// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
// Source: https://github.com/gnosis/conditional-tokens-contracts/blob/master/contracts/CTHelpers.sol
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
library CTHelpers {
/// @dev Constructs a condition ID from an oracle, a question ID, and the outcome slot count for the question.
/// @param oracle The account assigned to report the result for the prepared condition.
/// @param questionId An identifier for the question to be answered by the oracle.
/// @param outcomeSlotCount The number of outcome slots which should be used for this condition. Must not exceed 256.
function getConditionId(
address oracle,
bytes32 questionId,
uint256 outcomeSlotCount
) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(oracle, questionId, outcomeSlotCount));
}
uint256 public constant P =
21888242871839275222246405745257275088696311157297823662689037894645226208583;
uint256 public constant B = 3;
function sqrt(uint256 x) private pure returns (uint256 y) {
uint256 p = P;
// solhint-disable-next-line no-inline-assembly
assembly {
// add chain generated via https://crypto.stackexchange.com/q/27179/71252
// and transformed to the following program:
// x=1; y=x+x; z=y+y; z=z+z; y=y+z; x=x+y; y=y+x; z=y+y; t=z+z; t=z+t; t=t+t;
// t=t+t; z=z+t; x=x+z; z=x+x; z=z+z; y=y+z; z=y+y; z=z+z; z=z+z; z=y+z; x=x+z;
// z=x+x; z=z+z; z=z+z; z=x+z; y=y+z; x=x+y; z=x+x; z=z+z; y=y+z; z=y+y; t=z+z;
// t=t+t; t=t+t; z=z+t; x=x+z; y=y+x; z=y+y; z=z+z; z=z+z; x=x+z; z=x+x; z=z+z;
// z=x+z; z=z+z; z=z+z; z=x+z; y=y+z; z=y+y; t=z+z; t=t+t; t=z+t; t=y+t; t=t+t;
// t=t+t; t=t+t; t=t+t; z=z+t; x=x+z; z=x+x; z=x+z; y=y+z; z=y+y; z=y+z; z=z+z;
// t=z+z; t=z+t; w=t+t; w=w+w; w=w+w; w=w+w; w=w+w; t=t+w; z=z+t; x=x+z; y=y+x;
// z=y+y; x=x+z; y=y+x; x=x+y; y=y+x; x=x+y; z=x+x; z=x+z; z=z+z; y=y+z; z=y+y;
// z=z+z; x=x+z; y=y+x; z=y+y; z=y+z; x=x+z; y=y+x; x=x+y; y=y+x; z=y+y; z=z+z;
// z=y+z; x=x+z; z=x+x; z=x+z; y=y+z; x=x+y; y=y+x; x=x+y; y=y+x; z=y+y; z=y+z;
// z=z+z; x=x+z; y=y+x; z=y+y; z=y+z; z=z+z; x=x+z; z=x+x; t=z+z; t=t+t; t=z+t;
// t=x+t; t=t+t; t=t+t; t=t+t; t=t+t; z=z+t; y=y+z; x=x+y; y=y+x; x=x+y; z=x+x;
// z=x+z; z=z+z; z=z+z; z=z+z; z=x+z; y=y+z; z=y+y; z=y+z; z=z+z; x=x+z; z=x+x;
// z=x+z; y=y+z; x=x+y; z=x+x; z=z+z; y=y+z; x=x+y; z=x+x; y=y+z; x=x+y; y=y+x;
// z=y+y; z=y+z; x=x+z; y=y+x; z=y+y; z=y+z; z=z+z; z=z+z; x=x+z; z=x+x; z=z+z;
// z=z+z; z=x+z; y=y+z; x=x+y; z=x+x; t=x+z; t=t+t; t=t+t; z=z+t; y=y+z; z=y+y;
// x=x+z; y=y+x; x=x+y; y=y+x; x=x+y; y=y+x; z=y+y; t=y+z; z=y+t; z=z+z; z=z+z;
// z=t+z; x=x+z; y=y+x; x=x+y; y=y+x; x=x+y; z=x+x; z=x+z; y=y+z; x=x+y; x=x+x;
// x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x;
// x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x;
// x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x;
// x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x;
// x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x;
// x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x;
// x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x;
// x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x;
// x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x;
// x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x;
// x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x; x=x+x;
// x=x+x; x=x+x; x=x+x; x=x+x; res=y+x
// res == (P + 1) // 4
y := mulmod(x, x, p)
{
let z := mulmod(y, y, p)
z := mulmod(z, z, p)
y := mulmod(y, z, p)
x := mulmod(x, y, p)
y := mulmod(y, x, p)
z := mulmod(y, y, p)
{
let t := mulmod(z, z, p)
t := mulmod(z, t, p)
t := mulmod(t, t, p)
t := mulmod(t, t, p)
z := mulmod(z, t, p)
x := mulmod(x, z, p)
z := mulmod(x, x, p)
z := mulmod(z, z, p)
y := mulmod(y, z, p)
z := mulmod(y, y, p)
z := mulmod(z, z, p)
z := mulmod(z, z, p)
z := mulmod(y, z, p)
x := mulmod(x, z, p)
z := mulmod(x, x, p)
z := mulmod(z, z, p)
z := mulmod(z, z, p)
z := mulmod(x, z, p)
y := mulmod(y, z, p)
x := mulmod(x, y, p)
z := mulmod(x, x, p)
