/// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.0 ^0.8.23 ^0.8.4;
// lib/solady/src/utils/FixedPointMathLib.sol
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The operation failed, as the output exceeds the maximum value of uint256.
error ExpOverflow();
/// @dev The operation failed, as the output exceeds the maximum value of uint256.
error FactorialOverflow();
/// @dev The operation failed, due to an overflow.
error RPowOverflow();
/// @dev The mantissa is too big to fit.
error MantissaOverflow();
/// @dev The operation failed, due to an multiplication overflow.
error MulWadFailed();
/// @dev The operation failed, due to an multiplication overflow.
error SMulWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error DivWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error SDivWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error MulDivFailed();
/// @dev The division failed, as the denominator is zero.
error DivFailed();
/// @dev The full precision multiply-divide operation failed, either due
/// to the result being larger than 256 bits, or a division by a zero.
error FullMulDivFailed();
/// @dev The output is undefined, as the input is less-than-or-equal to zero.
error LnWadUndefined();
/// @dev The input outside the acceptable domain.
error OutOfDomain();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The scalar of ETH and most ERC20s.
uint256 internal constant WAD = 1e18;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* SIMPLIFIED FIXED POINT OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Equivalent to `(x * y) / WAD` rounded down.
function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
if mul(y, gt(x, div(not(0), y))) {
mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
revert(0x1c, 0x04)
}
z := div(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down.
function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
revert(0x1c, 0x04)
}
z := sdiv(z, WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded up.
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
if mul(y, gt(x, div(not(0), y))) {
mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down.
function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
revert(0x1c, 0x04)
}
z := div(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down.
function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, WAD)
// Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
if iszero(and(iszero(iszero(y)), eq(sdiv(z, WAD), x))) {
mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
revert(0x1c, 0x04)
}
z := sdiv(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded up.
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
}
}
/// @dev Equivalent to `x` to the power of `y`.
/// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
function powWad(int256 x, int256 y) internal pure returns (int256) {
// Using `ln(x)` means `x` must be greater than 0.
return expWad((lnWad(x) * y) / int256(WAD));
}
/// @dev Returns `exp(x)`, denominated in `WAD`.
/// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
function expWad(int256 x) internal pure returns (int256 r) {
unchecked {
// When the result is less than 0.5 we return zero.
// This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
if (x <= -41446531673892822313) return r;
/// @solidity memory-safe-assembly
assembly {
// When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
// an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
if iszero(slt(x, 135305999368893231589)) {
mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
revert(0x1c, 0x04)
}
}
// `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
// for more intermediate precision and a binary basis. This base conversion
// is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
x = (x << 78) / 5 ** 18;
// Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
// of two such that exp(x) = exp(x') * 2**k, where k is an integer.
// Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
x = x - k * 54916777467707473351141471128;
// `k` is in the range `[-61, 195]`.
// Evaluate using a (6, 7)-term rational approximation.
// `p` is made monic, we'll multiply by a scale factor later.
int256 y = x + 1346386616545796478920950773328;
y = ((y * x) >> 96) + 57155421227552351082224309758442;
int256 p = y + x - 94201549194550492254356042504812;
p = ((p * y) >> 96) + 28719021644029726153956944680412240;
p = p * x + (4385272521454847904659076985693276 << 96);
// We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
int256 q = x - 2855989394907223263936484059900;
q = ((q * x) >> 96) + 50020603652535783019961831881945;
q = ((q * x) >> 96) - 533845033583426703283633433725380;
q = ((q * x) >> 96) + 3604857256930695427073651918091429;
q = ((q * x) >> 96) - 14423608567350463180887372962807573;
q = ((q * x) >> 96) + 26449188498355588339934803723976023;
/// @solidity memory-safe-assembly
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial won't have zeros in the domain as all its roots are complex.
// No scaling is necessary because p is already `2**96` too large.
r := sdiv(p, q)
}
// r should be in the range `(0.09, 0.25) * 2**96`.
// We now need to multiply r by:
// - The scale factor `s ≈ 6.031367120`.
