setOwner(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_setOwner(newOwner);
}
function _setOwner(address newOwner) private {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.11;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol";
import "../utils/ExchangePoolProcessor.sol";
import "../utils/LenientReentrancyGuard.sol";
import "./ITreasuryHandler.sol";
/**
* @title Treasury handler alpha contract
* @dev Sells tokens that have accumulated through taxes and sends the resulting ETH to the treasury. If
* `liquidityBasisPoints` has been set to a non-zero value, then that percentage will instead be added to the designated
* liquidity pool.
*/
contract TreasuryHandlerAlpha is ITreasuryHandler, LenientReentrancyGuard, ExchangePoolProcessor {
using Address for address payable;
using EnumerableSet for EnumerableSet.AddressSet;
/// @notice The treasury address.
address payable public treasury;
/// @notice The token that accumulates through taxes. This will be sold for ETH.
IERC20 public token;
/// @notice The basis points of tokens to sell and add as liquidity to the pool.
uint256 public liquidityBasisPoints;
/// @notice The maximum price impact the sell (initiated from this contract) may have.
uint256 public priceImpactBasisPoints;
/// @notice The Uniswap router that handles the sell and liquidity operations.
IUniswapV2Router02 public router;
/// @notice Emitted when the basis points value of tokens to add as liquidity is updated.
event LiquidityBasisPointsUpdated(uint256 oldBasisPoints, uint256 newBasisPoints);
/// @notice Emitted when the maximum price impact basis points value is updated.
event PriceImpactBasisPointsUpdated(uint256 oldBasisPoints, uint256 newBasisPoints);
/// @notice Emitted when the treasury address is updated.
event TreasuryAddressUpdated(address oldTreasuryAddress, address newTreasuryAddress);
/**
* @param treasuryAddress Address of treasury to use.
* @param tokenAddress Address of token to accumulate and sell.
* @param routerAddress Address of Uniswap router for sell and liquidity operations.
* @param initialLiquidityBasisPoints Initial basis points value of swap to add to liquidity.
* @param initialPriceImpactBasisPoints Initial basis points value of price impact to account for during swaps.
*/
constructor(
address treasuryAddress,
address tokenAddress,
address routerAddress,
uint256 initialLiquidityBasisPoints,
uint256 initialPriceImpactBasisPoints
) {
treasury = payable(treasuryAddress);
token = IERC20(tokenAddress);
router = IUniswapV2Router02(routerAddress);
liquidityBasisPoints = initialLiquidityBasisPoints;
priceImpactBasisPoints = initialPriceImpactBasisPoints;
}
/**
* @notice Perform operations before a sell action (or a liquidity addition) is executed. The accumulated tokens are
* then sold for ETH. In case the number of accumulated tokens exceeds the price impact percentage threshold, then
* the number will be adjusted to stay within the threshold. If a non-zero percentage is set for liquidity, then
* that percentage will be added to the primary liquidity pool instead of being sold for ETH and sent to the
* treasury.
* @param benefactor Address of the benefactor.
* @param beneficiary Address of the beneficiary.
* @param amount Number of tokens in the transfer.
*/
function beforeTransferHandler(
address benefactor,
address beneficiary,
uint256 amount
) external nonReentrant {
// Silence a few warnings. This will be optimized out by the compiler.
benefactor;
amount;
// No actions are done on transfers other than sells.
if (!_exchangePools.contains(beneficiary)) {
return;
}
uint256 contractTokenBalance = token.balanceOf(address(this));
if (contractTokenBalance > 0) {
uint256 primaryPoolBalance = token.balanceOf(primaryPool);
uint256 maxPriceImpactSale = (primaryPoolBalance * priceImpactBasisPoints) / 10000;
// Ensure the price impact is within reasonable bounds.
if (contractTokenBalance > maxPriceImpactSale) {
contractTokenBalance = maxPriceImpactSale;
}
// The number of tokens to sell for liquidity purposes. This is calculated as follows:
//
// B P
// L = - * -----
// 2 10000
//
// Where:
// L = tokens to sell for liquidity
// B = available token balance
// P = basis points of tokens to use for liquidity
//
// The number is divided by two to preserve the token side of the token/WETH pool.
uint256 tokensForLiquidity = (contractTokenBalance * liquidityBasisPoints) / 20000;
uint256 tokensForSwap = contractTokenBalance - tokensForLiquidity;
uint256 currentWeiBalance = address(this).balance;
_swapTokensForEth(tokensForSwap);
uint256 weiEarned = address(this).balance - currentWeiBalance;
// No need to divide this number, because that was only to have enough tokens remaining to pair with this
// ETH value.
uint256 weiForLiquidity = (weiEarned * liquidityBasisPoints) / 10000;
if (tokensForLiquidity > 0) {
_addLiquidity(tokensForLiquidity, weiForLiquidity);
}
// It's cheaper to get the active balance rather than calculating based off of the `currentWeiBalance` and
// `weiForLiquidity` numbers.
uint256 remainingWeiBalance = address(this).balance;
if (remainingWeiBalance > 0) {
treasury.sendValue(remainingWeiBalance);
}
}
}
/**
* @notice Perform post-transfer operations. This contract ignores those operations, hence nothing happens.
* @param benefactor Address of the benefactor.
* @param beneficiary Address of the beneficiary.
* @param amount Number of tokens in the transfer.
*/
function afterTransferHandler(
address benefactor,
address beneficiary,
uint256 amount
) external nonReentrant {
// Silence a few warnings. This will be optimized out by the compiler.
benefactor;
beneficiary;
amount;
return;
}
/**
* @notice Set new liquidity basis points value.