z := mulmod(z, z, p)
y := mulmod(y, z, p)
z := mulmod(y, y, p)
t := mulmod(z, z, p)
t := mulmod(t, t, p)
t := mulmod(t, t, p)
z := mulmod(z, t, p)
x := mulmod(x, z, p)
y := mulmod(y, x, p)
z := mulmod(y, y, p)
z := mulmod(z, z, p)
z := mulmod(z, z, p)
x := mulmod(x, z, p)
z := mulmod(x, x, p)
z := mulmod(z, z, p)
z := mulmod(x, z, p)
z := mulmod(z, z, p)
z := mulmod(z, z, p)
z := mulmod(x, z, p)
y := mulmod(y, z, p)
z := mulmod(y, y, p)
t := mulmod(z, z, p)
t := mulmod(t, t, p)
t := mulmod(z, t, p)
t := mulmod(y, t, p)
t := mulmod(t, t, p)
t := mulmod(t, t, p)
t := mulmod(t, t, p)
t := mulmod(t, t, p)
z := mulmod(z, t, p)
x := mulmod(x, z, p)
z := mulmod(x, x, p)
z := mulmod(x, z, p)
y := mulmod(y, z, p)
z := mulmod(y, y, p)
z := mulmod(y, z, p)
z := mulmod(z, z, p)
t := mulmod(z, z, p)
t := mulmod(z, t, p)
{
let w := mulmod(t, t, p)
w := mulmod(w, w, p)
w := mulmod(w, w, p)
w := mulmod(w, w, p)
w := mulmod(w, w, p)
t := mulmod(t, w, p)
}
z := mulmod(z, t, p)
x := mulmod(x, z, p)
y := mulmod(y, x, p)
z := mulmod(y, y, p)
x := mulmod(x, z, p)
y := mulmod(y, x, p)
x := mulmod(x, y, p)
y := mulmod(y, x, p)
x := mulmod(x, y, p)
z := mulmod(x, x, p)
z := mulmod(x, z, p)
z := mulmod(z, z, p)
y := mulmod(y, z, p)
z := mulmod(y, y, p)
z := mulmod(z, z, p)
x := mulmod(x, z, p)
y := mulmod(y, x, p)
z := mulmod(y, y, p)
z := mulmod(y, z, p)
x := mulmod(x, z, p)
y := mulmod(y, x, p)
x := mulmod(x, y, p)
y := mulmod(y, x, p)
z := mulmod(y, y, p)
z := mulmod(z, z, p)
z := mulmod(y, z, p)
x := mulmod(x, z, p)
z := mulmod(x, x, p)
z := mulmod(x, z, p)
y := mulmod(y, z, p)
x := mulmod(x, y, p)
y := mulmod(y, x, p)
x := mulmod(x, y, p)
y := mulmod(y, x, p)
z := mulmod(y, y, p)
z := mulmod(y, z, p)
z := mulmod(z, z, p)
x := mulmod(x, z, p)
y := mulmod(y, x, p)
z := mulmod(y, y, p)
z := mulmod(y, z, p)
z := mulmod(z, z, p)
x := mulmod(x, z, p)
z := mulmod(x, x, p)
t := mulmod(z, z, p)
t := mulmod(t, t, p)
t := mulmod(z, t, p)
t := mulmod(x, t, p)
t := mulmod(t, t, p)
t := mulmod(t, t, p)
t := mulmod(t, t, p)
t := mulmod(t, t, p)
z := mulmod(z, t, p)
y := mulmod(y, z, p)
x := mulmod(x, y, p)
y := mulmod(y, x, p)
x := mulmod(x, y, p)
z := mulmod(x, x, p)
z := mulmod(x, z, p)
z := mulmod(z, z, p)
z := mulmod(z, z, p)
z := mulmod(z, z, p)
z := mulmod(x, z, p)
y := mulmod(y, z, p)
z := mulmod(y, y, p)
z := mulmod(y, z, p)
z := mulmod(z, z, p)
x := mulmod(x, z, p)
z := mulmod(x, x, p)
z := mulmod(x, z, p)
y := mulmod(y, z, p)
x := mulmod(x, y, p)
z := mulmod(x, x, p)
z := mulmod(z, z, p)
y := mulmod(y, z, p)
x := mulmod(x, y, p)
z := mulmod(x, x, p)
y := mulmod(y, z, p)
x := mulmod(x, y, p)
y := mulmod(y, x, p)
z := mulmod(y, y, p)
z := mulmod(y, z, p)
x := mulmod(x, z, p)
y := mulmod(y, x, p)
z := mulmod(y, y, p)
z := mulmod(y, z, p)
z := mulmod(z, z, p)
z := mulmod(z, z, p)
x := mulmod(x, z, p)
z := mulmod(x, x, p)
z := mulmod(z, z, p)
z := mulmod(z, z, p)
z := mulmod(x, z, p)
y := mulmod(y, z, p)
x := mulmod(x, y, p)
z := mulmod(x, x, p)
t := mulmod(x, z, p)
t := mulmod(t, t, p)
t := mulmod(t, t, p)
z := mulmod(z, t, p)
y := mulmod(y, z, p)
z := mulmod(y, y, p)
x := mulmod(x, z, p)
y := mulmod(y, x, p)
x := mulmod(x, y, p)
y := mulmod(y, x, p)
x := mulmod(x, y, p)
y := mulmod(y, x, p)
z := mulmod(y, y, p)
t := mulmod(y, z, p)
z := mulmod(y, t, p)
z := mulmod(z, z, p)
z := mulmod(z, z, p)
z := mulmod(t, z, p)
}
x := mulmod(x, z, p)
y := mulmod(y, x, p)
x := mulmod(x, y, p)
y := mulmod(y, x, p)
x := mulmod(x, y, p)
z := mulmod(x, x, p)
z := mulmod(x, z, p)
y := mulmod(y, z, p)
}
x := mulmod(x, y, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
x := mulmod(x, x, p)
y := mulmod(y, x, p)
}
}
/// @dev Constructs an outcome collection ID from a parent collection and an outcome collection.
/// @param parentCollectionId Collection ID of the parent outcome collection, or bytes32(0) if there's no parent.
/// @param conditionId Condition ID of the outcome collection to combine with the parent outcome collection.