// - The `2**k` factor from the range reduction.
// - The `1e18 / 2**96` factor for base conversion.
// We do this all at once, with an intermediate result in `2**213`
// basis, so the final right shift is always by a positive amount.
r = int256(
(uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
);
}
}
/// @dev Returns `ln(x)`, denominated in `WAD`.
/// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
function lnWad(int256 x) internal pure returns (int256 r) {
/// @solidity memory-safe-assembly
assembly {
// We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
// We do this by multiplying by `2**96 / 10**18`. But since
// `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
// and add `ln(2**96 / 10**18)` at the end.
// Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// We place the check here for more optimal stack operations.
if iszero(sgt(x, 0)) {
mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
revert(0x1c, 0x04)
}
// forgefmt: disable-next-item
r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))
// Reduce range of x to (1, 2) * 2**96
// ln(2^k * x) = k * ln(2) + ln(x)
x := shr(159, shl(r, x))
// Evaluate using a (8, 8)-term rational approximation.
// `p` is made monic, we will multiply by a scale factor later.
// forgefmt: disable-next-item
let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
sar(96, mul(add(43456485725739037958740375743393,
sar(96, mul(add(24828157081833163892658089445524,
sar(96, mul(add(3273285459638523848632254066296,
x), x))), x))), x)), 11111509109440967052023855526967)
p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
// We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
// `q` is monic by convention.
let q := add(5573035233440673466300451813936, x)
q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
q := add(909429971244387300277376558375, sar(96, mul(x, q)))
// `p / q` is in the range `(0, 0.125) * 2**96`.
// Finalization, we need to:
// - Multiply by the scale factor `s = 5.549…`.
// - Add `ln(2**96 / 10**18)`.
// - Add `k * ln(2)`.
// - Multiply by `10**18 / 2**96 = 5**18 >> 78`.
// The q polynomial is known not to have zeros in the domain.
// No scaling required because p is already `2**96` too large.
p := sdiv(p, q)
// Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
p := mul(1677202110996718588342820967067443963516166, p)
// Add `ln(2) * k * 5**18 * 2**192`.
// forgefmt: disable-next-item
p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
// Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
// Base conversion: mul `2**18 / 2**192`.
r := sar(174, p)
}
}
/// @dev Returns `W_0(x)`, denominated in `WAD`.
/// See: https://en.wikipedia.org/wiki/Lambert_W_function
/// a.k.a. Product log function. This is an approximation of the principal branch.
function lambertW0Wad(int256 x) internal pure returns (int256 w) {
// forgefmt: disable-next-item
unchecked {
if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
int256 wad = int256(WAD);
int256 p = x;
uint256 c; // Whether we need to avoid catastrophic cancellation.
uint256 i = 4; // Number of iterations.
if (w <= 0x1ffffffffffff) {
if (-0x4000000000000 <= w) {
i = 1; // Inputs near zero only take one step to converge.
} else if (w <= -0x3ffffffffffffff) {
i = 32; // Inputs near `-1/e` take very long to converge.
}
} else if (w >> 63 == 0) {
/// @solidity memory-safe-assembly
assembly {
// Inline log2 for more performance, since the range is small.
let v := shr(49, w)
let l := shl(3, lt(0xff, v))
l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
c := gt(l, 60)
i := add(2, add(gt(l, 53), c))
}
} else {
int256 ll = lnWad(w = lnWad(w));
/// @solidity memory-safe-assembly
assembly {
// `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
i := add(3, iszero(shr(68, x)))
c := iszero(shr(143, x))
}
if (c == 0) {
do { // If `x` is big, use Newton's so that intermediate values won't overflow.
int256 e = expWad(w);
/// @solidity memory-safe-assembly
assembly {
let t := mul(w, div(e, wad))
w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
}
if (p <= w) break;
p = w;
} while (--i != 0);
/// @solidity memory-safe-assembly
assembly {
w := sub(w, sgt(w, 2))
}
return w;
}
}
do { // Otherwise, use Halley's for faster convergence.
