// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// Copyright (c) OmniBTC, Inc.
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.0;
interface IWormholeAdapterPool {
function dolaChainId() external view returns (uint16);
function getNonce() external returns (uint64);
function getOneRelayer(uint64 nonce) external view returns (address);
function sendDeposit(
address pool,
uint256 amount,
uint16 appId,
bytes memory appPayload
) external payable returns (uint64);
function sendMessage(
uint16 appId,
bytes memory appPayload
) external returns (uint64);
}
// Copyright (c) OmniBTC, Inc.
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.0;
import "SafeERC20.sol";
import "IERC20.sol";
/// @title LibAsset
/// @notice This library contains helpers for dealing with onchain transfers
/// of assets, including accounting for the native asset `assetId`
/// conventions and any noncompliant ERC20 transfers
library LibAsset {
uint256 private constant MAX_INT = type(uint256).max;
address internal constant NULL_ADDRESS =
0x0000000000000000000000000000000000000000; //address(0)
/// @dev All native assets use the empty address for their asset id
/// by convention
address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
/// @notice Gets the balance of the inheriting contract for the given asset
/// @param assetId The asset identifier to get the balance of
/// @return Balance held by contracts using this library
function getOwnBalance(address assetId) internal view returns (uint256) {
return
assetId == NATIVE_ASSETID
? address(this).balance
: IERC20(assetId).balanceOf(address(this));
}
/// @notice Transfers ether from the inheriting contract to a given
/// recipient
/// @param recipient Address to send ether to
/// @param amount Amount to send to given recipient
function transferNativeAsset(address payable recipient, uint256 amount)
private
{
if (recipient == NULL_ADDRESS) revert("NoTransferToNullAddress");
// solhint-disable-next-line avoid-low-level-calls
(bool success, ) = recipient.call{value: amount}("");
if (!success) revert("NativeAssetTransferFailed");
}
/// @notice Gives MAX approval for another address to spend tokens
/// @param assetId Token address to transfer
/// @param spender Address to give spend approval to
/// @param amount Amount to approve for spending
function maxApproveERC20(
IERC20 assetId,
address spender,
uint256 amount
) internal {
if (address(assetId) == NATIVE_ASSETID) return;
if (spender == NULL_ADDRESS) revert("NullAddrIsNotAValidSpender");
uint256 allowance = assetId.allowance(address(this), spender);
if (allowance < amount)
SafeERC20.safeApprove(IERC20(assetId), spender, MAX_INT);
}
/// @notice Transfers tokens from the inheriting contract to a given
/// recipient
/// @param assetId Token address to transfer
/// @param recipient Address to send token to
/// @param amount Amount to send to given recipient
function transferERC20(
address assetId,
address recipient,
uint256 amount
) private {
if (isNativeAsset(assetId)) revert("NullAddrIsNotAnERC20Token");
SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
}
/// @notice Transfers tokens from a sender to a given recipient
/// @param assetId Token address to transfer
/// @param from Address of sender/owner
/// @param to Address of recipient/spender
/// @param amount Amount to transfer from owner to spender
function transferFromERC20(
address assetId,
address from,
address to,
uint256 amount
) internal {
if (assetId == NATIVE_ASSETID) revert("NullAddrIsNotAnERC20Token");
if (to == NULL_ADDRESS) revert("NoTransferToNullAddress");
SafeERC20.safeTransferFrom(IERC20(assetId), from, to, amount);
}
/// @notice Deposits an asset into the contract and performs checks to avoid NativeValueWithERC
/// @param tokenId Token to deposit
/// @param amount Amount to deposit
/// @param isNative Wether the token is native or ERC20
function depositAsset(
address tokenId,
uint256 amount,
bool isNative
) internal {
if (amount == 0) revert("InvalidAmount");
if (isNative) {
if (msg.value < amount) revert("InvalidAmount");
} else {
uint256 _fromTokenBalance = LibAsset.getOwnBalance(tokenId);
LibAsset.transferFromERC20(
tokenId,
msg.sender,
address(this),
amount
);
if (LibAsset.getOwnBalance(tokenId) - _fromTokenBalance != amount)
revert("InvalidAmount");
}
}
/// @notice Overload for depositAsset(address tokenId, uint256 amount, bool isNative)
/// @param tokenId Token to deposit
/// @param amount Amount to deposit
function depositAsset(address tokenId, uint256 amount) internal {
return depositAsset(tokenId, amount, tokenId == NATIVE_ASSETID);
}
/// @notice Determines whether the given assetId is the native asset
/// @param assetId The asset identifier to evaluate
/// @return Boolean indicating if the asset is the native asset
function isNativeAsset(address assetId) internal pure returns (bool) {
return assetId == NATIVE_ASSETID;
}
/// @notice Wrapper function to transfer a given asset (native or erc20) to
/// some recipient. Should handle all non-compliant return value
/// tokens as well by using the SafeERC20 contract by open zeppelin.