/// @param indexSet Index set of the outcome collection to combine with the parent outcome collection.
function getCollectionId(
bytes32 parentCollectionId,
bytes32 conditionId,
uint256 indexSet
) internal view returns (bytes32) {
uint256 x1 = uint256(keccak256(abi.encodePacked(conditionId, indexSet)));
bool odd = x1 >> 255 != 0;
uint256 y1;
uint256 yy;
do {
x1 = addmod(x1, 1, P);
yy = addmod(mulmod(x1, mulmod(x1, x1, P), P), B, P);
y1 = sqrt(yy);
} while (mulmod(y1, y1, P) != yy);
if ((odd && y1 % 2 == 0) || (!odd && y1 % 2 == 1)) y1 = P - y1;
uint256 x2 = uint256(parentCollectionId);
if (x2 != 0) {
odd = x2 >> 254 != 0;
x2 = (x2 << 2) >> 2;
yy = addmod(mulmod(x2, mulmod(x2, x2, P), P), B, P);
uint256 y2 = sqrt(yy);
if ((odd && y2 % 2 == 0) || (!odd && y2 % 2 == 1)) y2 = P - y2;
require(mulmod(y2, y2, P) == yy, "invalid parent collection ID");
(bool success, bytes memory ret) = address(6).staticcall(abi.encode(x1, y1, x2, y2));
require(success, "ecadd failed");
(x1, y1) = abi.decode(ret, (uint256, uint256));
}
if (y1 % 2 == 1) x1 ^= 1 << 254;
return bytes32(x1);
}
/// @dev Constructs a position ID from a collateral token and an outcome collection. These IDs are used as the ERC-1155 ID for this contract.
/// @param collateralToken Collateral token which backs the position.
/// @param collectionId ID of the outcome collection associated with this position.
function getPositionId(
IERC20 collateralToken,
bytes32 collectionId
) internal pure returns (uint256) {
return uint256(keccak256(abi.encodePacked(collateralToken, collectionId)));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
// Source: https://github.com/gnosis/conditional-tokens-contracts/blob/master/contracts/ConditionalTokens.sol
import {Counters} from "@openzeppelin/contracts/utils/Counters.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ERC1155} from "@openzeppelin/contracts/token/ERC1155/ERC1155.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {CTHelpers} from "../libraries/CTHelpers.sol";
import {IConditionalTokens} from "../interfaces/IConditionalTokens.sol";
contract ConditionalTokens is IConditionalTokens, EIP712, ERC1155 {
using Counters for Counters.Counter;
bytes32 public constant PERMIT_FOR_ALL_TYPEHASH =
keccak256("PermitForAll(address owner,address spender,uint256 nonce,uint256 deadline)");
/**
* @notice Mapping key is an condition ID. Value represents numerators of the payout vector associated with the condition.
* This array is initialized with a length equal to the outcome slot count.
*
* E.g. Condition with 3 outcomes [A, B, C] and two of those correct [0.5, 0.5, 0].
* In Ethereum there are no decimal values, so here, 0.5 is represented by fractions like 1/2 == 0.5.
* That's why we need numerator and denominator values.
*
* Payout numerators are also used as a check of initialization.
* If the numerators array is empty (has length zero), the condition was not created/prepared.
*
* See getOutcomeSlotCount.
*/
mapping(bytes32 => uint256[]) public payoutNumerators;
/**
* @notice Denominator is also used for checking if the condition has been resolved.
*
* If the denominator is non-zero, then the condition has been resolved.
*/
mapping(bytes32 => uint256) public payoutDenominator;
mapping(address => Counters.Counter) public nonces;
constructor() ERC1155("") EIP712("ConditionalTokens", "1") {}
/**
* @inheritdoc IConditionalTokens
*/
function prepareCondition(
address oracle_,
bytes32 questionId_,
uint256 outcomeSlotCount_
) external {
// Limit of 256 because we use a partition array that is a number of 256 bits.
require(outcomeSlotCount_ <= 256, "too many outcome slots");
require(outcomeSlotCount_ > 1, "there should be more than one outcome slot");
bytes32 conditionId_ = CTHelpers.getConditionId(oracle_, questionId_, outcomeSlotCount_);
require(payoutNumerators[conditionId_].length == 0, "condition already prepared");
payoutNumerators[conditionId_] = new uint256[](outcomeSlotCount_);
emit ConditionPreparation(conditionId_, oracle_, questionId_, outcomeSlotCount_);
}
/**
* @inheritdoc IConditionalTokens
*/
function reportPayouts(bytes32 questionId_, uint256[] calldata payouts_) external {
uint256 outcomeSlotCount_ = payouts_.length;
require(outcomeSlotCount_ > 1, "there should be more than one outcome slot");
// IMPORTANT, the oracle is enforced to be the sender because it's part of the hash.
bytes32 conditionId_ = CTHelpers.getConditionId(
msg.sender,
questionId_,
outcomeSlotCount_
);
require(
payoutNumerators[conditionId_].length == outcomeSlotCount_,
"condition not prepared or found"
);
require(payoutDenominator[conditionId_] == 0, "payout denominator already set");
uint256 denominator_ = 0;
for (uint256 i = 0; i < outcomeSlotCount_; i++) {
uint256 numerator_ = payouts_[i];
denominator_ += numerator_;
require(payoutNumerators[conditionId_][i] == 0, "payout numerator already set");
payoutNumerators[conditionId_][i] = numerator_;
}
require(denominator_ > 0, "payout is all zeroes");
payoutDenominator[conditionId_] = denominator_;
emit ConditionResolution(
conditionId_,
msg.sender,
questionId_,
outcomeSlotCount_,
payoutNumerators[conditionId_]
);
}
/**
* @inheritdoc IConditionalTokens
*/
function splitPosition(
IERC20 collateralToken_,
bytes32 parentCollectionId_,
bytes32 conditionId_,
uint256[] calldata partition_,
uint256 amount_
) external {
require(partition_.length > 1, "got empty or singleton partition");
uint256 outcomeSlotCount_ = payoutNumerators[conditionId_].length;
require(outcomeSlotCount_ > 0, "condition not prepared yet");
// For a condition with 4 outcomes fullIndexSet's 0b1111; for 5 it's 0b11111...