int256 e = expWad(w);
/// @solidity memory-safe-assembly
assembly {
let t := add(w, wad)
let s := sub(mul(w, e), mul(x, wad))
w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
}
if (p <= w) break;
p = w;
} while (--i != c);
/// @solidity memory-safe-assembly
assembly {
w := sub(w, sgt(w, 2))
}
// For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
// R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
if (c != 0) {
int256 t = w | 1;
/// @solidity memory-safe-assembly
assembly {
x := sdiv(mul(x, wad), t)
}
x = (t * (wad + lnWad(x)));
/// @solidity memory-safe-assembly
assembly {
w := sdiv(x, add(wad, t))
}
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* GENERAL NUMBER UTILITIES */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Calculates `floor(x * y / d)` with full precision.
/// Throws if result overflows a uint256 or when `d` is zero.
/// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
for {} 1 {} {
// 512-bit multiply `[p1 p0] = x * y`.
// Compute the product mod `2**256` and mod `2**256 - 1`
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that `product = p1 * 2**256 + p0`.
// Least significant 256 bits of the product.
result := mul(x, y) // Temporarily use `result` as `p0` to save gas.
let mm := mulmod(x, y, not(0))
// Most significant 256 bits of the product.
let p1 := sub(mm, add(result, lt(mm, result)))
// Handle non-overflow cases, 256 by 256 division.
if iszero(p1) {
if iszero(d) {
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
result := div(result, d)
break
}
// Make sure the result is less than `2**256`. Also prevents `d == 0`.
if iszero(gt(d, p1)) {
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
/*------------------- 512 by 256 division --------------------*/
// Make division exact by subtracting the remainder from `[p1 p0]`.
// Compute remainder using mulmod.
let r := mulmod(x, y, d)
// `t` is the least significant bit of `d`.
// Always greater or equal to 1.
let t := and(d, sub(0, d))
// Divide `d` by `t`, which is a power of two.
d := div(d, t)
// Invert `d mod 2**256`
// Now that `d` is an odd number, it has an inverse
// modulo `2**256` such that `d * inv = 1 mod 2**256`.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, `d * inv = 1 mod 2**4`.
let inv := xor(2, mul(3, d))
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
result :=
mul(
// Divide [p1 p0] by the factors of two.
// Shift in bits from `p1` into `p0`. For this we need
// to flip `t` such that it is `2**256 / t`.
or(
mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)),
div(sub(result, r), t)
),
// inverse mod 2**256
mul(inv, sub(2, mul(d, inv)))
)
break
}
}
}
/// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
/// Throws if result overflows a uint256 or when `d` is zero.
/// Credit to Uniswap-v3-core under MIT license:
/// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
result = fullMulDiv(x, y, d);
/// @solidity memory-safe-assembly
assembly {
if mulmod(x, y, d) {
result := add(result, 1)
if iszero(result) {
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
}
}
}
/// @dev Returns `floor(x * y / d)`.
/// Reverts if `x * y` overflows, or `d` is zero.
function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) {
mstore(0x00, 0xad251c27) // `MulDivFailed()`.
revert(0x1c, 0x04)
}
z := div(mul(x, y), d)
}
}
/// @dev Returns `ceil(x * y / d)`.
/// Reverts if `x * y` overflows, or `d` is zero.
function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) {
mstore(0x00, 0xad251c27) // `MulDivFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(mul(x, y), d))), div(mul(x, y), d))
}
}
/// @dev Returns `ceil(x / d)`.
/// Reverts if `d` is zero.
function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
if iszero(d) {
mstore(0x00, 0x65244e4e) // `DivFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(x, d))), div(x, d))
}
}
/// @dev Returns `max(0, x - y)`.
function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(gt(x, y), sub(x, y))
}
}
/// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
/// Reverts if the computation overflows.
function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
if x {
z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
let half := shr(1, b) // Divide `b` by 2.
// Divide `y` by 2 every iteration.
for { y := shr(1, y) } y { y := shr(1, y) } {
let xx := mul(x, x) // Store x squared.
let xxRound := add(xx, half) // Round to the nearest number.
