账户
0xb6...aef3
0xB6...aEf3

0xB6...aEf3

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.23+commit.f704f362
语言
Solidity
合同源代码
文件 1 的 28:Allowlist.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

import {LibBitmap} from "solady/src/utils/LibBitmap.sol";
import {MerkleProof} from "openzeppelin/contracts/utils/cryptography/MerkleProof.sol";

/**
 * @title Allowlist
 * @author fx(hash)
 * @notice Extension for claiming tokens through merkle trees
 */
abstract contract Allowlist {
    /*//////////////////////////////////////////////////////////////////////////
                                    EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @notice Event emitted when allowlist slot is claimed
     * @param _token Address of the token
     * @param _reserveId ID of the reserve
     * @param _claimer Address of the claimer
     * @param _index Index of purchase info inside the BitMap
     */
    event SlotClaimed(address indexed _token, uint256 indexed _reserveId, address indexed _claimer, uint256 _index);

    /*//////////////////////////////////////////////////////////////////////////
                                    ERRORS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @notice Error thrown when the merkle proof for an index is invalid
     */
    error InvalidProof();

    /**
     * @notice Error thrown when an index in the merkle tree has already been claimed
     */
    error SlotAlreadyClaimed();

    /*//////////////////////////////////////////////////////////////////////////
                                INTERNAL FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @dev Claims a merkle tree slot
     * @param _token Address of the token contract
     * @param _reserveId ID of the reserve
     * @param _index Index in the merkle tree
     * @param _claimer Address of allowlist slot claimer
     * @param _proof Merkle proof used for validating claim
     * @param _bitmap Bitmap used for checking if index is already claimed
     */
    function _claimSlot(
        address _token,
        uint256 _reserveId,
        uint256 _index,
        address _claimer,
        bytes32[] memory _proof,
        LibBitmap.Bitmap storage _bitmap
    ) internal {
        if (LibBitmap.get(_bitmap, _index)) revert SlotAlreadyClaimed();
        bytes32 root = _getMerkleRoot(_token, _reserveId);
        bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(_index, _claimer))));
        if (!MerkleProof.verify(_proof, root, leaf)) revert InvalidProof();
        LibBitmap.set(_bitmap, _index);

        emit SlotClaimed(_token, _reserveId, _claimer, _index);
    }

    /**
     * @dev Gets the merkle root of a token reserve
     * @param _token Address of the token contract
     * @param _reserveId ID of the reserve
     */
    function _getMerkleRoot(address _token, uint256 _reserveId) internal view virtual returns (bytes32);
}
合同源代码
文件 2 的 28:Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

/*//////////////////////////////////////////////////////////////////////////
                                CONSTANTS
//////////////////////////////////////////////////////////////////////////*/

// Core
string constant FX_CONTRACT_REGISTRY = "FX_CONTRACT_REGISTRY";
string constant FX_GEN_ART_721 = "FX_GEN_ART_721";
string constant FX_ISSUER_FACTORY = "FX_ISSUER_FACTORY";
string constant FX_MINT_TICKET_721 = "FX_MINT_TICKET_721";
string constant FX_ROLE_REGISTRY = "FX_ROLE_REGISTRY";
string constant FX_TICKET_FACTORY = "FX_TICKET_FACTORY";

// Periphery
string constant DUTCH_AUCTION = "DUTCH_AUCTION";
string constant FIXED_PRICE = "FIXED_PRICE";
string constant ONCHFS_RENDERER = "ONCHFS_RENDERER";
string constant IPFS_RENDERER = "IPFS_RENDERER";
string constant PSEUDO_RANDOMIZER = "PSEUDO_RANDOMIZER";
string constant TICKET_REDEEMER = "TICKET_REDEEMER";

// EIP-712
bytes32 constant CLAIM_TYPEHASH = keccak256(
    "Claim(address token,uint256 reserveId,uint96 nonce,uint256 index,address user)"
);
bytes32 constant SET_ONCHAIN_POINTER_TYPEHASH = keccak256("SetOnchainPointer(bytes onchainData,uint96 nonce)");
bytes32 constant SET_PRIMARY_RECEIVER_TYPEHASH = keccak256("SetPrimaryReceiver(address receiver,uint96 nonce)");
bytes32 constant SET_RENDERER_TYPEHASH = keccak256("SetRenderer(address renderer,uint96 nonce)");

// IPFS
bytes constant IPFS_URL = hex"697066733a2f2f172c151325290607391d2c391b242225180a020b291b260929391d1b31222525202804120031280917120b280400";
string constant IPFS_PREFIX = "ipfs://";

// Metadata
string constant API_VERSION = "0.2";
string constant ATTRIBUTES_ENDPOINT = "/attributes.json";
string constant METADATA_ENDPOINT = "/metadata.json";
string constant THUMBNAIL_ENDPOINT = "/thumbnail.json";

// ONCHFS
string constant FX_HASH_QUERY = "/?fxhash=";
string constant FX_PARAMS_QUERY = "#0x";
string constant ITERATION_QUERY = "&fxiteration=";
string constant MINTER_QUERY = "&fxminter=";
string constant ONCHFS_PREFIX = "onchfs://";

// Minters
uint8 constant UNINITIALIZED = 0;
uint8 constant FALSE = 1;
uint8 constant TRUE = 2;

// Project
uint32 constant LOCK_TIME = 3600; // 1 hour
uint64 constant TIME_UNLIMITED = type(uint64).max;
uint120 constant OPEN_EDITION_SUPPLY = type(uint120).max;
uint256 constant LAUNCH_TIMESTAMP = 1702558800; // 12/14/23 14:00 CET

// Roles
bytes32 constant ADMIN_ROLE = keccak256("ADMIN_ROLE");
bytes32 constant BANNED_USER_ROLE = keccak256("BANNED_USER_ROLE");
bytes32 constant CREATOR_ROLE = keccak256("CREATOR_ROLE");
bytes32 constant METADATA_ROLE = keccak256("METADATA_ROLE");
bytes32 constant MINTER_ROLE = keccak256("MINTER_ROLE");
bytes32 constant MODERATOR_ROLE = keccak256("MODERATOR_ROLE");
bytes32 constant SIGNER_ROLE = keccak256("SIGNER_ROLE");

// Royalties
uint32 constant ALLOCATION_DENOMINATOR = 1_000_000;
uint96 constant FEE_DENOMINATOR = 10_000;
uint96 constant MAX_ROYALTY_BPS = 2500; // 25%

// Splits
address constant SPLITS_MAIN = 0x2ed6c4B5dA6378c7897AC67Ba9e43102Feb694EE;

// Ticket
uint256 constant AUCTION_DECAY_RATE = 200; // 2%
uint256 constant DAILY_TAX_RATE = 27; // 0.274%
uint256 constant MINIMUM_PRICE = 0.001 ether;
uint256 constant ONE_DAY = 86_400;
uint256 constant SCALING_FACTOR = 10_000;
uint256 constant TEN_MINUTES = 600;
合同源代码
文件 3 的 28:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
合同源代码
文件 4 的 28:ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}
合同源代码
文件 5 的 28:EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.8;

import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * _Available since v3.4._
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant _TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {EIP-5267}.
     *
     * _Available since v4.9._
     */
    function eip712Domain()
        public
        view
        virtual
        override
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _name.toStringWithFallback(_nameFallback),
            _version.toStringWithFallback(_versionFallback),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }
}
合同源代码
文件 6 的 28:ERC20.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Transfer(address indexed from, address indexed to, uint256 amount);

    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /*//////////////////////////////////////////////////////////////
                            METADATA STORAGE
    //////////////////////////////////////////////////////////////*/

    string public name;

    string public symbol;

    uint8 public immutable decimals;

    /*//////////////////////////////////////////////////////////////
                              ERC20 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 public totalSupply;

    mapping(address => uint256) public balanceOf;

    mapping(address => mapping(address => uint256)) public allowance;

    /*//////////////////////////////////////////////////////////////
                            EIP-2612 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 internal immutable INITIAL_CHAIN_ID;

    bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;

    mapping(address => uint256) public nonces;

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(
        string memory _name,
        string memory _symbol,
        uint8 _decimals
    ) {
        name = _name;
        symbol = _symbol;
        decimals = _decimals;

        INITIAL_CHAIN_ID = block.chainid;
        INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
    }

    /*//////////////////////////////////////////////////////////////
                               ERC20 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 amount) public virtual returns (bool) {
        allowance[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);

        return true;
    }

    function transfer(address to, uint256 amount) public virtual returns (bool) {
        balanceOf[msg.sender] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(msg.sender, to, amount);

        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.

        if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;

        balanceOf[from] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(from, to, amount);

        return true;
    }

    /*//////////////////////////////////////////////////////////////
                             EIP-2612 LOGIC
    //////////////////////////////////////////////////////////////*/