/// @param assetId Asset id for transfer (address(0) for native asset,
/// token address for erc20s)
/// @param recipient Address to send asset to
/// @param amount Amount to send to given recipient
function transferAsset(
address assetId,
address payable recipient,
uint256 amount
) internal {
(assetId == NATIVE_ASSETID)
? transferNativeAsset(recipient, amount)
: transferERC20(assetId, recipient, amount);
}
/// @dev Checks whether the given address is a contract and contains code
function isContract(address contractAddr) internal view returns (bool) {
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly {
size := extcodesize(contractAddr)
}
return size > 0;
}
/// @dev Query the decimals of the corresponding token
function queryDecimals(address token) internal view returns (uint8) {
if (token == address(0)) {
return 18;
} else {
(, bytes memory queriedDecimals) = token.staticcall(
abi.encodeWithSignature("decimals()")
);
uint8 decimals = abi.decode(queriedDecimals, (uint8));
return decimals;
}
}
}
// Copyright (c) OmniBTC, Inc.
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.0;
library LibBytes {
// solhint-disable no-inline-assembly
function concat(bytes memory _preBytes, bytes memory _postBytes)
internal
pure
returns (bytes memory)
{
bytes memory tempBytes;
assembly {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// Store the length of the first bytes array at the beginning of
// the memory for tempBytes.
let length := mload(_preBytes)
mstore(tempBytes, length)
// Maintain a memory counter for the current write location in the
// temp bytes array by adding the 32 bytes for the array length to
// the starting location.
let mc := add(tempBytes, 0x20)
// Stop copying when the memory counter reaches the length of the
// first bytes array.
let end := add(mc, length)
for {
// Initialize a copy counter to the start of the _preBytes data,
// 32 bytes into its memory.
let cc := add(_preBytes, 0x20)
} lt(mc, end) {
// Increase both counters by 32 bytes each iteration.
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// Write the _preBytes data into the tempBytes memory 32 bytes
// at a time.
mstore(mc, mload(cc))
}
// Add the length of _postBytes to the current length of tempBytes
// and store it as the new length in the first 32 bytes of the
// tempBytes memory.
length := mload(_postBytes)
mstore(tempBytes, add(length, mload(tempBytes)))
// Move the memory counter back from a multiple of 0x20 to the
// actual end of the _preBytes data.
mc := end
// Stop copying when the memory counter reaches the new combined
// length of the arrays.
end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
// Update the free-memory pointer by padding our last write location
// to 32 bytes: add 31 bytes to the end of tempBytes to move to the
// next 32 byte block, then round down to the nearest multiple of
// 32. If the sum of the length of the two arrays is zero then add
// one before rounding down to leave a blank 32 bytes (the length block with 0).
mstore(
0x40,
and(
add(add(end, iszero(add(length, mload(_preBytes)))), 31),
not(31) // Round down to the nearest 32 bytes.
)
)
}
return tempBytes;
}
function concatStorage(bytes storage _preBytes, bytes memory _postBytes)
internal
{
assembly {
// Read the first 32 bytes of _preBytes storage, which is the length
// of the array. (We don't need to use the offset into the slot
// because arrays use the entire slot.)
let fslot := sload(_preBytes.slot)
// Arrays of 31 bytes or less have an even value in their slot,
// while longer arrays have an odd value. The actual length is
// the slot divided by two for odd values, and the lowest order
// byte divided by two for even values.