// Revert if `xx + half` overflowed, or if `x ** 2` overflows.
if or(lt(xxRound, xx), shr(128, x)) {
mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
revert(0x1c, 0x04)
}
x := div(xxRound, b) // Set `x` to scaled `xxRound`.
// If `y` is odd:
if and(y, 1) {
let zx := mul(z, x) // Compute `z * x`.
let zxRound := add(zx, half) // Round to the nearest number.
// If `z * x` overflowed or `zx + half` overflowed:
if or(xor(div(zx, x), z), lt(zxRound, zx)) {
// Revert if `x` is non-zero.
if iszero(iszero(x)) {
mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
revert(0x1c, 0x04)
}
}
z := div(zxRound, b) // Return properly scaled `zxRound`.
}
}
}
}
}
/// @dev Returns the square root of `x`.
function sqrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
// but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffffff, shr(r, x))))
z := shl(shr(1, r), z)
// Goal was to get `z*z*y` within a small factor of `x`. More iterations could
// get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
// We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
// That's not possible if `x < 256` but we can just verify those cases exhaustively.
// Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
// Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
// Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.
// For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
// is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
// with largest error when `s = 1` and when `s = 256` or `1/256`.
// Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
// Then we can estimate `sqrt(y)` using
// `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.
// There is no overflow risk here since `y < 2**136` after the first branch above.
z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If `x+1` is a perfect square, the Babylonian method cycles between
// `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
z := sub(z, lt(div(x, z), z))
}
}
/// @dev Returns the cube root of `x`.
/// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
/// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
function cbrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := sub(z, lt(div(x, mul(z, z)), z))
}
}
/// @dev Returns the square root of `x`, denominated in `WAD`.
function sqrtWad(uint256 x) internal pure returns (uint256 z) {
unchecked {
z = 10 ** 9;
if (x <= type(uint256).max / 10 ** 36 - 1) {
x *= 10 ** 18;
z = 1;
}
z *= sqrt(x);
}
}
/// @dev Returns the cube root of `x`, denominated in `WAD`.
function cbrtWad(uint256 x) internal pure returns (uint256 z) {
unchecked {
z = 10 ** 12;
if (x <= (type(uint256).max / 10 ** 36) * 10 ** 18 - 1) {
if (x >= type(uint256).max / 10 ** 36) {
x *= 10 ** 18;
z = 10 ** 6;
} else {
x *= 10 ** 36;
z = 1;
}
}
z *= cbrt(x);
}
}
/// @dev Returns the factorial of `x`.
function factorial(uint256 x) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
if iszero(lt(x, 58)) {
mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
revert(0x1c, 0x04)
}
for { result := 1 } x { x := sub(x, 1) } { result := mul(result, x) }
}
}
/// @dev Returns the log2 of `x`.
/// Equivalent to computing the index of the most significant bit (MSB) of `x`.
/// Returns 0 if `x` is zero.
function log2(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0x0706060506020504060203020504030106050205030304010505030400000000))
}
}
/// @dev Returns the log2 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log2Up(uint256 x) internal pure returns (uint256 r) {
r = log2(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(shl(r, 1), x))
}
}
/// @dev Returns the log10 of `x`.
/// Returns 0 if `x` is zero.
function log10(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
if iszero(lt(x, 100000000000000000000000000000000000000)) {
x := div(x, 100000000000000000000000000000000000000)
r := 38
}
if iszero(lt(x, 100000000000000000000)) {
x := div(x, 100000000000000000000)
r := add(r, 20)
}
if iszero(lt(x, 10000000000)) {
x := div(x, 10000000000)
r := add(r, 10)
}
if iszero(lt(x, 100000)) {
x := div(x, 100000)
r := add(r, 5)
}
r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
}
}
/// @dev Returns the log10 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log10Up(uint256 x) internal pure returns (uint256 r) {
r = log10(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(exp(10, r), x))
}
}
/// @dev Returns the log256 of `x`.