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");

        // Unchecked because the only math done is incrementing
        // the owner's nonce which cannot realistically overflow.
        unchecked {
            address recoveredAddress = ecrecover(
                keccak256(
                    abi.encodePacked(
                        "\x19\x01",
                        DOMAIN_SEPARATOR(),
                        keccak256(
                            abi.encode(
                                keccak256(
                                    "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                ),
                                owner,
                                spender,
                                value,
                                nonces[owner]++,
                                deadline
                            )
                        )
                    )
                ),
                v,
                r,
                s
            );

            require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");

            allowance[recoveredAddress][spender] = value;
        }

        emit Approval(owner, spender, value);
    }

    function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
        return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
    }

    function computeDomainSeparator() internal view virtual returns (bytes32) {
        return
            keccak256(
                abi.encode(
                    keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                    keccak256(bytes(name)),
                    keccak256("1"),
                    block.chainid,
                    address(this)
                )
            );
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 amount) internal virtual {
        totalSupply += amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(address(0), to, amount);
    }

    function _burn(address from, uint256 amount) internal virtual {
        balanceOf[from] -= amount;

        // Cannot underflow because a user's balance
        // will never be larger than the total supply.
        unchecked {
            totalSupply -= amount;
        }

        emit Transfer(from, address(0), amount);
    }
}
合同源代码
文件 7 的 28:FixedPrice.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

import {Allowlist} from "src/minters/extensions/Allowlist.sol";
import {LibBitmap} from "solady/src/utils/LibBitmap.sol";
import {LibMap} from "solady/src/utils/LibMap.sol";
import {MintPass} from "src/minters/extensions/MintPass.sol";
import {Ownable} from "solady/src/auth/Ownable.sol";
import {Pausable} from "openzeppelin/contracts/security/Pausable.sol";
import {SafeCastLib} from "solmate/src/utils/SafeCastLib.sol";
import {SafeTransferLib} from "solmate/src/utils/SafeTransferLib.sol";

import {IFixedPrice} from "src/interfaces/IFixedPrice.sol";
import {IToken} from "src/interfaces/IToken.sol";
import {ReserveInfo} from "src/lib/Structs.sol";

import {OPEN_EDITION_SUPPLY, TIME_UNLIMITED} from "src/utils/Constants.sol";

/**
 * @title FixedPrice
 * @author fx(hash)
 * @dev See the documentation in {IFixedPrice}
 */
contract FixedPrice is IFixedPrice, Allowlist, MintPass, Ownable, Pausable {
    using SafeCastLib for uint256;

    /*//////////////////////////////////////////////////////////////////////////
                                    STORAGE
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @dev Mapping of token address to reserve ID to Bitmap of claimed merkle tree slots
     */
    mapping(address => mapping(uint256 => LibBitmap.Bitmap)) internal claimedMerkleTreeSlots;

    /**
     * @dev Mapping of token address to reserve ID to Bitmap of claimed mint passes
     */
    mapping(address => mapping(uint256 => LibBitmap.Bitmap)) internal claimedMintPasses;

    /**
     * @dev Mapping of token address to timestamp of latest update made for token reserves
     */
    LibMap.Uint40Map internal latestUpdates;

    /**
     * @dev Mapping of token to the last valid reserveId that can mint on behalf of the token
     */
    LibMap.Uint40Map internal firstValidReserve;

    /**
     * @dev Mapping of token address to sale proceeds
     */
    LibMap.Uint128Map internal saleProceeds;

    /**
     * @inheritdoc IFixedPrice
     */
    mapping(address => mapping(uint256 => bytes32)) public merkleRoots;

    /**
     * @inheritdoc IFixedPrice
     */
    mapping(address => uint256[]) public prices;

    /**
     * @inheritdoc IFixedPrice
     */
    mapping(address => ReserveInfo[]) public reserves;

    /*//////////////////////////////////////////////////////////////////////////
                                EXTERNAL FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @inheritdoc IFixedPrice
     */
    function buy(address _token, uint256 _reserveId, uint256 _amount, address _to) external payable whenNotPaused {
        bytes32 merkleRoot = _getMerkleRoot(_token, _reserveId);
        address signer = signingAuthorities[_token][_reserveId];
        if (merkleRoot != bytes32(0)) revert NoPublicMint();
        if (signer != address(0)) revert AddressZero();
        _buy(_token, _reserveId, _amount, _to);
    }

    /**
     * @inheritdoc IFixedPrice
     */
    function buyAllowlist(
        address _token,
        uint256 _reserveId,
        address _to,
        uint256[] calldata _indexes,
        bytes32[][] calldata _proofs
    ) external payable whenNotPaused {
        bytes32 merkleRoot = _getMerkleRoot(_token, _reserveId);
        if (merkleRoot == bytes32(0)) revert NoAllowlist();
        LibBitmap.Bitmap storage claimBitmap = claimedMerkleTreeSlots[_token][_reserveId];
        uint256 amount = _proofs.length;
        for (uint256 i; i < amount; ++i) {
            _claimSlot(_token, _reserveId, _indexes[i], _to, _proofs[i], claimBitmap);
        }

        _buy(_token, _reserveId, amount, _to);
    }

    /**
     * @inheritdoc IFixedPrice
     */
    function buyMintPass(
        address _token,
        uint256 _reserveId,
        uint256 _amount,
        address _to,
        uint256 _index,
        bytes calldata _signature
    ) external payable whenNotPaused {
        address signer = signingAuthorities[_token][_reserveId];
        if (signer == address(0)) revert NoSigningAuthority();
        LibBitmap.Bitmap storage claimBitmap = claimedMintPasses[_token][_reserveId];
        _claimMintPass(_token, _reserveId, _index, _to, _signature, claimBitmap);
        _buy(_token, _reserveId, _amount, _to);
    }

    /**
     * @inheritdoc IFixedPrice
     */
    function setMintDetails(ReserveInfo calldata _reserve, bytes calldata _mintDetails) external whenNotPaused {
        uint256 nextReserve = reserves[msg.sender].length;
        if (getLatestUpdate(msg.sender) != block.timestamp) {
            _setLatestUpdate(msg.sender, block.timestamp);
            _setFirstValidReserve(msg.sender, nextReserve);
        }

        if (_reserve.allocation == 0) revert InvalidAllocation();
        (uint256 price, bytes32 merkleRoot, address signer) = abi.decode(_mintDetails, (uint256, bytes32, address));
        if (merkleRoot != bytes32(0)) {
            if (signer != address(0)) revert OnlyAuthorityOrAllowlist();
            merkleRoots[msg.sender][nextReserve] = merkleRoot;
        } else if (signer != address(0)) {
            signingAuthorities[msg.sender][nextReserve] = signer;
            reserveNonce[msg.sender][nextReserve]++;
        }

        prices[msg.sender].push(price);
        reserves[msg.sender].push(_reserve);

        bool openEdition = _reserve.allocation == OPEN_EDITION_SUPPLY ? true : false;
        bool timeUnlimited = _reserve.endTime == TIME_UNLIMITED ? true : false;

        emit MintDetailsSet(msg.sender, nextReserve, price, _reserve, merkleRoot, signer, openEdition, timeUnlimited);
    }

    /**
     * @inheritdoc IFixedPrice
     */
    function withdraw(address _token) external whenNotPaused {
        uint256 proceeds = getSaleProceed(_token);
        if (proceeds == 0) revert InsufficientFunds();

        address saleReceiver = IToken(_token).primaryReceiver();
        _setSaleProceeds(_token, 0);

        SafeTransferLib.safeTransferETH(saleReceiver, proceeds);

        emit Withdrawn(_token, saleReceiver, proceeds);
    }

    /*//////////////////////////////////////////////////////////////////////////
                                OWNER FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @inheritdoc IFixedPrice
     */
    function pause() external onlyOwner {
        _pause();
    }

    /**
     * @inheritdoc IFixedPrice
     */
    function unpause() external onlyOwner {
        _unpause();
    }

    /*//////////////////////////////////////////////////////////////////////////
                                READ FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @inheritdoc IFixedPrice
     */
    function getFirstValidReserve(address _token) public view returns (uint256) {
        return LibMap.get(firstValidReserve, uint256(uint160(_token)));
    }

    /**
     * @inheritdoc IFixedPrice
     */
    function getLatestUpdate(address _token) public view returns (uint40) {
        return LibMap.get(latestUpdates, uint256(uint160(_token)));
    }

    /**
     * @inheritdoc IFixedPrice
     */
    function getSaleProceed(address _token) public view returns (uint128) {
        return LibMap.get(saleProceeds, uint256(uint160(_token)));
    }