uint256 fullIndexSet_ = (1 << outcomeSlotCount_) - 1;
// freeIndexSet starts as the full collection
uint256 freeIndexSet_ = fullIndexSet_;
// This loop checks that all condition sets are disjoint (the same outcome is not part of more than 1 set)
uint256[] memory positionIds_ = new uint256[](partition_.length);
uint256[] memory amounts_ = new uint256[](partition_.length);
for (uint256 i = 0; i < partition_.length; ++i) {
uint256 indexSet_ = partition_[i];
require(indexSet_ > 0 && indexSet_ < fullIndexSet_, "got invalid index set");
require((indexSet_ & freeIndexSet_) == indexSet_, "partition not disjoint");
freeIndexSet_ ^= indexSet_;
positionIds_[i] = CTHelpers.getPositionId(
collateralToken_,
CTHelpers.getCollectionId(parentCollectionId_, conditionId_, indexSet_)
);
amounts_[i] = amount_;
}
if (freeIndexSet_ == 0) {
// Partitioning the full set of outcomes for the condition in this branch
if (parentCollectionId_ == bytes32(0)) {
require(
collateralToken_.transferFrom(msg.sender, address(this), amount_),
"could not receive collateral tokens"
);
} else {
_burn(
msg.sender,
CTHelpers.getPositionId(collateralToken_, parentCollectionId_),
amount_
);
}
} else {
// Partitioning a subset of outcomes for the condition in this branch.
// For example, for a condition with three outcomes A, B, and C, this branch
// allows the splitting of a position $:(A|C) to positions $:(A) and $:(C).
_burn(
msg.sender,
CTHelpers.getPositionId(
collateralToken_,
CTHelpers.getCollectionId(
parentCollectionId_,
conditionId_,
fullIndexSet_ ^ freeIndexSet_
)
),
amount_
);
}
_mintBatch(
msg.sender,
// position ID is the ERC 1155 token ID
positionIds_,
amounts_,
""
);
emit PositionSplit(
msg.sender,
collateralToken_,
parentCollectionId_,
conditionId_,
partition_,
amount_
);
}
function mergePositions(
IERC20 collateralToken_,
bytes32 parentCollectionId_,
bytes32 conditionId_,
uint256[] calldata partition_,
uint256 amount_
) external {
require(partition_.length > 1, "got empty or singleton partition");
uint256 outcomeSlotCount_ = payoutNumerators[conditionId_].length;
require(outcomeSlotCount_ > 0, "condition not prepared yet");
uint256 fullIndexSet_ = (1 << outcomeSlotCount_) - 1;
uint256 freeIndexSet_ = fullIndexSet_;
uint256[] memory positionIds_ = new uint256[](partition_.length);
uint256[] memory amounts_ = new uint256[](partition_.length);
for (uint256 i = 0; i < partition_.length; i++) {
uint256 indexSet_ = partition_[i];
require(indexSet_ > 0 && indexSet_ < fullIndexSet_, "got invalid index set");
require((indexSet_ & freeIndexSet_) == indexSet_, "partition not disjoint");
freeIndexSet_ ^= indexSet_;
positionIds_[i] = CTHelpers.getPositionId(
collateralToken_,
CTHelpers.getCollectionId(parentCollectionId_, conditionId_, indexSet_)
);
amounts_[i] = amount_;
}
_burnBatch(msg.sender, positionIds_, amounts_);
if (freeIndexSet_ == 0) {
if (parentCollectionId_ == bytes32(0)) {
require(
collateralToken_.transfer(msg.sender, amount_),
"could not send collateral tokens"
);
} else {
_mint(
msg.sender,
CTHelpers.getPositionId(collateralToken_, parentCollectionId_),
amount_,
""
);
}
} else {
_mint(
msg.sender,
CTHelpers.getPositionId(
collateralToken_,
CTHelpers.getCollectionId(
parentCollectionId_,
conditionId_,
fullIndexSet_ ^ freeIndexSet_
)
),
amount_,
""
);
}
emit PositionsMerge(
msg.sender,
collateralToken_,
parentCollectionId_,
conditionId_,
partition_,
amount_
);
}
function redeemPositions(
IERC20 collateralToken_,
bytes32 parentCollectionId_,
bytes32 conditionId_,
uint256[] calldata indexSets_
) external {
uint256 denominator_ = payoutDenominator[conditionId_];
require(denominator_ > 0, "result for condition not received yet");
uint256 outcomeSlotCount_ = payoutNumerators[conditionId_].length;
require(outcomeSlotCount_ > 0, "condition not prepared yet");
uint256 totalPayout_ = 0;
uint256 fullIndexSet_ = (1 << outcomeSlotCount_) - 1;
for (uint256 i = 0; i < indexSets_.length; i++) {
uint256 indexSet_ = indexSets_[i];
require(indexSet_ > 0 && indexSet_ < fullIndexSet_, "got invalid index set");
uint256 positionId_ = CTHelpers.getPositionId(
collateralToken_,
CTHelpers.getCollectionId(parentCollectionId_, conditionId_, indexSet_)
);
uint256 payoutNumerator_ = 0;
for (uint256 j = 0; j < outcomeSlotCount_; j++) {
if (indexSet_ & (1 << j) != 0) {
payoutNumerator_ = payoutNumerator_ + payoutNumerators[conditionId_][j];
}
}
uint256 payoutStake_ = balanceOf(msg.sender, positionId_);
if (payoutStake_ > 0) {
totalPayout_ = totalPayout_ + ((payoutStake_ * payoutNumerator_) / denominator_);
_burn(msg.sender, positionId_, payoutStake_);
}
}
if (totalPayout_ > 0) {
if (parentCollectionId_ == bytes32(0)) {
require(
collateralToken_.transfer(msg.sender, totalPayout_),
"could not transfer payout to message sender"
);
} else {
_mint(
msg.sender,
CTHelpers.getPositionId(collateralToken_, parentCollectionId_),
totalPayout_,
""
);
}
}
emit PayoutRedemption(
msg.sender,
collateralToken_,
parentCollectionId_,
conditionId_,
indexSets_,
totalPayout_
);
}
/**
* @inheritdoc IConditionalTokens
*/
function getOutcomeSlotCount(bytes32 conditionId_) external view returns (uint256) {
return payoutNumerators[conditionId_].length;
}
/**
* @inheritdoc IConditionalTokens
*/
function getConditionId(
address oracle_,
bytes32 questionId_,
uint256 outcomeSlotCount_
) external pure returns (bytes32) {
return CTHelpers.getConditionId(oracle_, questionId_, outcomeSlotCount_);
}
/**
* @inheritdoc IConditionalTokens
*/
function getCollectionId(
bytes32 parentCollectionId_,
bytes32 conditionId_,
uint256 indexSet_
) external view returns (bytes32) {
return CTHelpers.getCollectionId(parentCollectionId_, conditionId_, indexSet_);
}
/**
* @inheritdoc IConditionalTokens
*/
function getPositionId(
IERC20 collateralToken_,
bytes32 collectionId_
) external pure returns (uint256) {
return CTHelpers.getPositionId(collateralToken_, collectionId_);
}
function permitForAll(
address owner,
address spender,
uint256 deadline,
bytes memory signature
) public virtual {
require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
bytes32 structHash = keccak256(
abi.encode(PERMIT_FOR_ALL_TYPEHASH, owner, spender, _useNonce(owner), deadline)
);
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, signature);
require(signer == owner, "ERC20Permit: invalid signature");
_setApprovalForAll(owner, spender, true);
}
/**
* @dev "Consume a nonce": return the current value and increment.