/// Returns 0 if `x` is zero.
function log256(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(shr(3, r), lt(0xff, shr(r, x)))
}
}
/// @dev Returns the log256 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log256Up(uint256 x) internal pure returns (uint256 r) {
r = log256(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(shl(shl(3, r), 1), x))
}
}
/// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
/// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
/// @solidity memory-safe-assembly
assembly {
mantissa := x
if mantissa {
if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
mantissa := div(mantissa, 1000000000000000000000000000000000)
exponent := 33
}
if iszero(mod(mantissa, 10000000000000000000)) {
mantissa := div(mantissa, 10000000000000000000)
exponent := add(exponent, 19)
}
if iszero(mod(mantissa, 1000000000000)) {
mantissa := div(mantissa, 1000000000000)
exponent := add(exponent, 12)
}
if iszero(mod(mantissa, 1000000)) {
mantissa := div(mantissa, 1000000)
exponent := add(exponent, 6)
}
if iszero(mod(mantissa, 10000)) {
mantissa := div(mantissa, 10000)
exponent := add(exponent, 4)
}
if iszero(mod(mantissa, 100)) {
mantissa := div(mantissa, 100)
exponent := add(exponent, 2)
}
if iszero(mod(mantissa, 10)) {
mantissa := div(mantissa, 10)
exponent := add(exponent, 1)
}
}
}
}
/// @dev Convenience function for packing `x` into a smaller number using `sci`.
/// The `mantissa` will be in bits [7..255] (the upper 249 bits).
/// The `exponent` will be in bits [0..6] (the lower 7 bits).
/// Use `SafeCastLib` to safely ensure that the `packed` number is small
/// enough to fit in the desired unsigned integer type:
/// ```
/// uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
/// ```
function packSci(uint256 x) internal pure returns (uint256 packed) {
(x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
/// @solidity memory-safe-assembly
assembly {
if shr(249, x) {
mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
revert(0x1c, 0x04)
}
packed := or(shl(7, x), packed)
}
}
/// @dev Convenience function for unpacking a packed number from `packSci`.
function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
unchecked {
unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
}
}
/// @dev Returns the average of `x` and `y`.
function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = (x & y) + ((x ^ y) >> 1);
}
}
/// @dev Returns the average of `x` and `y`.
function avg(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = (x >> 1) + (y >> 1) + (x & y & 1);
}
}
/// @dev Returns the absolute value of `x`.
function abs(int256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(sub(0, shr(255, x)), add(sub(0, shr(255, x)), x))
}
}
/// @dev Returns the absolute distance between `x` and `y`.
function dist(int256 x, int256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(mul(xor(sub(y, x), sub(x, y)), sgt(x, y)), sub(y, x))
}
}
/// @dev Returns the minimum of `x` and `y`.
function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), lt(y, x)))
}
}
/// @dev Returns the minimum of `x` and `y`.
function min(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), slt(y, x)))
}
}
/// @dev Returns the maximum of `x` and `y`.
function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), gt(y, x)))
}
}
/// @dev Returns the maximum of `x` and `y`.
function max(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), sgt(y, x)))
}
}
/// @dev Returns `x`, bounded to `minValue` and `maxValue`.
function clamp(uint256 x, uint256 minValue, uint256 maxValue)
internal
pure
returns (uint256 z)
{
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
}
}
/// @dev Returns `x`, bounded to `minValue` and `maxValue`.
function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
}
}
/// @dev Returns greatest common divisor of `x` and `y`.
function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
for { z := x } y {} {
let t := y
y := mod(z, y)
z := t
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RAW NUMBER OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns `x + y`, without checking for overflow.
function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x + y;
}
}
/// @dev Returns `x + y`, without checking for overflow.
function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x + y;
}
}
/// @dev Returns `x - y`, without checking for underflow.
function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x - y;
}
}
/// @dev Returns `x - y`, without checking for underflow.
function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x - y;
}
}
/// @dev Returns `x * y`, without checking for overflow.
function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x * y;
}
}
/// @dev Returns `x * y`, without checking for overflow.
function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x * y;
}
}
/// @dev Returns `x / y`, returning 0 if `y` is zero.