// If the slot is even, bitwise and the slot with 255 and divide by
// two to get the length. If the slot is odd, bitwise and the slot
// with -1 and divide by two.
let slength := div(
and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)),
2
)
let mlength := mload(_postBytes)
let newlength := add(slength, mlength)
// slength can contain both the length and contents of the array
// if length < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
switch add(lt(slength, 32), lt(newlength, 32))
case 2 {
// Since the new array still fits in the slot, we just need to
// update the contents of the slot.
// uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
sstore(
_preBytes.slot,
// all the modifications to the slot are inside this
// next block
add(
// we can just add to the slot contents because the
// bytes we want to change are the LSBs
fslot,
add(
mul(
div(
// load the bytes from memory
mload(add(_postBytes, 0x20)),
// zero all bytes to the right
exp(0x100, sub(32, mlength))
),
// and now shift left the number of bytes to
// leave space for the length in the slot
exp(0x100, sub(32, newlength))
),
// increase length by the double of the memory
// bytes length
mul(mlength, 2)
)
)
)
}
case 1 {
// The stored value fits in the slot, but the combined value
// will exceed it.
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
// save new length
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
// The contents of the _postBytes array start 32 bytes into
// the structure. Our first read should obtain the `submod`
// bytes that can fit into the unused space in the last word
// of the stored array. To get this, we read 32 bytes starting
// from `submod`, so the data we read overlaps with the array
// contents by `submod` bytes. Masking the lowest-order
// `submod` bytes allows us to add that value directly to the
// stored value.
let submod := sub(32, slength)
let mc := add(_postBytes, submod)
let end := add(_postBytes, mlength)
let mask := sub(exp(0x100, submod), 1)
sstore(
sc,
add(
and(
fslot,
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00
),
and(mload(mc), mask)
)
)
for {
mc := add(mc, 0x20)
sc := add(sc, 1)
} lt(mc, end) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
sstore(sc, mload(mc))
}
mask := exp(0x100, sub(mc, end))
sstore(sc, mul(div(mload(mc), mask), mask))
}
default {
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
// Start copying to the last used word of the stored array.
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
// save new length
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
// Copy over the first `submod` bytes of the new data as in
// case 1 above.
let slengthmod := mod(slength, 32)
let submod := sub(32, slengthmod)
let mc := add(_postBytes, submod)
let end := add(_postBytes, mlength)
let mask := sub(exp(0x100, submod), 1)
sstore(sc, add(sload(sc), and(mload(mc), mask)))
for {
sc := add(sc, 1)
mc := add(mc, 0x20)
} lt(mc, end) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
sstore(sc, mload(mc))
}
mask := exp(0x100, sub(mc, end))
sstore(sc, mul(div(mload(mc), mask), mask))
}
}
}
function indexOf(
bytes memory _bytes,
uint8 _e,
uint256 _start
) internal pure returns (uint256) {
while (_start < _bytes.length) {
if (toUint8(_bytes, _start) == _e) {
return _start;
}
_start += 1;
}
return _bytes.length;
}
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
) internal pure returns (bytes memory) {
require(_length + 31 >= _length, "slice_overflow");
require(_bytes.length >= _start + _length, "slice_outOfBounds");
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(
add(tempBytes, lengthmod),
mul(0x20, iszero(lengthmod))
)
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(
add(
add(_bytes, lengthmod),
mul(0x20, iszero(lengthmod))
),
_start
)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function toAddress(bytes memory _bytes, uint256 _start)
internal
pure
returns (address)
{
require(_bytes.length >= _start + 20, "toAddress_outOfBounds");
address tempAddress;
assembly {
tempAddress := div(
mload(add(add(_bytes, 0x20), _start)),
0x1000000000000000000000000
)
}
return tempAddress;
}
function toUint8(bytes memory _bytes, uint256 _start)
internal
pure
returns (uint8)
{
require(_bytes.length >= _start + 1, "toUint8_outOfBounds");
uint8 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x1), _start))
}
return tempUint;
}
function toUint16(bytes memory _bytes, uint256 _start)
internal
pure
returns (uint16)
{