    /*//////////////////////////////////////////////////////////////////////////
                                INTERNAL FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @dev Purchases arbitrary amount of tokens at auction price and mints tokens to given account
     */
    function _buy(address _token, uint256 _reserveId, uint256 _amount, address _to) internal {
        uint256 length = reserves[_token].length;
        uint256 validReserve = getFirstValidReserve(_token);

        if (length == 0) revert InvalidToken();
        if (_reserveId >= length || _reserveId < validReserve) revert InvalidReserve();

        ReserveInfo storage reserve = reserves[_token][_reserveId];
        if (block.timestamp < reserve.startTime) revert NotStarted();
        if (block.timestamp > reserve.endTime) revert Ended();
        if (_amount > reserve.allocation) revert TooMany();
        if (_to == address(0)) revert AddressZero();

        uint256 price = _amount * prices[_token][_reserveId];
        if (msg.value != price) revert InvalidPayment();

        reserve.allocation -= _amount.safeCastTo128();
        _setSaleProceeds(_token, getSaleProceed(_token) + price);

        IToken(_token).mint(_to, _amount, price);

        emit Purchase(_token, _reserveId, msg.sender, _amount, _to, price);
    }

    /**
     * @dev Sets timestamp of the latest update to token reserves
     */
    function _setLatestUpdate(address _token, uint256 _timestamp) internal {
        LibMap.set(latestUpdates, uint256(uint160(_token)), uint40(_timestamp));
    }

    /**
     * @dev Sets earliest valid reserve
     */
    function _setFirstValidReserve(address _token, uint256 _reserveId) internal {
        LibMap.set(firstValidReserve, uint256(uint160(_token)), uint40(_reserveId));
    }

    /**
     * @dev Sets the proceed amount from the token sale
     */
    function _setSaleProceeds(address _token, uint256 _amount) internal {
        LibMap.set(saleProceeds, uint256(uint160(_token)), uint128(_amount));
    }

    /**
     * @dev Gets the merkle root of a token reserve
     */
    function _getMerkleRoot(address _token, uint256 _reserveId) internal view override returns (bytes32) {
        return merkleRoots[_token][_reserveId];
    }
}
合同源代码
文件 8 的 28:IERC1271.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 *
 * _Available since v4.1._
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
合同源代码
文件 9 的 28:IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.0;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}
合同源代码
文件 10 的 28:IFixedPrice.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

import {IMinter} from "src/interfaces/IMinter.sol";
import {ReserveInfo} from "src/lib/Structs.sol";

/**
 * @title IFixedPrice
 * @author fx(hash)
 * @notice Minter for distributing tokens at fixed prices
 */
interface IFixedPrice is IMinter {
    /*//////////////////////////////////////////////////////////////////////////
                                  EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @notice Event emitted when a new fixed price mint has been set
     * @param _token Address of the token being minted
     * @param _reserveId ID of the reserve
     * @param _price Amount of fixed price mint
     * @param _merkleRoot The merkle root allowlisted buyers
     * @param _mintPassSigner The signing account for mint passes
     * @param _reserveInfo Reserve information for the mint
     * @param _openEdition Status of an open edition mint
     * @param _timeUnlimited Status of a mint with unlimited time
     */
    event MintDetailsSet(
        address indexed _token,
        uint256 indexed _reserveId,
        uint256 _price,
        ReserveInfo _reserveInfo,
        bytes32 _merkleRoot,
        address _mintPassSigner,
        bool _openEdition,
        bool _timeUnlimited
    );

    /**
     * @notice Event emitted when a purchase is made
     * @param _token Address of the token being purchased
     * @param _reserveId ID of the mint
     * @param _buyer Address purchasing the tokens
     * @param _amount Amount of tokens being purchased
     * @param _to Address to which the tokens are being transferred
     * @param _price Price of the purchase
     */
    event Purchase(
        address indexed _token,
        uint256 indexed _reserveId,
        address indexed _buyer,
        uint256 _amount,
        address _to,
        uint256 _price
    );

    /**
     * @notice Event emitted when sale proceeds are withdrawn
     * @param _token Address of the token
     * @param _creator Address of the project creator
     * @param _proceeds Amount of proceeds being withdrawn
     */
    event Withdrawn(address indexed _token, address indexed _creator, uint256 _proceeds);

    /*//////////////////////////////////////////////////////////////////////////
                                  ERRORS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @notice Error thrown when receiver is zero address
     */
    error AddressZero();

    /**
     * @notice Error thrown when the sale has already ended
     */
    error Ended();

    /**
     * @notice Error thrown when no funds available to withdraw
     */
    error InsufficientFunds();

    /**
     * @notice Error thrown when the allocation amount is zero
     */
    error InvalidAllocation();

    /**
     * @notice Error thrown when payment does not equal price
     */
    error InvalidPayment();

    /**
     * @notice Error thrown thrown when reserve does not exist
     */
    error InvalidReserve();

    /**
     * @notice Error thrown when reserve start and end times are invalid
     */
    error InvalidTimes();

    /**
     * @notice Error thrown when token address is invalid
     */
    error InvalidToken();

    /**
     * @notice Error thrown when buying through allowlist and no allowlist exists
     */
    error NoAllowlist();

    /**
     * @notice Error thrown when calling buy when either an allowlist or signer exists
     */
    error NoPublicMint();

    /**
     * @notice Error thrown when buy with a mint pass and no signing authority exists
     */
    error NoSigningAuthority();

    /**
     * @notice Error thrown when the auction has not started
     */
    error NotStarted();

    /**
     * @notice Error thrown when setting both an allowlist and mint signer
     */
    error OnlyAuthorityOrAllowlist();

    /**
     * @notice Error thrown when amount purchased exceeds remaining allocation
     */
    error TooMany();

    /*//////////////////////////////////////////////////////////////////////////
                                  FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @notice Purchases tokens at a fixed price
     * @param _token Address of the token contract
     * @param _reserveId ID of the reserve
     * @param _amount Amount of tokens being purchased
     * @param _to Address receiving the purchased tokens
     */
    function buy(address _token, uint256 _reserveId, uint256 _amount, address _to) external payable;

    /**
     * @notice Purchases tokens through an allowlist at a fixed price
     * @param _token Address of the token being purchased
     * @param _reserveId ID of the reserve
     * @param _to Address receiving the purchased tokens
     * @param _indexes Array of indices regarding purchase info inside the BitMap
     * @param _proofs Array of merkle proofs used for verifying the purchase
     */
    function buyAllowlist(
        address _token,
        uint256 _reserveId,
        address _to,
        uint256[] calldata _indexes,
        bytes32[][] calldata _proofs
    ) external payable;

    /**
     * @notice Purchases tokens through a mint pass at a fixed price
     * @param _token Address of the token being purchased
     * @param _reserveId ID of the reserve
     * @param _amount Number of tokens being purchased
     * @param _to Address receiving the purchased tokens
     * @param _index Index of puchase info inside the BitMap
     * @param _signature Array of merkle proofs used for verifying the purchase
     */
    function buyMintPass(
        address _token,
        uint256 _reserveId,
        uint256 _amount,
        address _to,
        uint256 _index,
        bytes calldata _signature
    ) external payable;

    /**
     * @notice Returns the earliest valid reserveId that can mint a token
     */
    function getFirstValidReserve(address _token) external view returns (uint256);

    /**
     * @notice Gets the latest timestamp update made to token reserves
     * @param _token Address of the token contract
     * @return Timestamp of latest update
     */
    function getLatestUpdate(address _token) external view returns (uint40);

    /**
     * @notice Gets the proceed amount from a token sale
     * @param _token Address of the token contract
     * @return Amount of proceeds
     */
    function getSaleProceed(address _token) external view returns (uint128);

    /**
     * @notice Mapping of token address to reserve ID to merkle roots
     */
    function merkleRoots(address, uint256) external view returns (bytes32);

    /**
     * @notice Pauses all function executions where modifier is applied
     */
    function pause() external;

    /**
     * @notice Mapping of token address to reserve ID to prices
     */
    function prices(address, uint256) external view returns (uint256);

    /**
     * @notice Mapping of token address to reserve ID to reserve information
     */
    function reserves(address, uint256) external view returns (uint64, uint64, uint128);

    /**
     * @inheritdoc IMinter
     * @dev Mint Details: token price, merkle root, and signer address
     */
    function setMintDetails(ReserveInfo calldata _reserveInfo, bytes calldata _mintDetails) external;

    /**
     * @notice Unpauses all function executions where modifier is applied
     */
    function unpause() external;

    /**
     * @notice Withdraws the sale proceeds to the sale receiver
     * @param _token Address of the token withdrawing proceeds from
     */
    function withdraw(address _token) external;
}
合同源代码
文件 11 的 28:IMinter.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

import {ReserveInfo} from "src/lib/Structs.sol";