function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(x, y)
}
}
/// @dev Returns `x / y`, returning 0 if `y` is zero.
function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(x, y)
}
}
/// @dev Returns `x % y`, returning 0 if `y` is zero.
function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mod(x, y)
}
}
/// @dev Returns `x % y`, returning 0 if `y` is zero.
function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := smod(x, y)
}
}
/// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := addmod(x, y, d)
}
}
/// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mulmod(x, y, d)
}
}
}
// lib/solmate/src/tokens/ERC20.sol
/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
/*//////////////////////////////////////////////////////////////
METADATA STORAGE
//////////////////////////////////////////////////////////////*/
string public name;
string public symbol;
uint8 public immutable decimals;
/*//////////////////////////////////////////////////////////////
ERC20 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 public totalSupply;
mapping(address => uint256) public balanceOf;
mapping(address => mapping(address => uint256)) public allowance;
/*//////////////////////////////////////////////////////////////
EIP-2612 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 internal immutable INITIAL_CHAIN_ID;
bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
mapping(address => uint256) public nonces;
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(
string memory _name,
string memory _symbol,
uint8 _decimals
) {
name = _name;
symbol = _symbol;
decimals = _decimals;
INITIAL_CHAIN_ID = block.chainid;
INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
}
/*//////////////////////////////////////////////////////////////
ERC20 LOGIC
//////////////////////////////////////////////////////////////*/
function approve(address spender, uint256 amount) public virtual returns (bool) {
allowance[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function transfer(address to, uint256 amount) public virtual returns (bool) {
balanceOf[msg.sender] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(msg.sender, to, amount);
return true;
}
function transferFrom(
address from,
address to,
uint256 amount
) public virtual returns (bool) {
uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
balanceOf[from] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(from, to, amount);
return true;
}
/*//////////////////////////////////////////////////////////////
EIP-2612 LOGIC
//////////////////////////////////////////////////////////////*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
// Unchecked because the only math done is incrementing
// the owner's nonce which cannot realistically overflow.
unchecked {
address recoveredAddress = ecrecover(
keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR(),
keccak256(
abi.encode(
keccak256(
"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
),
owner,
spender,
value,
nonces[owner]++,
deadline
)
)
)
),
v,
r,
s
);
require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
allowance[recoveredAddress][spender] = value;
}
emit Approval(owner, spender, value);
}
function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
}
function computeDomainSeparator() internal view virtual returns (bytes32) {
return
keccak256(
abi.encode(
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
keccak256(bytes(name)),
keccak256("1"),
block.chainid,
address(this)
)
);
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(address to, uint256 amount) internal virtual {
totalSupply += amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(address(0), to, amount);
}
function _burn(address from, uint256 amount) internal virtual {
balanceOf[from] -= amount;
// Cannot underflow because a user's balance
// will never be larger than the total supply.
unchecked {
totalSupply -= amount;
}
emit Transfer(from, address(0), amount);
}
}
// src/libraries/MEME20Constant.sol
library MEME20Constant {
/// @dev Total supply of the Meme token
uint256 internal constant TOKEN_TOTAL_SUPPLY = 10_000_000_000 ether;
/// @dev Token decimals
uint8 internal constant TOKEN_DECIMALS = 18;
uint256 internal constant MAX_CREATOR_FEE_BPS = 80;
uint256 internal constant MAX_PROTOCOL_FEE_BPS = 50;
}
// src/types/MEME20.sol
/// @title ERC20 memecoin created by Trugly
/// @notice Contract automatically generated by https://www.trugly.meme
contract MEME20 is ERC20 {