*/
function _useNonce(address owner) internal virtual returns (uint256 current) {
Counters.Counter storage nonce = nonces[owner];
current = nonce.current();
nonce.increment();
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
pragma solidity ^0.8.0;
/**
* @title Counters
* @author Matt Condon (@shrugs)
* @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
* of elements in a mapping, issuing ERC721 ids, or counting request ids.
*
* Include with `using Counters for Counters.Counter;`
*/
library Counters {
struct Counter {
// This variable should never be directly accessed by users of the library: interactions must be restricted to
// the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
// this feature: see https://github.com/ethereum/solidity/issues/4637
uint256 _value; // default: 0
}
function current(Counter storage counter) internal view returns (uint256) {
return counter._value;
}
function increment(Counter storage counter) internal {
unchecked {
counter._value += 1;
}
}
function decrement(Counter storage counter) internal {
uint256 value = counter._value;
require(value > 0, "Counter: decrement overflow");
unchecked {
counter._value = value - 1;
}
}
function reset(Counter storage counter) internal {
counter._value = 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.8;
import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* _Available since v3.4._
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant _TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {EIP-5267}.
*
* _Available since v4.9._
*/
function eip712Domain()
public
view
virtual
override
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_name.toStringWithFallback(_nameFallback),
_version.toStringWithFallback(_versionFallback),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC1155/ERC1155.sol)
pragma solidity ^0.8.0;
import "./IERC1155.sol";
import "./IERC1155Receiver.sol";
import "./extensions/IERC1155MetadataURI.sol";
import "../../utils/Address.sol";
import "../../utils/Context.sol";
import "../../utils/introspection/ERC165.sol";
/**
* @dev Implementation of the basic standard multi-token.
* See https://eips.ethereum.org/EIPS/eip-1155
* Originally based on code by Enjin: https://github.com/enjin/erc-1155
*
* _Available since v3.1._
*/
contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI {
using Address for address;
// Mapping from token ID to account balances
mapping(uint256 => mapping(address => uint256)) private _balances;
// Mapping from account to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
// Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
string private _uri;
/**
* @dev See {_setURI}.
*/
constructor(string memory uri_) {
_setURI(uri_);
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC1155).interfaceId ||
interfaceId == type(IERC1155MetadataURI).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC1155MetadataURI-uri}.
*
* This implementation returns the same URI for *all* token types. It relies
* on the token type ID substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
*
* Clients calling this function must replace the `\{id\}` substring with the
* actual token type ID.
*/
function uri(uint256) public view virtual override returns (string memory) {
return _uri;
}
/**
* @dev See {IERC1155-balanceOf}.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function balanceOf(address account, uint256 id) public view virtual override returns (uint256) {
require(account != address(0), "ERC1155: address zero is not a valid owner");
return _balances[id][account];
}
/**
* @dev See {IERC1155-balanceOfBatch}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] memory accounts,
uint256[] memory ids
) public view virtual override returns (uint256[] memory) {
require(accounts.length == ids.length, "ERC1155: accounts and ids length mismatch");
uint256[] memory batchBalances = new uint256[](accounts.length);
for (uint256 i = 0; i < accounts.length; ++i) {
batchBalances[i] = balanceOf(accounts[i], ids[i]);
}
return batchBalances;
}
/**
* @dev See {IERC1155-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC1155-isApprovedForAll}.
*/
function isApprovedForAll(address account, address operator) public view virtual override returns (bool) {
return _operatorApprovals[account][operator];
}
/**
* @dev See {IERC1155-safeTransferFrom}.