/**
 * @title IMinter
 * @author fx(hash)
 * @notice Interface for FxGenArt721 tokens to interact with minters
 */
interface IMinter {
    /*//////////////////////////////////////////////////////////////////////////
                                  FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @notice Sets the mint details for token reserves
     * @param _reserveInfo Reserve information for the token
     * @param _mintDetails Details of the mint pertaining to the minter
     */
    function setMintDetails(ReserveInfo calldata _reserveInfo, bytes calldata _mintDetails) external;
}
合同源代码
文件 12 的 28:IToken.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

/**
 * @title IToken
 * @author fx(hash)
 * @notice Interface for minters to interact with tokens
 */
interface IToken {
    /*//////////////////////////////////////////////////////////////////////////
                                  FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @notice Mints arbitrary number of tokens
     * @dev Only callable by registered minter contracts
     * @param _to Address receiving tokens
     * @param _amount Number of tokens being minted
     * @param _payment Total payment amount of the transaction
     */
    function mint(address _to, uint256 _amount, uint256 _payment) external;

    /**
     * @notice Returns address of primary receiver for token sales
     */
    function primaryReceiver() external view returns (address);
}
合同源代码
文件 13 的 28:LibBit.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for bit twiddling and boolean operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBit.sol)
/// @author Inspired by (https://graphics.stanford.edu/~seander/bithacks.html)
library LibBit {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  BIT TWIDDLING OPERATIONS                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Find last set.
    /// Returns the index of the most significant bit of `x`,
    /// counting from the least significant bit position.
    /// If `x` is zero, returns 256.
    /// Equivalent to `log2(x)`, but without reverting for the zero case.
    function fls(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(8, iszero(x))

            r := or(r, shl(7, lt(0xffffffffffffffffffffffffffffffff, x)))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))

            // For the remaining 32 bits, use a De Bruijn lookup.
            x := shr(r, x)
            x := or(x, shr(1, x))
            x := or(x, shr(2, x))
            x := or(x, shr(4, x))
            x := or(x, shr(8, x))
            x := or(x, shr(16, x))

            // forgefmt: disable-next-item
            r := or(r, byte(shr(251, mul(x, shl(224, 0x07c4acdd))),
                0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f))
        }
    }

    /// @dev Count leading zeros.
    /// Returns the number of zeros preceding the most significant one bit.
    /// If `x` is zero, returns 256.
    function clz(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            let t := add(iszero(x), 255)

            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))

            // For the remaining 32 bits, use a De Bruijn lookup.
            x := shr(r, x)
            x := or(x, shr(1, x))
            x := or(x, shr(2, x))
            x := or(x, shr(4, x))
            x := or(x, shr(8, x))
            x := or(x, shr(16, x))

            // forgefmt: disable-next-item
            r := sub(t, or(r, byte(shr(251, mul(x, shl(224, 0x07c4acdd))),
                0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f)))
        }
    }

    /// @dev Find first set.
    /// Returns the index of the least significant bit of `x`,
    /// counting from the least significant bit position.
    /// If `x` is zero, returns 256.
    /// Equivalent to `ctz` (count trailing zeros), which gives
    /// the number of zeros following the least significant one bit.
    function ffs(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(8, iszero(x))

            // Isolate the least significant bit.
            x := and(x, add(not(x), 1))

            r := or(r, shl(7, lt(0xffffffffffffffffffffffffffffffff, x)))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))

            // For the remaining 32 bits, use a De Bruijn lookup.
            // forgefmt: disable-next-item
            r := or(r, byte(shr(251, mul(shr(r, x), shl(224, 0x077cb531))), 
                0x00011c021d0e18031e16140f191104081f1b0d17151310071a0c12060b050a09))
        }
    }

    /// @dev Returns the number of set bits in `x`.
    function popCount(uint256 x) internal pure returns (uint256 c) {
        /// @solidity memory-safe-assembly
        assembly {
            let max := not(0)
            let isMax := eq(x, max)
            x := sub(x, and(shr(1, x), div(max, 3)))
            x := add(and(x, div(max, 5)), and(shr(2, x), div(max, 5)))
            x := and(add(x, shr(4, x)), div(max, 17))
            c := or(shl(8, isMax), shr(248, mul(x, div(max, 255))))
        }
    }

    /// @dev Returns whether `x` is a power of 2.
    function isPo2(uint256 x) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `x && !(x & (x - 1))`.
            result := iszero(add(and(x, sub(x, 1)), iszero(x)))
        }
    }

    /// @dev Returns `x` reversed at the bit level.
    function reverseBits(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // Computing masks on-the-fly reduces bytecode size by about 500 bytes.
            let m := not(0)
            r := x
            for { let s := 128 } 1 {} {
                m := xor(m, shl(s, m))
                r := or(and(shr(s, r), m), and(shl(s, r), not(m)))
                s := shr(1, s)
                if iszero(s) { break }
            }
        }
    }

    /// @dev Returns `x` reversed at the byte level.
    function reverseBytes(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // Computing masks on-the-fly reduces bytecode size by about 200 bytes.
            let m := not(0)
            r := x
            for { let s := 128 } 1 {} {
                m := xor(m, shl(s, m))
                r := or(and(shr(s, r), m), and(shl(s, r), not(m)))
                s := shr(1, s)
                if eq(s, 4) { break }
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     BOOLEAN OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x & y`.
    function and(bool x, bool y) internal pure returns (bool z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := and(x, y)
        }
    }

    /// @dev Returns `x | y`.
    function or(bool x, bool y) internal pure returns (bool z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, y)
        }
    }

    /// @dev Returns a non-zero number if `b` is true, else 0.
    /// If `b` is from plain Solidity, the non-zero number will be 1.
    function toUint(bool b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := b
        }
    }
}
合同源代码
文件 14 的 28:LibBitmap.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

import {LibBit} from "./LibBit.sol";

/// @notice Library for storage of packed unsigned booleans.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBitmap.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibBitmap.sol)
/// @author Modified from Solidity-Bits (https://github.com/estarriolvetch/solidity-bits/blob/main/contracts/BitMaps.sol)
library LibBitmap {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The constant returned when a bitmap scan does not find a result.
    uint256 internal constant NOT_FOUND = type(uint256).max;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STRUCTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev A bitmap in storage.
    struct Bitmap {
        mapping(uint256 => uint256) map;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         OPERATIONS                         */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the boolean value of the bit at `index` in `bitmap`.
    function get(Bitmap storage bitmap, uint256 index) internal view returns (bool isSet) {
        // It is better to set `isSet` to either 0 or 1, than zero vs non-zero.
        // Both cost the same amount of gas, but the former allows the returned value
        // to be reused without cleaning the upper bits.
        uint256 b = (bitmap.map[index >> 8] >> (index & 0xff)) & 1;
        /// @solidity memory-safe-assembly
        assembly {
            isSet := b
        }
    }

    /// @dev Updates the bit at `index` in `bitmap` to true.
    function set(Bitmap storage bitmap, uint256 index) internal {
        bitmap.map[index >> 8] |= (1 << (index & 0xff));
    }

    /// @dev Updates the bit at `index` in `bitmap` to false.
    function unset(Bitmap storage bitmap, uint256 index) internal {
        bitmap.map[index >> 8] &= ~(1 << (index & 0xff));
    }

    /// @dev Flips the bit at `index` in `bitmap`.
    /// Returns the boolean result of the flipped bit.
    function toggle(Bitmap storage bitmap, uint256 index) internal returns (bool newIsSet) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, shr(8, index))
            mstore(0x20, bitmap.slot)
            let storageSlot := keccak256(0x00, 0x40)
            let shift := and(index, 0xff)
            let storageValue := sload(storageSlot)

            let mask := shl(shift, 1)
            storageValue := xor(storageValue, mask)
            // It makes sense to return the `newIsSet`,
            // as it allow us to skip an additional warm `sload`,
            // and it costs minimal gas (about 15),
            // which may be optimized away if the returned value is unused.
            newIsSet := iszero(iszero(and(storageValue, mask)))
            sstore(storageSlot, storageValue)
        }
    }

    /// @dev Updates the bit at `index` in `bitmap` to `shouldSet`.
    function setTo(Bitmap storage bitmap, uint256 index, bool shouldSet) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, bitmap.slot)
            mstore(0x00, shr(8, index))
            let storageSlot := keccak256(0x00, 0x40)
            let storageValue := sload(storageSlot)
            let shift := and(index, 0xff)

            sstore(
                storageSlot,
                // Unsets the bit at `shift` via `and`, then sets its new value via `or`.
                or(and(storageValue, not(shl(shift, 1))), shl(shift, iszero(iszero(shouldSet))))
            )
        }
    }