using FixedPointMathLib for uint256;
/* ¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯*/
/* EVENTS */
/* ¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯*/
event CreatorFeesUpdated(uint256 oldFeesBps, uint256 newFeesBps);
event ProtocolFeesUpdated(uint256 oldFeesBps, uint256 newFeesBps);
event CreatorAddressUpdated(address oldCreator, address newCreator);
event ProtocolAddressUpdated(address oldProtocol, address newProtocol);
event TreasuryUpdated(address oldTreasury, address newTreasury);
event PoolOrRouterAdded(address indexed account);
event ExemptAdded(address indexed account);
/* ¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯*/
/* ERRORS */
/* ¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯*/
error OnlyCreator();
error OnlyProtocol();
error CreatorFeeTooHigh();
error ProtocolFeeTooHigh();
error AddressZero();
error AlreadyInitialized();
error PoolNotInitialized();
/* ¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯*/
/* STORAGE */
/* ¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯*/
bool private _initialized;
address public creator;
address private _protocol;
address private _pTreasury;
uint256 public feeBps;
uint256 private _pFeesBps;
mapping(address => bool) private _exemptFees;
mapping(address => bool) private _routersAndPools;
modifier onlyCreator() {
if (msg.sender != creator) revert OnlyCreator();
_;
}
modifier onlyProtocol() {
if (msg.sender != _protocol) revert OnlyProtocol();
_;
}
constructor(string memory _name, string memory _symbol, address _memeception, address _creator)
ERC20(_name, _symbol, MEME20Constant.TOKEN_DECIMALS)
{
// Set Creator
creator = _creator;
// Set Temporarily to TruglyMemeception (will be transfer to protocol after deployment and setting routers & pools)
_protocol = _memeception;
// Exempt
_addExempt(_memeception);
_addExempt(_creator);
_addExempt(address(this));
_addExempt(address(0));
// Mint to Launchpad
_mint(_memeception, MEME20Constant.TOKEN_TOTAL_SUPPLY);
}
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
if (amount == 0) return super.transferFrom(from, to, 0);
amount = _transferFees(from, to, amount, true);
return super.transferFrom(from, to, amount);
}
function transfer(address to, uint256 amount) public virtual override returns (bool) {
if (amount == 0) return super.transfer(to, 0);
amount = _transferFees(msg.sender, to, amount, false);
return super.transfer(to, amount);
}
function _transferFees(address from, address to, uint256 amount, bool isTransferFrom) internal returns (uint256) {
/// @dev Forbid trading until UniV3 LP is initialized
if (!_initialized && msg.sender != _protocol) revert PoolNotInitialized();
// @dev skip to avoid double fees;
bool skip = _routersAndPools[from] && _routersAndPools[to];
if (!_exemptFees[from] && !_exemptFees[to] && !skip && _routersAndPools[from]) {
uint256 feesCreator = amount.mulDiv(feeBps, 1e4);
uint256 feesProtocol = amount.mulDiv(_pFeesBps, 1e4);
amount = amount - feesCreator - feesProtocol;
if (isTransferFrom) {
if (feesCreator > 0) super.transferFrom(from, creator, feesCreator);
if (feesProtocol > 0) super.transferFrom(from, _pTreasury, feesProtocol);
} else {
if (feesCreator > 0) super.transfer(creator, feesCreator);
if (feesProtocol > 0) super.transfer(_pTreasury, feesProtocol);
}
}
return amount;
}
function isExempt(address account) public view returns (bool) {
return _exemptFees[account];
}
function isPoolOrRouter(address account) public view returns (bool) {
return _routersAndPools[account];
}
function addPoolOrRouter(address _contract) public onlyCreator {
_addPoolOrRouter(_contract);
}
function _addPoolOrRouter(address _contract) internal {
_routersAndPools[_contract] = true;
emit PoolOrRouterAdded(_contract);
}
function addExempt(address _contract) public onlyCreator {
_addExempt(_contract);
}
function _addExempt(address _contract) internal {
_exemptFees[_contract] = true;
emit ExemptAdded(_contract);
}
function setCreatorFeeBps(uint256 _newFeeBps) public onlyCreator {
if (_newFeeBps > MEME20Constant.MAX_CREATOR_FEE_BPS) revert CreatorFeeTooHigh();
emit CreatorFeesUpdated(feeBps, _newFeeBps);
feeBps = _newFeeBps;
}
function setCreatorAddress(address _creator) public onlyCreator {
emit CreatorAddressUpdated(creator, _creator);
creator = _creator;
}
function setProtocolFeeBps(uint256 _newFeeBps) public onlyProtocol {
if (_newFeeBps > MEME20Constant.MAX_PROTOCOL_FEE_BPS) revert ProtocolFeeTooHigh();