require(_bytes.length >= _start + 2, "toUint16_outOfBounds");
uint16 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x2), _start))
}
return tempUint;
}
function toUint32(bytes memory _bytes, uint256 _start)
internal
pure
returns (uint32)
{
require(_bytes.length >= _start + 4, "toUint32_outOfBounds");
uint32 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x4), _start))
}
return tempUint;
}
function toUint64(bytes memory _bytes, uint256 _start)
internal
pure
returns (uint64)
{
require(_bytes.length >= _start + 8, "toUint64_outOfBounds");
uint64 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x8), _start))
}
return tempUint;
}
function toUint96(bytes memory _bytes, uint256 _start)
internal
pure
returns (uint96)
{
require(_bytes.length >= _start + 12, "toUint96_outOfBounds");
uint96 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0xc), _start))
}
return tempUint;
}
function toUint128(bytes memory _bytes, uint256 _start)
internal
pure
returns (uint128)
{
require(_bytes.length >= _start + 16, "toUint128_outOfBounds");
uint128 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x10), _start))
}
return tempUint;
}
function toUint256(bytes memory _bytes, uint256 _start)
internal
pure
returns (uint256)
{
require(_bytes.length >= _start + 32, "toUint256_outOfBounds");
uint256 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x20), _start))
}
return tempUint;
}
function toBytes32(bytes memory _bytes, uint256 _start)
internal
pure
returns (bytes32)
{
require(_bytes.length >= _start + 32, "toBytes32_outOfBounds");
bytes32 tempBytes32;
assembly {
tempBytes32 := mload(add(add(_bytes, 0x20), _start))
}
return tempBytes32;
}
function equal(bytes memory _preBytes, bytes memory _postBytes)
internal
pure
returns (bool)
{
bool success = true;
assembly {
let length := mload(_preBytes)
// if lengths don't match the arrays are not equal
switch eq(length, mload(_postBytes))
case 1 {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
let mc := add(_preBytes, 0x20)
let end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
// the next line is the loop condition:
// while(uint256(mc < end) + cb == 2)
} eq(add(lt(mc, end), cb), 2) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// if any of these checks fails then arrays are not equal
if iszero(eq(mload(mc), mload(cc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
function equalStorage(bytes storage _preBytes, bytes memory _postBytes)
internal
view
returns (bool)
{
bool success = true;
assembly {
// we know _preBytes_offset is 0
let fslot := sload(_preBytes.slot)
// Decode the length of the stored array like in concatStorage().
let slength := div(
and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)),
2
)
let mlength := mload(_postBytes)
// if lengths don't match the arrays are not equal
switch eq(slength, mlength)
case 1 {
// slength can contain both the length and contents of the array
// if length < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
if iszero(iszero(slength)) {
switch lt(slength, 32)
case 1 {
// blank the last byte which is the length
fslot := mul(div(fslot, 0x100), 0x100)
if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
// unsuccess:
success := 0
}
}
default {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := keccak256(0x0, 0x20)
let mc := add(_postBytes, 0x20)
let end := add(mc, mlength)
// the next line is the loop condition:
// while(uint256(mc < end) + cb == 2)
// solhint-disable-next-line no-empty-blocks
for {
} eq(add(lt(mc, end), cb), 2) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
if iszero(eq(sload(sc), mload(mc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
}
// Copyright (c) OmniBTC, Inc.
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.0;
library LibDecimals {
function fixAmountDecimals(uint256 amount, uint8 decimals)
internal
pure
returns (uint64)
{
uint64 fixedAmount;
if (decimals > 8) {
fixedAmount = uint64(amount / (10**(decimals - 8)));
} else if (decimals < 8) {
fixedAmount = uint64(amount * (10**(8 - decimals)));
} else {
fixedAmount = uint64(amount);
}
require(fixedAmount > 0, "Fixed amount too low");
return fixedAmount;
}
function restoreAmountDecimals(uint64 amount, uint8 decimals)
internal
pure
returns (uint256)
{
uint256 restoreAmount;
if (decimals > 8) {
restoreAmount = uint256(amount * (10**(decimals - 8)));
} else if (decimals < 8) {
restoreAmount = uint256(amount / (10**(8 - decimals)));
} else {
restoreAmount = uint256(amount);
}
return restoreAmount;
}
}
// Copyright (c) OmniBTC, Inc.