    /// @dev Consecutively sets `amount` of bits starting from the bit at `start`.
    function setBatch(Bitmap storage bitmap, uint256 start, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let max := not(0)
            let shift := and(start, 0xff)
            mstore(0x20, bitmap.slot)
            mstore(0x00, shr(8, start))
            if iszero(lt(add(shift, amount), 257)) {
                let storageSlot := keccak256(0x00, 0x40)
                sstore(storageSlot, or(sload(storageSlot), shl(shift, max)))
                let bucket := add(mload(0x00), 1)
                let bucketEnd := add(mload(0x00), shr(8, add(amount, shift)))
                amount := and(add(amount, shift), 0xff)
                shift := 0
                for {} iszero(eq(bucket, bucketEnd)) { bucket := add(bucket, 1) } {
                    mstore(0x00, bucket)
                    sstore(keccak256(0x00, 0x40), max)
                }
                mstore(0x00, bucket)
            }
            let storageSlot := keccak256(0x00, 0x40)
            sstore(storageSlot, or(sload(storageSlot), shl(shift, shr(sub(256, amount), max))))
        }
    }

    /// @dev Consecutively unsets `amount` of bits starting from the bit at `start`.
    function unsetBatch(Bitmap storage bitmap, uint256 start, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let shift := and(start, 0xff)
            mstore(0x20, bitmap.slot)
            mstore(0x00, shr(8, start))
            if iszero(lt(add(shift, amount), 257)) {
                let storageSlot := keccak256(0x00, 0x40)
                sstore(storageSlot, and(sload(storageSlot), not(shl(shift, not(0)))))
                let bucket := add(mload(0x00), 1)
                let bucketEnd := add(mload(0x00), shr(8, add(amount, shift)))
                amount := and(add(amount, shift), 0xff)
                shift := 0
                for {} iszero(eq(bucket, bucketEnd)) { bucket := add(bucket, 1) } {
                    mstore(0x00, bucket)
                    sstore(keccak256(0x00, 0x40), 0)
                }
                mstore(0x00, bucket)
            }
            let storageSlot := keccak256(0x00, 0x40)
            sstore(
                storageSlot, and(sload(storageSlot), not(shl(shift, shr(sub(256, amount), not(0)))))
            )
        }
    }

    /// @dev Returns number of set bits within a range by
    /// scanning `amount` of bits starting from the bit at `start`.
    function popCount(Bitmap storage bitmap, uint256 start, uint256 amount)
        internal
        view
        returns (uint256 count)
    {
        unchecked {
            uint256 bucket = start >> 8;
            uint256 shift = start & 0xff;
            if (!(amount + shift < 257)) {
                count = LibBit.popCount(bitmap.map[bucket] >> shift);
                uint256 bucketEnd = bucket + ((amount + shift) >> 8);
                amount = (amount + shift) & 0xff;
                shift = 0;
                for (++bucket; bucket != bucketEnd; ++bucket) {
                    count += LibBit.popCount(bitmap.map[bucket]);
                }
            }
            count += LibBit.popCount((bitmap.map[bucket] >> shift) << (256 - amount));
        }
    }

    /// @dev Returns the index of the most significant set bit before the bit at `before`.
    /// If no set bit is found, returns `NOT_FOUND`.
    function findLastSet(Bitmap storage bitmap, uint256 before)
        internal
        view
        returns (uint256 setBitIndex)
    {
        uint256 bucket;
        uint256 bucketBits;
        /// @solidity memory-safe-assembly
        assembly {
            setBitIndex := not(0)
            bucket := shr(8, before)
            mstore(0x00, bucket)
            mstore(0x20, bitmap.slot)
            let offset := and(0xff, not(before)) // `256 - (255 & before) - 1`.
            bucketBits := shr(offset, shl(offset, sload(keccak256(0x00, 0x40))))
            if iszero(bucketBits) {
                for {} bucket {} {
                    bucket := add(bucket, setBitIndex) // `sub(bucket, 1)`.
                    mstore(0x00, bucket)
                    bucketBits := sload(keccak256(0x00, 0x40))
                    if bucketBits { break }
                }
            }
        }
        if (bucketBits != 0) {
            setBitIndex = (bucket << 8) | LibBit.fls(bucketBits);
            /// @solidity memory-safe-assembly
            assembly {
                setBitIndex := or(setBitIndex, sub(0, gt(setBitIndex, before)))
            }
        }
    }
}
合同源代码
文件 15 的 28:LibMap.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for storage of packed unsigned integers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibMap.sol)
library LibMap {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STRUCTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev A uint8 map in storage.
    struct Uint8Map {
        mapping(uint256 => uint256) map;
    }

    /// @dev A uint16 map in storage.
    struct Uint16Map {
        mapping(uint256 => uint256) map;
    }

    /// @dev A uint32 map in storage.
    struct Uint32Map {
        mapping(uint256 => uint256) map;
    }

    /// @dev A uint40 map in storage. Useful for storing timestamps up to 34841 A.D.
    struct Uint40Map {
        mapping(uint256 => uint256) map;
    }

    /// @dev A uint64 map in storage.
    struct Uint64Map {
        mapping(uint256 => uint256) map;
    }

    /// @dev A uint128 map in storage.
    struct Uint128Map {
        mapping(uint256 => uint256) map;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     GETTERS / SETTERS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the uint8 value at `index` in `map`.
    function get(Uint8Map storage map, uint256 index) internal view returns (uint8 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, map.slot)
            mstore(0x00, shr(5, index))
            result := byte(and(31, not(index)), sload(keccak256(0x00, 0x40)))
        }
    }

    /// @dev Updates the uint8 value at `index` in `map`.
    function set(Uint8Map storage map, uint256 index, uint8 value) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, map.slot)
            mstore(0x00, shr(5, index))
            let s := keccak256(0x00, 0x40) // Storage slot.
            mstore(0x00, sload(s))
            mstore8(and(31, not(index)), value)
            sstore(s, mload(0x00))
        }
    }

    /// @dev Returns the uint16 value at `index` in `map`.
    function get(Uint16Map storage map, uint256 index) internal view returns (uint16 result) {
        result = uint16(map.map[index >> 4] >> ((index & 15) << 4));
    }

    /// @dev Updates the uint16 value at `index` in `map`.
    function set(Uint16Map storage map, uint256 index, uint16 value) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, map.slot)
            mstore(0x00, shr(4, index))
            let s := keccak256(0x00, 0x40) // Storage slot.
            let o := shl(4, and(index, 15)) // Storage slot offset (bits).
            let v := sload(s) // Storage slot value.
            let m := 0xffff // Value mask.
            sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value)))))
        }
    }

    /// @dev Returns the uint32 value at `index` in `map`.
    function get(Uint32Map storage map, uint256 index) internal view returns (uint32 result) {
        result = uint32(map.map[index >> 3] >> ((index & 7) << 5));
    }

    /// @dev Updates the uint32 value at `index` in `map`.
    function set(Uint32Map storage map, uint256 index, uint32 value) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, map.slot)
            mstore(0x00, shr(3, index))
            let s := keccak256(0x00, 0x40) // Storage slot.
            let o := shl(5, and(index, 7)) // Storage slot offset (bits).
            let v := sload(s) // Storage slot value.
            let m := 0xffffffff // Value mask.
            sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value)))))
        }
    }

    /// @dev Returns the uint40 value at `index` in `map`.
    function get(Uint40Map storage map, uint256 index) internal view returns (uint40 result) {
        unchecked {
            result = uint40(map.map[index / 6] >> ((index % 6) * 40));
        }
    }

    /// @dev Updates the uint40 value at `index` in `map`.
    function set(Uint40Map storage map, uint256 index, uint40 value) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, map.slot)
            mstore(0x00, div(index, 6))
            let s := keccak256(0x00, 0x40) // Storage slot.
            let o := mul(40, mod(index, 6)) // Storage slot offset (bits).
            let v := sload(s) // Storage slot value.
            let m := 0xffffffffff // Value mask.
            sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value)))))
        }
    }

    /// @dev Returns the uint64 value at `index` in `map`.
    function get(Uint64Map storage map, uint256 index) internal view returns (uint64 result) {
        result = uint64(map.map[index >> 2] >> ((index & 3) << 6));
    }

    /// @dev Updates the uint64 value at `index` in `map`.
    function set(Uint64Map storage map, uint256 index, uint64 value) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, map.slot)
            mstore(0x00, shr(2, index))
            let s := keccak256(0x00, 0x40) // Storage slot.
            let o := shl(6, and(index, 3)) // Storage slot offset (bits).
            let v := sload(s) // Storage slot value.
            let m := 0xffffffffffffffff // Value mask.
            sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value)))))
        }
    }

    /// @dev Returns the uint128 value at `index` in `map`.
    function get(Uint128Map storage map, uint256 index) internal view returns (uint128 result) {
        result = uint128(map.map[index >> 1] >> ((index & 1) << 7));
    }