*/
function safeTransferFrom(
address from,
address to,
uint256 id,
uint256 amount,
bytes memory data
) public virtual override {
require(
from == _msgSender() || isApprovedForAll(from, _msgSender()),
"ERC1155: caller is not token owner or approved"
);
_safeTransferFrom(from, to, id, amount, data);
}
/**
* @dev See {IERC1155-safeBatchTransferFrom}.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) public virtual override {
require(
from == _msgSender() || isApprovedForAll(from, _msgSender()),
"ERC1155: caller is not token owner or approved"
);
_safeBatchTransferFrom(from, to, ids, amounts, data);
}
/**
* @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `from` must have a balance of tokens of type `id` of at least `amount`.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _safeTransferFrom(
address from,
address to,
uint256 id,
uint256 amount,
bytes memory data
) internal virtual {
require(to != address(0), "ERC1155: transfer to the zero address");
address operator = _msgSender();
uint256[] memory ids = _asSingletonArray(id);
uint256[] memory amounts = _asSingletonArray(amount);
_beforeTokenTransfer(operator, from, to, ids, amounts, data);
uint256 fromBalance = _balances[id][from];
require(fromBalance >= amount, "ERC1155: insufficient balance for transfer");
unchecked {
_balances[id][from] = fromBalance - amount;
}
_balances[id][to] += amount;
emit TransferSingle(operator, from, to, id, amount);
_afterTokenTransfer(operator, from, to, ids, amounts, data);
_doSafeTransferAcceptanceCheck(operator, from, to, id, amount, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function _safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {
require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
require(to != address(0), "ERC1155: transfer to the zero address");
address operator = _msgSender();
_beforeTokenTransfer(operator, from, to, ids, amounts, data);
for (uint256 i = 0; i < ids.length; ++i) {
uint256 id = ids[i];
uint256 amount = amounts[i];
uint256 fromBalance = _balances[id][from];
require(fromBalance >= amount, "ERC1155: insufficient balance for transfer");
unchecked {
_balances[id][from] = fromBalance - amount;
}
_balances[id][to] += amount;
}
emit TransferBatch(operator, from, to, ids, amounts);
_afterTokenTransfer(operator, from, to, ids, amounts, data);
_doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, amounts, data);
}
/**
* @dev Sets a new URI for all token types, by relying on the token type ID
* substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
*
* By this mechanism, any occurrence of the `\{id\}` substring in either the
* URI or any of the amounts in the JSON file at said URI will be replaced by
* clients with the token type ID.
*
* For example, the `https://token-cdn-domain/\{id\}.json` URI would be
* interpreted by clients as
* `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
* for token type ID 0x4cce0.
*
* See {uri}.
*
* Because these URIs cannot be meaningfully represented by the {URI} event,
* this function emits no events.
*/
function _setURI(string memory newuri) internal virtual {
_uri = newuri;
}
/**
* @dev Creates `amount` tokens of token type `id`, and assigns them to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _mint(address to, uint256 id, uint256 amount, bytes memory data) internal virtual {
require(to != address(0), "ERC1155: mint to the zero address");
address operator = _msgSender();
uint256[] memory ids = _asSingletonArray(id);
uint256[] memory amounts = _asSingletonArray(amount);
_beforeTokenTransfer(operator, address(0), to, ids, amounts, data);
_balances[id][to] += amount;
emit TransferSingle(operator, address(0), to, id, amount);
_afterTokenTransfer(operator, address(0), to, ids, amounts, data);
_doSafeTransferAcceptanceCheck(operator, address(0), to, id, amount, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `amounts` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function _mintBatch(
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {
require(to != address(0), "ERC1155: mint to the zero address");
require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
address operator = _msgSender();
_beforeTokenTransfer(operator, address(0), to, ids, amounts, data);
for (uint256 i = 0; i < ids.length; i++) {
_balances[ids[i]][to] += amounts[i];
}
emit TransferBatch(operator, address(0), to, ids, amounts);
_afterTokenTransfer(operator, address(0), to, ids, amounts, data);
_doSafeBatchTransferAcceptanceCheck(operator, address(0), to, ids, amounts, data);
}
/**
* @dev Destroys `amount` tokens of token type `id` from `from`
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `amount` tokens of token type `id`.
*/
function _burn(address from, uint256 id, uint256 amount) internal virtual {
require(from != address(0), "ERC1155: burn from the zero address");
address operator = _msgSender();
uint256[] memory ids = _asSingletonArray(id);
uint256[] memory amounts = _asSingletonArray(amount);
_beforeTokenTransfer(operator, from, address(0), ids, amounts, "");
uint256 fromBalance = _balances[id][from];
require(fromBalance >= amount, "ERC1155: burn amount exceeds balance");
unchecked {
_balances[id][from] = fromBalance - amount;
}
emit TransferSingle(operator, from, address(0), id, amount);
_afterTokenTransfer(operator, from, address(0), ids, amounts, "");
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `amounts` must have the same length.
*/
function _burnBatch(address from, uint256[] memory ids, uint256[] memory amounts) internal virtual {
require(from != address(0), "ERC1155: burn from the zero address");
require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");
address operator = _msgSender();
_beforeTokenTransfer(operator, from, address(0), ids, amounts, "");
for (uint256 i = 0; i < ids.length; i++) {
uint256 id = ids[i];
uint256 amount = amounts[i];
uint256 fromBalance = _balances[id][from];
require(fromBalance >= amount, "ERC1155: burn amount exceeds balance");
unchecked {
_balances[id][from] = fromBalance - amount;
}
}
emit TransferBatch(operator, from, address(0), ids, amounts);
_afterTokenTransfer(operator, from, address(0), ids, amounts, "");
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
require(owner != operator, "ERC1155: setting approval status for self");
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Hook that is called before any token transfer. This includes minting
* and burning, as well as batched variants.
*
* The same hook is called on both single and batched variants. For single
* transfers, the length of the `ids` and `amounts` arrays will be 1.
*
* Calling conditions (for each `id` and `amount` pair):
*
* - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* of token type `id` will be transferred to `to`.
* - When `from` is zero, `amount` tokens of token type `id` will be minted
* for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
* will be burned.
* - `from` and `to` are never both zero.
* - `ids` and `amounts` have the same, non-zero length.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {}
/**
* @dev Hook that is called after any token transfer. This includes minting
* and burning, as well as batched variants.
*
* The same hook is called on both single and batched variants. For single
* transfers, the length of the `id` and `amount` arrays will be 1.
*
* Calling conditions (for each `id` and `amount` pair):
*
* - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* of token type `id` will be transferred to `to`.
* - When `from` is zero, `amount` tokens of token type `id` will be minted
* for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens of token type `id`
* will be burned.
* - `from` and `to` are never both zero.