* @param newBasisPoints New liquidity basis points value. Cannot exceed 10,000 (i.e., 100%) as that would break the
* calculation.
*/
function setLiquidityBasisPoints(uint256 newBasisPoints) external onlyOwner {
require(
newBasisPoints <= 10000,
"TreasuryHandlerAlpha:setLiquidityPercentage:INVALID_PERCENTAGE: Cannot set more than 10,000 basis points."
);
uint256 oldBasisPoints = liquidityBasisPoints;
liquidityBasisPoints = newBasisPoints;
emit LiquidityBasisPointsUpdated(oldBasisPoints, newBasisPoints);
}
/**
* @notice Set new price impact basis points value.
* @param newBasisPoints New price impact basis points value.
*/
function setPriceImpactBasisPoints(uint256 newBasisPoints) external onlyOwner {
require(
newBasisPoints < 1500,
"TreasuryHandlerAlpha:setPriceImpactBasisPoints:OUT_OF_BOUNDS: Cannot set price impact too high."
);
uint256 oldBasisPoints = priceImpactBasisPoints;
priceImpactBasisPoints = newBasisPoints;
emit PriceImpactBasisPointsUpdated(oldBasisPoints, newBasisPoints);
}
/**
* @notice Set new treasury address.
* @param newTreasuryAddress New treasury address.
*/
function setTreasury(address newTreasuryAddress) external onlyOwner {
require(
newTreasuryAddress != address(0),
"TreasuryHandlerAlpha:setTreasury:ZERO_TREASURY: Cannot set zero address as treasury."
);
address oldTreasuryAddress = address(treasury);
treasury = payable(newTreasuryAddress);
emit TreasuryAddressUpdated(oldTreasuryAddress, newTreasuryAddress);
}
/**
* @notice Withdraw any tokens or ETH stuck in the treasury handler.
* @param tokenAddress Address of the token to withdraw. If set to the zero address, ETH will be withdrawn.
* @param amount The number of tokens to withdraw.
*/
function withdraw(address tokenAddress, uint256 amount) external onlyOwner {
require(
tokenAddress != address(token),
"TreasuryHandlerAlpha:withdraw:INVALID_TOKEN: Not allowed to withdraw token required for swaps."
);
if (tokenAddress == address(0)) {
treasury.sendValue(amount);
} else {
IERC20(tokenAddress).transferFrom(address(this), address(treasury), amount);
}
}
/**
* @dev Swap accumulated tokens for ETH.
* @param tokenAmount Number of tokens to swap for ETH.
*/
function _swapTokensForEth(uint256 tokenAmount) private {
// The ETH/token pool is the primary pool. It always exists.
address[] memory path = new address[](2);
path[0] = address(token);
path[1] = router.WETH();
// Ensure the router can perform the swap for the designated number of tokens.
token.approve(address(router), tokenAmount);
router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount, 0, path, address(this), block.timestamp);
}
/**
* @dev Add liquidity to primary pool.
* @param tokenAmount Number of tokens to add as liquidity.
* @param weiAmount ETH value to pair with the tokens.
*/
function _addLiquidity(uint256 tokenAmount, uint256 weiAmount) private {
// Ensure the router can perform the transfer for the designated number of tokens.
token.approve(address(router), tokenAmount);
// Both minimum values are set to zero to allow for any form of slippage.
router.addLiquidityETH{ value: weiAmount }(
address(token),
tokenAmount,
0,
0,
address(treasury),
block.timestamp
);
}
/**
* @notice Allow contract to accept ETH.
*/
receive() external payable {}
}
{
"compilationTarget": {
"contracts/treasury/TreasuryHandlerAlpha.sol": "TreasuryHandlerAlpha"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "none"
},
"optimizer": {
"enabled": true,
"runs": 888
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"treasuryAddress","type":"address"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"address","name":"routerAddress","type":"address"},{"internalType":"uint256","name":"initialLiquidityBasisPoints","type":"uint256"},{"internalType":"uint256","name":"initialPriceImpactBasisPoints","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"exchangePool","type":"address"}],"name":"ExchangePoolAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"exchangePool","type":"address"}],"name":"ExchangePoolRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldBasisPoints","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newBasisPoints","type":"uint256"}],"name":"LiquidityBasisPointsUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldBasisPoints","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newBasisPoints","type":"uint256"}],"name":"PriceImpactBasisPointsUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldPrimaryPool","type":"address"},{"indexed":false,"internalType":"address","name":"newPrimaryPool","type":"address"}],"name":"PrimaryPoolUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldTreasuryAddress","type":"address"},{"indexed":false,"internalType":"address","name":"newTreasuryAddress","type":"address"}],"name":"TreasuryAddressUpdated","type":"event"},{"inputs":[{"internalType":"address","name":"exchangePool","type":"address"}],"name":"addExchangePool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"benefactor","type":"address"},{"internalType":"address","name":"beneficiary","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"afterTransferHandler","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"benefactor","type":"address"},{"internalType":"address","name":"beneficiary","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"beforeTransferHandler","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getExchangePoolAddresses","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"liquidityBasisPoints","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"priceImpactBasisPoints","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"primaryPool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"exchangePool","type":"address"}],"name":"removeExchangePool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"router","outputs":[{"internalType":"contract IUniswapV2Router02","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"newBasisPoints","type":"uint256"}],"name":"setLiquidityBasisPoints","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newBasisPoints","type":"uint256"}],"name":"setPriceImpactBasisPoints","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"exchangePool","type":"address"}],"name":"setPrimaryPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newTreasuryAddress","type":"address"}],"name":"setTreasury","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasury","outputs":[{"internalType":"address payable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]