    /// @dev Updates the uint128 value at `index` in `map`.
    function set(Uint128Map storage map, uint256 index, uint128 value) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, map.slot)
            mstore(0x00, shr(1, index))
            let s := keccak256(0x00, 0x40) // Storage slot.
            let o := shl(7, and(index, 1)) // Storage slot offset (bits).
            let v := sload(s) // Storage slot value.
            let m := 0xffffffffffffffffffffffffffffffff // Value mask.
            sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value)))))
        }
    }

    /// @dev Returns the value at `index` in `map`.
    function get(mapping(uint256 => uint256) storage map, uint256 index, uint256 bitWidth)
        internal
        view
        returns (uint256 result)
    {
        unchecked {
            uint256 d = _rawDiv(256, bitWidth); // Bucket size.
            uint256 m = (1 << bitWidth) - 1; // Value mask.
            result = (map[_rawDiv(index, d)] >> (_rawMod(index, d) * bitWidth)) & m;
        }
    }

    /// @dev Updates the value at `index` in `map`.
    function set(
        mapping(uint256 => uint256) storage map,
        uint256 index,
        uint256 value,
        uint256 bitWidth
    ) internal {
        unchecked {
            uint256 d = _rawDiv(256, bitWidth); // Bucket size.
            uint256 m = (1 << bitWidth) - 1; // Value mask.
            uint256 o = _rawMod(index, d) * bitWidth; // Storage slot offset (bits).
            map[_rawDiv(index, d)] ^= (((map[_rawDiv(index, d)] >> o) ^ value) & m) << o;
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       BINARY SEARCH                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // The following functions search in the range of [`start`, `end`)
    // (i.e. `start <= index < end`).
    // The range must be sorted in ascending order.
    // `index` precedence: equal to > nearest before > nearest after.
    // An invalid search range will simply return `(found = false, index = start)`.

    /// @dev Returns whether `map` contains `needle`, and the index of `needle`.
    function searchSorted(Uint8Map storage map, uint8 needle, uint256 start, uint256 end)
        internal
        view
        returns (bool found, uint256 index)
    {
        return searchSorted(map.map, needle, start, end, 8);
    }

    /// @dev Returns whether `map` contains `needle`, and the index of `needle`.
    function searchSorted(Uint16Map storage map, uint16 needle, uint256 start, uint256 end)
        internal
        view
        returns (bool found, uint256 index)
    {
        return searchSorted(map.map, needle, start, end, 16);
    }

    /// @dev Returns whether `map` contains `needle`, and the index of `needle`.
    function searchSorted(Uint32Map storage map, uint32 needle, uint256 start, uint256 end)
        internal
        view
        returns (bool found, uint256 index)
    {
        return searchSorted(map.map, needle, start, end, 32);
    }

    /// @dev Returns whether `map` contains `needle`, and the index of `needle`.
    function searchSorted(Uint40Map storage map, uint40 needle, uint256 start, uint256 end)
        internal
        view
        returns (bool found, uint256 index)
    {
        return searchSorted(map.map, needle, start, end, 40);
    }

    /// @dev Returns whether `map` contains `needle`, and the index of `needle`.
    function searchSorted(Uint64Map storage map, uint64 needle, uint256 start, uint256 end)
        internal
        view
        returns (bool found, uint256 index)
    {
        return searchSorted(map.map, needle, start, end, 64);
    }

    /// @dev Returns whether `map` contains `needle`, and the index of `needle`.
    function searchSorted(Uint128Map storage map, uint128 needle, uint256 start, uint256 end)
        internal
        view
        returns (bool found, uint256 index)
    {
        return searchSorted(map.map, needle, start, end, 128);
    }

    /// @dev Returns whether `map` contains `needle`, and the index of `needle`.
    function searchSorted(
        mapping(uint256 => uint256) storage map,
        uint256 needle,
        uint256 start,
        uint256 end,
        uint256 bitWidth
    ) internal view returns (bool found, uint256 index) {
        unchecked {
            if (start >= end) end = start;
            uint256 t;
            uint256 o = start - 1; // Offset to derive the actual index.
            uint256 l = 1; // Low.
            uint256 d = _rawDiv(256, bitWidth); // Bucket size.
            uint256 m = (1 << bitWidth) - 1; // Value mask.
            uint256 h = end - start; // High.
            while (true) {
                index = (l & h) + ((l ^ h) >> 1);
                if (l > h) break;
                t = (map[_rawDiv(index + o, d)] >> (_rawMod(index + o, d) * bitWidth)) & m;
                if (t == needle) break;
                if (needle <= t) h = index - 1;
                else l = index + 1;
            }
            /// @solidity memory-safe-assembly
            assembly {
                m := or(iszero(index), iszero(bitWidth))
                found := iszero(or(xor(t, needle), m))
                index := add(o, xor(index, mul(xor(index, 1), m)))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      PRIVATE HELPERS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function _rawDiv(uint256 x, uint256 y) private pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function _rawMod(uint256 x, uint256 y) private pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }
}
合同源代码
文件 16 的 28:Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
合同源代码
文件 17 的 28:MerkleProof.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     *
     * _Available since v4.7._
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     *
     * _Available since v4.4._
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     *
     * _Available since v4.7._
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * _Available since v4.7._
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            require(proofPos == proofLen, "MerkleProof: invalid multiproof");
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            require(proofPos == proofLen, "MerkleProof: invalid multiproof");
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}
合同源代码
文件 18 的 28:MintPass.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

import {EIP712} from "openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {LibBitmap} from "solady/src/utils/LibBitmap.sol";
import {SignatureChecker} from "openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";

import {CLAIM_TYPEHASH} from "src/utils/Constants.sol";

/**
 * @title MintPass
 * @author fx(hash)
 * @notice Extension for claiming tokens through mint passes
 */
abstract contract MintPass is EIP712 {
    using SignatureChecker for address;

    /*//////////////////////////////////////////////////////////////////////////
                                    STORAGE
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @notice Mapping of token address to reserve ID to reserve nonce
     */
    mapping(address => mapping(uint256 => uint256)) public reserveNonce;

    /**
     * @notice Mapping of token address to reserve ID to address of mint pass authority
     */
    mapping(address => mapping(uint256 => address)) public signingAuthorities;

    /*//////////////////////////////////////////////////////////////////////////
                                    EVENTS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @notice Event emitted when mint pass is claimed
     * @param _token Address of the token
     * @param _reserveId ID of the reserve
     * @param _claimer Address of the mint pass claimer
     * @param _index Index of purchase info inside the BitMap
     */
    event PassClaimed(address indexed _token, uint256 indexed _reserveId, address indexed _claimer, uint256 _index);

    /*//////////////////////////////////////////////////////////////////////////
                                    ERRORS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @notice Error thrown when the signature of mint pass claimer is invalid
     */
    error InvalidSignature();

    /**
     * @notice Error thrown when a mint pass has already been claimed
     */
    error PassAlreadyClaimed();

    /*//////////////////////////////////////////////////////////////////////////
                                CONSTRUCTOR
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @dev Initializes EIP-712
     */
    constructor() EIP712("MINT_PASS", "1") {}

    /*//////////////////////////////////////////////////////////////////////////
                                PUBLIC FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @notice Generates the typed data hash for a mint pass claim
     * @param _token address of token for the reserve
     * @param _reserveId Id of the reserve to mint the token from
     * @param _index Index of the mint pass
     * @param _claimer Address of mint pass claimer
     * @return Digest of typed data hash claimer
     */
    function generateTypedDataHash(
        address _token,
        uint256 _reserveId,
        uint256 _reserveNonce,
        uint256 _index,
        address _claimer
    ) public view returns (bytes32) {
        bytes32 structHash = keccak256(abi.encode(CLAIM_TYPEHASH, _token, _reserveNonce, _reserveId, _index, _claimer));
        return _hashTypedDataV4(structHash);
    }

    /*//////////////////////////////////////////////////////////////////////////
                                INTERNAL FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /**
     * @dev Validates a mint pass claim
     * @param _token Address of the token contract
     * @param _reserveId ID of the reserve
     * @param _index Index of the mint pass
     * @param _claimer Account associated with the mint pass
     * @param _signature Signature of the mint pass claimer
     * @param _bitmap Bitmap used for checking if index is already claimed
     */
    function _claimMintPass(
        address _token,
        uint256 _reserveId,
        uint256 _index,
        address _claimer,
        bytes calldata _signature,
        LibBitmap.Bitmap storage _bitmap
    ) internal {
        if (LibBitmap.get(_bitmap, _index)) revert PassAlreadyClaimed();
        uint256 nonce = reserveNonce[_token][_reserveId];
        bytes32 hash = generateTypedDataHash(_token, _reserveId, nonce, _index, _claimer);
        address signer = signingAuthorities[_token][_reserveId];
        if (!signer.isValidSignatureNow(hash, _signature)) revert InvalidSignature();
        LibBitmap.set(_bitmap, _index);

        emit PassClaimed(_token, _reserveId, _claimer, _index);
    }
}
合同源代码
文件 19 的 28:Ownable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Simple single owner authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
///
/// @dev Note:
/// This implementation does NOT auto-initialize the owner to `msg.sender`.
/// You MUST call the `_initializeOwner` in the constructor / initializer.
///
/// While the ownable portion follows
/// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
/// the nomenclature for the 2-step ownership handover may be unique to this codebase.
abstract contract Ownable {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The caller is not authorized to call the function.
    error Unauthorized();