* - `ids` and `amounts` have the same, non-zero length.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {}
function _doSafeTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256 id,
uint256 amount,
bytes memory data
) private {
if (to.isContract()) {
try IERC1155Receiver(to).onERC1155Received(operator, from, id, amount, data) returns (bytes4 response) {
if (response != IERC1155Receiver.onERC1155Received.selector) {
revert("ERC1155: ERC1155Receiver rejected tokens");
}
} catch Error(string memory reason) {
revert(reason);
} catch {
revert("ERC1155: transfer to non-ERC1155Receiver implementer");
}
}
}
function _doSafeBatchTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) private {
if (to.isContract()) {
try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, amounts, data) returns (
bytes4 response
) {
if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
revert("ERC1155: ERC1155Receiver rejected tokens");
}
} catch Error(string memory reason) {
revert(reason);
} catch {
revert("ERC1155: transfer to non-ERC1155Receiver implementer");
}
}
}
function _asSingletonArray(uint256 element) private pure returns (uint256[] memory) {
uint256[] memory array = new uint256[](1);
array[0] = element;
return array;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC1155} from "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
interface IConditionalTokens is IERC1155 {
/**
* @dev Emitted upon the successful preparation of a condition.
* @param conditionId The condition's ID. This ID may be derived from the other three parameters via ``keccak256(abi.encodePacked(oracle, questionId, outcomeSlotCount))``.
* @param oracle The account assigned to report the result for the prepared condition.
* @param questionId An identifier for the question to be answered by the oracle.
* @param outcomeSlotCount The number of outcome slots which should be used for this condition. Must not exceed 256.
*/
event ConditionPreparation(
bytes32 indexed conditionId,
address indexed oracle,
bytes32 indexed questionId,
uint256 outcomeSlotCount
);
event ConditionResolution(
bytes32 indexed conditionId,
address indexed oracle,
bytes32 indexed questionId,
uint256 outcomeSlotCount,
uint256[] payoutNumerators
);
event PositionSplit(
address indexed stakeholder,
IERC20 collateralToken,
bytes32 indexed parentCollectionId,
bytes32 indexed conditionId,
uint256[] partition,
uint256 amount
);
event PositionsMerge(
address indexed stakeholder,
IERC20 collateralToken,
bytes32 indexed parentCollectionId,
bytes32 indexed conditionId,
uint256[] partition,
uint256 amount
);
event PayoutRedemption(
address indexed redeemer,
IERC20 indexed collateralToken,
bytes32 indexed parentCollectionId,
bytes32 conditionId,
uint256[] indexSets,
uint256 payout
);
/**
* @notice This function prepares a condition by initializing a payout vector associated with the condition.
* @param oracle_ The account assigned to report the result for the prepared condition.
* @param questionId_ An identifier for the question to be answered by the oracle.
* @param outcomeSlotCount_ The number of outcome slots which should be used for this condition. Must not exceed 256.
*/
function prepareCondition(
address oracle_,
bytes32 questionId_,
uint256 outcomeSlotCount_
) external;
/**
* @notice Called by the oracle for reporting results of conditions.
* Will set the payout vector for the condition with the ID ``keccak256(abi.encodePacked(oracle, questionId, outcomeSlotCount))``,
* where oracle is the message sender, questionId is one of the parameters of this function,
* and outcomeSlotCount is the length of the payouts parameter, which contains the payoutNumerators for each outcome slot of the condition.
*
* @param questionId_ The question ID the oracle is answering for
* @param payouts_ The oracle's answer
*/
function reportPayouts(bytes32 questionId_, uint256[] calldata payouts_) external;
/**
* @notice This function splits a position.
* If splitting from the collateral, this contract will attempt to transfer `amount`
* collateral from the message sender to itself. Otherwise, this contract will burn `amount` stake held by
* the message sender in the position being split worth of EIP 1155 tokens.
*
* Regardless, if successful, `amount` stake will be minted in the split target positions.
* If any of the transfers, mints, or burns fail, the transaction will revert.
* The transaction will also revert if the given partition is trivial, invalid, or refers to more slots than the condition is prepared with.
*
* @param collateralToken_ The address of the positions' backing collateral token.
* @param parentCollectionId_ The ID of the outcome collections common to the position being split and the split target positions.
* May be null, in which only the collateral is shared.
* @param conditionId_ The ID of the condition to split on.
* @param partition_ An array of disjoint index sets representing a nontrivial partition of the outcome slots of the given condition.
* E.g. A|B and C but not A|B and B|C (is not disjoint). Each element's a number which, together with the condition, represents the outcome collection.
* E.g. 0b110 is A|B, 0b010 is B, etc.
* @param amount_ The amount of collateral or stake to split.
*/
function splitPosition(
IERC20 collateralToken_,
bytes32 parentCollectionId_,
bytes32 conditionId_,
uint256[] calldata partition_,
uint256 amount_
) external;
function mergePositions(
IERC20 collateralToken_,
bytes32 parentCollectionId_,
bytes32 conditionId_,
uint256[] calldata partition_,
uint256 amount_
) external;
function redeemPositions(
IERC20 collateralToken_,
bytes32 parentCollectionId_,
bytes32 conditionId_,
uint256[] calldata indexSets_
) external;
/**
* @notice Gets the outcome slot count of a condition.
*
* @param conditionId The ID of the condition to query.
* @return Number of outcome slots associated with a condition, or zero if condition has not been prepared yet.
*/
function getOutcomeSlotCount(bytes32 conditionId) external view returns (uint256);
/**
* @notice Constructs a condition ID from an oracle, a question ID, and the outcome slot count for the question.
*
* @param oracle_ The account assigned to report the result for the prepared condition.
* @param questionId_ An identifier for the question to be answered by the oracle.
* @param outcomeSlotCount_ The number of outcome slots which should be used for this condition. Must not exceed 256.
*/
function getConditionId(
address oracle_,
bytes32 questionId_,
uint256 outcomeSlotCount_
) external pure returns (bytes32);
/**
* @notice Constructs an outcome collection ID from a parent collection and an outcome collection.