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.0;
import "LibBytes.sol";
library LibDolaTypes {
using LibBytes for bytes;
struct DolaAddress {
uint16 dolaChainId;
bytes externalAddress;
}
function addressToDolaAddress(uint16 chainId, address evmAddress)
internal
pure
returns (DolaAddress memory)
{
return DolaAddress(chainId, abi.encodePacked(evmAddress));
}
function dolaAddressToAddress(DolaAddress memory dolaAddress)
internal
pure
returns (address)
{
require(
dolaAddress.externalAddress.length == 20,
"Not normal evm address"
);
return dolaAddress.externalAddress.toAddress(0);
}
function encodeDolaAddress(uint16 dolaChainId, bytes memory externalAddress)
internal
pure
returns (bytes memory)
{
bytes memory payload = abi.encodePacked(dolaChainId, externalAddress);
return payload;
}
function decodeDolaAddress(bytes memory payload)
internal
pure
returns (DolaAddress memory)
{
uint256 length = payload.length;
uint256 index;
uint256 dataLen;
DolaAddress memory dolaAddress;
dataLen = 2;
dolaAddress.dolaChainId = payload.toUint16(index);
index += dataLen;
dolaAddress.externalAddress = payload.slice(index, length - dataLen);
return dolaAddress;
}
}
// Copyright (c) OmniBTC, Inc.
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.0;
import "LibBytes.sol";
import "LibDolaTypes.sol";
library LibSystemCodec {
using LibBytes for bytes;
uint8 internal constant BINDING = 0;
uint8 internal constant UNBINDING = 1;
struct SystemBindPayload {
uint16 sourceChainId;
uint64 nonce;
LibDolaTypes.DolaAddress userAddress;
uint8 callType;
}
/// Encode binding or unbinding
function encodeBindPayload(
uint16 sourceChainId,
uint64 nonce,
LibDolaTypes.DolaAddress memory binding,
uint8 systemCallType
) internal pure returns (bytes memory) {
bytes memory bindingAddress = LibDolaTypes.encodeDolaAddress(
binding.dolaChainId,
binding.externalAddress
);
bytes memory payload = abi.encodePacked(
sourceChainId,
nonce,
uint16(bindingAddress.length),
bindingAddress,
systemCallType
);
return payload;
}
/// Decode binding or unbinding
function decodeBindPayload(bytes memory payload)
internal
pure
returns (SystemBindPayload memory)
{
uint256 length = payload.length;
uint256 index;
uint256 dataLen;
SystemBindPayload memory decodeData;
dataLen = 2;
decodeData.sourceChainId = payload.toUint16(index);
index += dataLen;
dataLen = 8;
decodeData.nonce = payload.toUint64(index);
index += dataLen;
dataLen = 2;
uint16 userLength = payload.toUint16(index);
index += dataLen;
dataLen = userLength;
decodeData.userAddress = LibDolaTypes.decodeDolaAddress(
payload.slice(index, dataLen)
);
index += dataLen;
dataLen = 1;
decodeData.callType = payload.toUint8(index);
index += dataLen;
require(index == length, "INVALID LENGTH");
return decodeData;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "IERC20.sol";
import "Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// Copyright (c) OmniBTC, Inc.