    /// @dev The `newOwner` cannot be the zero address.
    error NewOwnerIsZeroAddress();

    /// @dev The `pendingOwner` does not have a valid handover request.
    error NoHandoverRequest();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ownership is transferred from `oldOwner` to `newOwner`.
    /// This event is intentionally kept the same as OpenZeppelin's Ownable to be
    /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
    /// despite it not being as lightweight as a single argument event.
    event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);

    /// @dev An ownership handover to `pendingOwner` has been requested.
    event OwnershipHandoverRequested(address indexed pendingOwner);

    /// @dev The ownership handover to `pendingOwner` has been canceled.
    event OwnershipHandoverCanceled(address indexed pendingOwner);

    /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
    uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
        0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;

    /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
        0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;

    /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
        0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The owner slot is given by: `not(_OWNER_SLOT_NOT)`.
    /// It is intentionally chosen to be a high value
    /// to avoid collision with lower slots.
    /// The choice of manual storage layout is to enable compatibility
    /// with both regular and upgradeable contracts.
    uint256 private constant _OWNER_SLOT_NOT = 0x8b78c6d8;

    /// The ownership handover slot of `newOwner` is given by:
    /// ```
    ///     mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
    ///     let handoverSlot := keccak256(0x00, 0x20)
    /// ```
    /// It stores the expiry timestamp of the two-step ownership handover.
    uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     INTERNAL FUNCTIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Initializes the owner directly without authorization guard.
    /// This function must be called upon initialization,
    /// regardless of whether the contract is upgradeable or not.
    /// This is to enable generalization to both regular and upgradeable contracts,
    /// and to save gas in case the initial owner is not the caller.
    /// For performance reasons, this function will not check if there
    /// is an existing owner.
    function _initializeOwner(address newOwner) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Clean the upper 96 bits.
            newOwner := shr(96, shl(96, newOwner))
            // Store the new value.
            sstore(not(_OWNER_SLOT_NOT), newOwner)
            // Emit the {OwnershipTransferred} event.
            log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
        }
    }

    /// @dev Sets the owner directly without authorization guard.
    function _setOwner(address newOwner) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            let ownerSlot := not(_OWNER_SLOT_NOT)
            // Clean the upper 96 bits.
            newOwner := shr(96, shl(96, newOwner))
            // Emit the {OwnershipTransferred} event.
            log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
            // Store the new value.
            sstore(ownerSlot, newOwner)
        }
    }

    /// @dev Throws if the sender is not the owner.
    function _checkOwner() internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // If the caller is not the stored owner, revert.
            if iszero(eq(caller(), sload(not(_OWNER_SLOT_NOT)))) {
                mstore(0x00, 0x82b42900) // `Unauthorized()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Returns how long a two-step ownership handover is valid for in seconds.
    /// Override to return a different value if needed.
    /// Made internal to conserve bytecode. Wrap it in a public function if needed.
    function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
        return 48 * 3600;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  PUBLIC UPDATE FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Allows the owner to transfer the ownership to `newOwner`.
    function transferOwnership(address newOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(shl(96, newOwner)) {
                mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
                revert(0x1c, 0x04)
            }
        }
        _setOwner(newOwner);
    }

    /// @dev Allows the owner to renounce their ownership.
    function renounceOwnership() public payable virtual onlyOwner {
        _setOwner(address(0));
    }

    /// @dev Request a two-step ownership handover to the caller.
    /// The request will automatically expire in 48 hours (172800 seconds) by default.
    function requestOwnershipHandover() public payable virtual {
        unchecked {
            uint256 expires = block.timestamp + _ownershipHandoverValidFor();
            /// @solidity memory-safe-assembly
            assembly {
                // Compute and set the handover slot to `expires`.
                mstore(0x0c, _HANDOVER_SLOT_SEED)
                mstore(0x00, caller())
                sstore(keccak256(0x0c, 0x20), expires)
                // Emit the {OwnershipHandoverRequested} event.
                log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
            }
        }
    }

    /// @dev Cancels the two-step ownership handover to the caller, if any.
    function cancelOwnershipHandover() public payable virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, caller())
            sstore(keccak256(0x0c, 0x20), 0)
            // Emit the {OwnershipHandoverCanceled} event.
            log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
        }
    }

    /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
    /// Reverts if there is no existing ownership handover requested by `pendingOwner`.
    function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, pendingOwner)
            let handoverSlot := keccak256(0x0c, 0x20)
            // If the handover does not exist, or has expired.
            if gt(timestamp(), sload(handoverSlot)) {
                mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
                revert(0x1c, 0x04)
            }
            // Set the handover slot to 0.
            sstore(handoverSlot, 0)
        }
        _setOwner(pendingOwner);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   PUBLIC READ FUNCTIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the owner of the contract.
    function owner() public view virtual returns (address result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(not(_OWNER_SLOT_NOT))
        }
    }

    /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
    function ownershipHandoverExpiresAt(address pendingOwner)
        public
        view
        virtual
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the handover slot.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, pendingOwner)
            // Load the handover slot.
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         MODIFIERS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Marks a function as only callable by the owner.
    modifier onlyOwner() virtual {
        _checkOwner();
        _;
    }
}
合同源代码
文件 20 的 28:Pausable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        require(!paused(), "Pausable: paused");
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        require(paused(), "Pausable: not paused");
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}
合同源代码
文件 21 的 28:SafeCastLib.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Safe unsigned integer casting library that reverts on overflow.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeCastLib.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol)
library SafeCastLib {
    function safeCastTo248(uint256 x) internal pure returns (uint248 y) {
        require(x < 1 << 248);

        y = uint248(x);
    }

    function safeCastTo240(uint256 x) internal pure returns (uint240 y) {
        require(x < 1 << 240);

        y = uint240(x);
    }

    function safeCastTo232(uint256 x) internal pure returns (uint232 y) {
        require(x < 1 << 232);

        y = uint232(x);
    }

    function safeCastTo224(uint256 x) internal pure returns (uint224 y) {
        require(x < 1 << 224);

        y = uint224(x);
    }

    function safeCastTo216(uint256 x) internal pure returns (uint216 y) {
        require(x < 1 << 216);

        y = uint216(x);
    }

    function safeCastTo208(uint256 x) internal pure returns (uint208 y) {
        require(x < 1 << 208);

        y = uint208(x);
    }

    function safeCastTo200(uint256 x) internal pure returns (uint200 y) {
        require(x < 1 << 200);

        y = uint200(x);
    }

    function safeCastTo192(uint256 x) internal pure returns (uint192 y) {
        require(x < 1 << 192);

        y = uint192(x);
    }

    function safeCastTo184(uint256 x) internal pure returns (uint184 y) {
        require(x < 1 << 184);

        y = uint184(x);
    }

    function safeCastTo176(uint256 x) internal pure returns (uint176 y) {
        require(x < 1 << 176);

        y = uint176(x);
    }

    function safeCastTo168(uint256 x) internal pure returns (uint168 y) {
        require(x < 1 << 168);

        y = uint168(x);
    }

    function safeCastTo160(uint256 x) internal pure returns (uint160 y) {
        require(x < 1 << 160);

        y = uint160(x);
    }

    function safeCastTo152(uint256 x) internal pure returns (uint152 y) {
        require(x < 1 << 152);

        y = uint152(x);
    }

    function safeCastTo144(uint256 x) internal pure returns (uint144 y) {
        require(x < 1 << 144);

        y = uint144(x);
    }

    function safeCastTo136(uint256 x) internal pure returns (uint136 y) {
        require(x < 1 << 136);

        y = uint136(x);
    }

    function safeCastTo128(uint256 x) internal pure returns (uint128 y) {
        require(x < 1 << 128);

        y = uint128(x);
    }

    function safeCastTo120(uint256 x) internal pure returns (uint120 y) {
        require(x < 1 << 120);

        y = uint120(x);
    }

    function safeCastTo112(uint256 x) internal pure returns (uint112 y) {
        require(x < 1 << 112);

        y = uint112(x);
    }

    function safeCastTo104(uint256 x) internal pure returns (uint104 y) {
        require(x < 1 << 104);

        y = uint104(x);
    }

    function safeCastTo96(uint256 x) internal pure returns (uint96 y) {
        require(x < 1 << 96);