*
* @param parentCollectionId_ Collection ID of the parent outcome collection, or bytes32(0) if there's no parent.
* @param conditionId_ Condition ID of the outcome collection to combine with the parent outcome collection.
* @param indexSet_ Index set of the outcome collection to combine with the parent outcome collection.
*/
function getCollectionId(
bytes32 parentCollectionId_,
bytes32 conditionId_,
uint256 indexSet_
) external view returns (bytes32);
/**
* @notice Constructs a position ID from a collateral token and an outcome collection. These IDs are used as the ERC-1155 ID for this contract.
*
* @param collateralToken_ Collateral token which backs the position.
* @param collectionId_ ID of the outcome collection associated with this position.
*/
function getPositionId(
IERC20 collateralToken_,
bytes32 collectionId_
) external pure returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC1155/IERC1155.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[EIP].
*
* _Available since v3.1._
*/
interface IERC1155 is IERC165 {
/**
* @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] values
);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(address indexed account, address indexed operator, bool approved);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the amount of tokens of token type `id` owned by `account`.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function balanceOf(address account, uint256 id) external view returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] calldata accounts,
uint256[] calldata ids
) external view returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the caller.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator) external view returns (bool);
/**
* @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `amount`.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 amount, bytes calldata data) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `amounts` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amounts,
bytes calldata data
) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC1155/extensions/IERC1155MetadataURI.sol)
pragma solidity ^0.8.0;
import "../IERC1155.sol";
/**
* @dev Interface of the optional ERC1155MetadataExtension interface, as defined
* in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[EIP].
*
* _Available since v3.1._
*/
interface IERC1155MetadataURI is IERC1155 {
/**
* @dev Returns the URI for token type `id`.
*
* If the `\{id\}` substring is present in the URI, it must be replaced by
* clients with the actual token type ID.
*/
function uri(uint256 id) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev _Available since v3.1._
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.0;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.8;
import "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(_FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.0;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
* _Available since v4.9 for `string`, `bytes`._
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
{
"compilationTarget": {
"@openion/collateral-contracts/vendor/ConditionalTokens.sol": "ConditionalTokens"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [],
"viaIR": true
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"conditionId","type":"bytes32"},{"indexed":true,"internalType":"address","name":"oracle","type":"address"},{"indexed":true,"internalType":"bytes32","name":"questionId","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"outcomeSlotCount","type":"uint256"}],"name":"ConditionPreparation","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"conditionId","type":"bytes32"},{"indexed":true,"internalType":"address","name":"oracle","type":"address"},{"indexed":true,"internalType":"bytes32","name":"questionId","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"outcomeSlotCount","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"payoutNumerators","type":"uint256[]"}],"name":"ConditionResolution","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"redeemer","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"collateralToken","type":"address"},{"indexed":true,"internalType":"bytes32","name":"parentCollectionId","type":"bytes32"},{"indexed":false,"internalType":"bytes32","name":"conditionId","type":"bytes32"},{"indexed":false,"internalType":"uint256[]","name":"indexSets","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"payout","type":"uint256"}],"name":"PayoutRedemption","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"stakeholder","type":"address"},{"indexed":false,"internalType":"contract IERC20","name":"collateralToken","type":"address"},{"indexed":true,"internalType":"bytes32","name":"parentCollectionId","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"conditionId","type":"bytes32"},{"indexed":false,"internalType":"uint256[]","name":"partition","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PositionSplit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"stakeholder","type":"address"},{"indexed":false,"internalType":"contract IERC20","name":"collateralToken","type":"address"},{"indexed":true,"internalType":"bytes32","name":"parentCollectionId","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"conditionId","type":"bytes32"},{"indexed":false,"internalType":"uint256[]","name":"partition","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PositionsMerge","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"inputs":[],"name":"PERMIT_FOR_ALL_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"parentCollectionId_","type":"bytes32"},{"internalType":"bytes32","name":"conditionId_","type":"bytes32"},{"internalType":"uint256","name":"indexSet_","type":"uint256"}],"name":"getCollectionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"oracle_","type":"address"},{"internalType":"bytes32","name":"questionId_","type":"bytes32"},{"internalType":"uint256","name":"outcomeSlotCount_","type":"uint256"}],"name":"getConditionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"conditionId_","type":"bytes32"}],"name":"getOutcomeSlotCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"collateralToken_","type":"address"},{"internalType":"bytes32","name":"collectionId_","type":"bytes32"}],"name":"getPositionId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"collateralToken_","type":"address"},{"internalType":"bytes32","name":"parentCollectionId_","type":"bytes32"},{"internalType":"bytes32","name":"conditionId_","type":"bytes32"},{"internalType":"uint256[]","name":"partition_","type":"uint256[]"},{"internalType":"uint256","name":"amount_","type":"uint256"}],"name":"mergePositions","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"_value","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"payoutDenominator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"payoutNumerators","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"permitForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"oracle_","type":"address"},{"internalType":"bytes32","name":"questionId_","type":"bytes32"},{"internalType":"uint256","name":"outcomeSlotCount_","type":"uint256"}],"name":"prepareCondition","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"collateralToken_","type":"address"},{"internalType":"bytes32","name":"parentCollectionId_","type":"bytes32"},{"internalType":"bytes32","name":"conditionId_","type":"bytes32"},{"internalType":"uint256[]","name":"indexSets_","type":"uint256[]"}],"name":"redeemPositions","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"questionId_","type":"bytes32"},{"internalType":"uint256[]","name":"payouts_","type":"uint256[]"}],"name":"reportPayouts","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"collateralToken_","type":"address"},{"internalType":"bytes32","name":"parentCollectionId_","type":"bytes32"},{"internalType":"bytes32","name":"conditionId_","type":"bytes32"},{"internalType":"uint256[]","name":"partition_","type":"uint256[]"},{"internalType":"uint256","name":"amount_","type":"uint256"}],"name":"splitPosition","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]