emit ProtocolFeesUpdated(_pFeesBps, _newFeeBps);
_pFeesBps = _newFeeBps;
}
function setProtocolAddress(address _protocolAddress) public onlyProtocol {
if (_protocolAddress == address(0)) revert AddressZero();
emit ProtocolAddressUpdated(_protocol, _protocolAddress);
_protocol = _protocolAddress;
}
function setTreasuryAddress(address _treasury) public onlyProtocol {
if (_treasury == address(0)) revert AddressZero();
emit TreasuryUpdated(_pTreasury, _treasury);
_pTreasury = _treasury;
}
function initialize(
address _protocolAddr,
address _protocolTreasury,
uint256 _protocolFeesBps,
uint256 _creatorFeesBps,
address _pool,
address[] calldata _routers,
address[] calldata _exemptsAddr
) public onlyProtocol {
if (_initialized) revert AlreadyInitialized();
_initialized = true;
feeBps = _creatorFeesBps;
// Set Protocol
_pFeesBps = _protocolFeesBps;
_pTreasury = _protocolTreasury;
_addExempt(_pTreasury);
_addExempt(_protocolAddr);
// Uniswap
for (uint256 i = 0; i < _routers.length; i++) {
_addPoolOrRouter(_routers[i]);
}
_addPoolOrRouter(_pool);
for (uint256 i = 0; i < _exemptsAddr.length; i++) {
_addExempt(_exemptsAddr[i]);
}
// Transfer to Protocol
setProtocolAddress(_protocolAddr);
}
}
{
"compilationTarget": {
"MEME20.sol": "MEME20"
},
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 1
},
"remappings": []
}
[{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"address","name":"_memeception","type":"address"},{"internalType":"address","name":"_creator","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AddressZero","type":"error"},{"inputs":[],"name":"AlreadyInitialized","type":"error"},{"inputs":[],"name":"CreatorFeeTooHigh","type":"error"},{"inputs":[],"name":"OnlyCreator","type":"error"},{"inputs":[],"name":"OnlyProtocol","type":"error"},{"inputs":[],"name":"PoolNotInitialized","type":"error"},{"inputs":[],"name":"ProtocolFeeTooHigh","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldCreator","type":"address"},{"indexed":false,"internalType":"address","name":"newCreator","type":"address"}],"name":"CreatorAddressUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldFeesBps","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newFeesBps","type":"uint256"}],"name":"CreatorFeesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"ExemptAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"PoolOrRouterAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldProtocol","type":"address"},{"indexed":false,"internalType":"address","name":"newProtocol","type":"address"}],"name":"ProtocolAddressUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldFeesBps","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newFeesBps","type":"uint256"}],"name":"ProtocolFeesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldTreasury","type":"address"},{"indexed":false,"internalType":"address","name":"newTreasury","type":"address"}],"name":"TreasuryUpdated","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_contract","type":"address"}],"name":"addExempt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_contract","type":"address"}],"name":"addPoolOrRouter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"creator","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeBps","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_protocolAddr","type":"address"},{"internalType":"address","name":"_protocolTreasury","type":"address"},{"internalType":"uint256","name":"_protocolFeesBps","type":"uint256"},{"internalType":"uint256","name":"_creatorFeesBps","type":"uint256"},{"internalType":"address","name":"_pool","type":"address"},{"internalType":"address[]","name":"_routers","type":"address[]"},{"internalType":"address[]","name":"_exemptsAddr","type":"address[]"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isExempt","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isPoolOrRouter","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_creator","type":"address"}],"name":"setCreatorAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_newFeeBps","type":"uint256"}],"name":"setCreatorFeeBps","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_protocolAddress","type":"address"}],"name":"setProtocolAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_newFeeBps","type":"uint256"}],"name":"setProtocolFeeBps","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_treasury","type":"address"}],"name":"setTreasuryAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]