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.0;
import "IERC20.sol";
import "IWormholeAdapterPool.sol";
import "LibSystemCodec.sol";
import "LibDecimals.sol";
import "LibDolaTypes.sol";
import "LibAsset.sol";
contract SystemPortal {
uint8 public constant SYSTEM_APP_ID = 0;
IWormholeAdapterPool public immutable wormholeAdapterPool;
event RelayEvent(
uint64 sequence,
uint64 nonce,
uint256 feeAmount,
uint16 appId,
uint8 callType
);
event SystemPortalEvent(
uint64 nonce,
address sender,
uint16 sourceChainId,
uint16 userChainId,
bytes userAddress,
uint8 callType
);
constructor(IWormholeAdapterPool _wormholeAdapterPool) {
wormholeAdapterPool = _wormholeAdapterPool;
}
function binding(
uint16 bindDolaChainId,
bytes memory bindAddress,
uint256 fee
) external payable {
uint64 nonce = IWormholeAdapterPool(wormholeAdapterPool).getNonce();
uint16 dolaChainId = wormholeAdapterPool.dolaChainId();
bytes memory appPayload = LibSystemCodec.encodeBindPayload(
bindDolaChainId,
nonce,
LibDolaTypes.DolaAddress(bindDolaChainId, bindAddress),
LibSystemCodec.BINDING
);
uint64 sequence = IWormholeAdapterPool(wormholeAdapterPool).sendMessage(
SYSTEM_APP_ID,
appPayload
);
address relayer = IWormholeAdapterPool(wormholeAdapterPool)
.getOneRelayer(nonce);
LibAsset.transferAsset(address(0), payable(relayer), fee);
emit RelayEvent(
sequence,
nonce,
fee,
SYSTEM_APP_ID,
LibSystemCodec.BINDING
);
emit SystemPortalEvent(
nonce,
msg.sender,
dolaChainId,
bindDolaChainId,
bindAddress,
LibSystemCodec.BINDING
);
}
function unbinding(
uint16 unbindDolaChainId,
bytes memory unbindAddress,
uint256 fee
) external payable {
uint64 nonce = IWormholeAdapterPool(wormholeAdapterPool).getNonce();
uint16 dolaChainId = wormholeAdapterPool.dolaChainId();
bytes memory appPayload = LibSystemCodec.encodeBindPayload(
unbindDolaChainId,
nonce,
LibDolaTypes.DolaAddress(unbindDolaChainId, unbindAddress),
LibSystemCodec.UNBINDING
);
uint64 sequence = IWormholeAdapterPool(wormholeAdapterPool).sendMessage(
SYSTEM_APP_ID,
appPayload
);
address relayer = IWormholeAdapterPool(wormholeAdapterPool)
.getOneRelayer(nonce);
LibAsset.transferAsset(address(0), payable(relayer), fee);
emit RelayEvent(
sequence,
nonce,
fee,
SYSTEM_APP_ID,
LibSystemCodec.UNBINDING
);
emit SystemPortalEvent(
nonce,
msg.sender,
dolaChainId,
unbindDolaChainId,
unbindAddress,
LibSystemCodec.UNBINDING
);
}
}
{
"compilationTarget": {
"System.sol": "SystemPortal"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"contract IWormholeAdapterPool","name":"_wormholeAdapterPool","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"sequence","type":"uint64"},{"indexed":false,"internalType":"uint64","name":"nonce","type":"uint64"},{"indexed":false,"internalType":"uint256","name":"feeAmount","type":"uint256"},{"indexed":false,"internalType":"uint16","name":"appId","type":"uint16"},{"indexed":false,"internalType":"uint8","name":"callType","type":"uint8"}],"name":"RelayEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"nonce","type":"uint64"},{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint16","name":"sourceChainId","type":"uint16"},{"indexed":false,"internalType":"uint16","name":"userChainId","type":"uint16"},{"indexed":false,"internalType":"bytes","name":"userAddress","type":"bytes"},{"indexed":false,"internalType":"uint8","name":"callType","type":"uint8"}],"name":"SystemPortalEvent","type":"event"},{"inputs":[],"name":"SYSTEM_APP_ID","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint16","name":"bindDolaChainId","type":"uint16"},{"internalType":"bytes","name":"bindAddress","type":"bytes"},{"internalType":"uint256","name":"fee","type":"uint256"}],"name":"binding","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint16","name":"unbindDolaChainId","type":"uint16"},{"internalType":"bytes","name":"unbindAddress","type":"bytes"},{"internalType":"uint256","name":"fee","type":"uint256"}],"name":"unbinding","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"wormholeAdapterPool","outputs":[{"internalType":"contract IWormholeAdapterPool","name":"","type":"address"}],"stateMutability":"view","type":"function"}]