        y = uint96(x);
    }

    function safeCastTo88(uint256 x) internal pure returns (uint88 y) {
        require(x < 1 << 88);

        y = uint88(x);
    }

    function safeCastTo80(uint256 x) internal pure returns (uint80 y) {
        require(x < 1 << 80);

        y = uint80(x);
    }

    function safeCastTo72(uint256 x) internal pure returns (uint72 y) {
        require(x < 1 << 72);

        y = uint72(x);
    }

    function safeCastTo64(uint256 x) internal pure returns (uint64 y) {
        require(x < 1 << 64);

        y = uint64(x);
    }

    function safeCastTo56(uint256 x) internal pure returns (uint56 y) {
        require(x < 1 << 56);

        y = uint56(x);
    }

    function safeCastTo48(uint256 x) internal pure returns (uint48 y) {
        require(x < 1 << 48);

        y = uint48(x);
    }

    function safeCastTo40(uint256 x) internal pure returns (uint40 y) {
        require(x < 1 << 40);

        y = uint40(x);
    }

    function safeCastTo32(uint256 x) internal pure returns (uint32 y) {
        require(x < 1 << 32);

        y = uint32(x);
    }

    function safeCastTo24(uint256 x) internal pure returns (uint24 y) {
        require(x < 1 << 24);

        y = uint24(x);
    }

    function safeCastTo16(uint256 x) internal pure returns (uint16 y) {
        require(x < 1 << 16);

        y = uint16(x);
    }

    function safeCastTo8(uint256 x) internal pure returns (uint8 y) {
        require(x < 1 << 8);

        y = uint8(x);
    }
}
合同源代码
文件 22 的 28:SafeTransferLib.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

import {ERC20} from "../tokens/ERC20.sol";

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
/// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
library SafeTransferLib {
    /*//////////////////////////////////////////////////////////////
                             ETH OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferETH(address to, uint256 amount) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Transfer the ETH and store if it succeeded or not.
            success := call(gas(), to, amount, 0, 0, 0, 0)
        }

        require(success, "ETH_TRANSFER_FAILED");
    }

    /*//////////////////////////////////////////////////////////////
                            ERC20 OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferFrom(
        ERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
            mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
            )
        }

        require(success, "TRANSFER_FROM_FAILED");
    }

    function safeTransfer(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
            )
        }

        require(success, "TRANSFER_FAILED");
    }

    function safeApprove(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
            )
        }

        require(success, "APPROVE_FAILED");
    }
}
合同源代码
文件 23 的 28:ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.8;

import "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(_FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}
合同源代码
文件 24 的 28:SignatureChecker.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/SignatureChecker.sol)

pragma solidity ^0.8.0;

import "./ECDSA.sol";
import "../../interfaces/IERC1271.sol";

/**
 * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
 * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
 * Argent and Gnosis Safe.
 *
 * _Available since v4.1._
 */
library SignatureChecker {
    /**
     * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
     * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
        (address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature);
        return
            (error == ECDSA.RecoverError.NoError && recovered == signer) ||
            isValidERC1271SignatureNow(signer, hash, signature);
    }

    /**
     * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
     * against the signer smart contract using ERC1271.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidERC1271SignatureNow(
        address signer,
        bytes32 hash,
        bytes memory signature
    ) internal view returns (bool) {
        (bool success, bytes memory result) = signer.staticcall(
            abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature)
        );
        return (success &&
            result.length >= 32 &&
            abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
    }
}
合同源代码
文件 25 的 28:SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
合同源代码
文件 26 的 28:StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
 * _Available since v4.9 for `string`, `bytes`._
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}
合同源代码
文件 27 的 28:Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
合同源代码
文件 28 的 28:Structs.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

/*//////////////////////////////////////////////////////////////////////////
                                  STRUCTS
//////////////////////////////////////////////////////////////////////////*/

/**
 * @notice Struct of dutch auction information
 * - `refunded` Flag indicating if refunds are enabled
 * - `stepLength` Duration (in seconds) of each auction step
 * - `prices` Array of prices for each step of the auction
 */
struct AuctionInfo {
    bool refunded;
    uint248 stepLength;
    uint256[] prices;
}

/**
 * @notice Struct of system config information
 * - `feeReceiver` Address receiving platform fees
 * - `primaryFeeAllocation` Amount of basis points allocated to calculate platform fees on primary sale proceeds
 * - `secondaryFeeAllocation` Amount of basis points allocated to calculate platform fees on royalty payments
 * - `lockTime` Locked time duration added to mint start time for unverified creators
 * - `referrerShare` Share amount distributed to accounts referring tokens
 * - `defaultMetadataURI` Default base URI of token metadata
 * - `externalURI` External URI for displaying tokens
 */
struct ConfigInfo {
    address feeReceiver;
    uint32 primaryFeeAllocation;
    uint32 secondaryFeeAllocation;
    uint32 lockTime;
    uint64 referrerShare;
    string defaultMetadataURI;
    string externalURI;
}

/**
 * @notice Struct of generative art information
 * - `minter` Address of initial token owner
 * - `seed` Hash of randomly generated seed
 * - `fxParams` Random sequence of fixed-length bytes used as token input
 */
struct GenArtInfo {
    address minter;
    bytes32 seed;
    bytes fxParams;
}

/**
 * @notice Struct of initialization information used on project creation
 * - `name` Name of project
 * - `symbol` Symbol of project
 * - `primaryReceiver` Address of splitter contract receiving primary sales
 * - `randomizer` Address of Randomizer contract
 * - `renderer` Address of Renderer contract
 * - `tagIds` Array of tag IDs describing the project
 * - 'onchainData' Onchain data to be stored using SSTORE2 and available to renderers
 */
struct InitInfo {
    string name;
    string symbol;
    address[] primaryReceivers;
    uint32[] allocations;
    address randomizer;
    address renderer;
    uint256[] tagIds;
    bytes onchainData;
}

/**
 * @notice Struct of issuer information
 * - `primaryReceiver` Address of splitter contract receiving primary sales
 * - `projectInfo` Project information
 * - `activeMinters` Array of authorized minter contracts used for enumeration
 * - `minters` Mapping of minter contract to authorization status
 */
struct IssuerInfo {
    address primaryReceiver;
    ProjectInfo projectInfo;
    address[] activeMinters;
    mapping(address => uint8) minters;
}

/**
 * @notice Struct of metadata information
 * - `baseURI` Decoded URI of content identifier
 * - `onchainPointer` Address of bytes-encoded data rendered onchain
 */
struct MetadataInfo {
    bytes baseURI;
    address onchainPointer;
}

/**
 * @notice Struct of mint information
 * - `minter` Address of the minter contract
 * - `reserveInfo` Reserve information
 * - `params` Optional bytes data decoded inside minter
 */
struct MintInfo {
    address minter;
    ReserveInfo reserveInfo;
    bytes params;
}

/**
 * @notice Struct of minter information
 * - `totalMints` Total number of mints executed by the minter
 * - `totalPaid` Total amount paid by the minter
 */
struct MinterInfo {
    uint128 totalMints;
    uint128 totalPaid;
}

/**
 * @notice Struct of project information
 * - `mintEnabled` Flag inidicating if minting is enabled
 * - `burnEnabled` Flag inidicating if burning is enabled
 * - `maxSupply` Maximum supply of tokens
 * - `inputSize` Maximum input size of fxParams bytes data
 * - `earliestStartTime` Earliest possible start time for registering minters
 */
struct ProjectInfo {
    bool mintEnabled;
    bool burnEnabled;
    uint120 maxSupply;
    uint88 inputSize;
    uint32 earliestStartTime;
}

/**
 * @notice Struct of refund information
 * - `lastPrice` Price of last sale before selling out
 * - `minterInfo` Mapping of minter address to struct of minter information
 */
struct RefundInfo {
    uint256 lastPrice;
    mapping(address minter => MinterInfo) minterInfo;
}

/**
 * @notice Struct of reserve information
 * - `startTime` Start timestamp of minter
 * - `endTime` End timestamp of minter
 * - `allocation` Allocation amount for minter
 */
struct ReserveInfo {
    uint64 startTime;
    uint64 endTime;
    uint128 allocation;
}

/**
 * @notice Struct of royalty information
 * - `receiver` Address receiving royalties
 * - `basisPoints` Points used to calculate the royalty payment (0.01%)
 */
struct RoyaltyInfo {
    address receiver;
    uint96 basisPoints;
}

/**
 * @notice Struct of tax information
 * - `startTime` Timestamp of when harberger taxation begins
 * - `foreclosureTime` Timestamp of token foreclosure
 * - `currentPrice` Current listing price of token
 * - `depositAmount` Total amount of taxes deposited
 */
struct TaxInfo {
    uint48 startTime;
    uint48 foreclosureTime;
    uint80 currentPrice;
    uint80 depositAmount;
}
设置
{
  "compilationTarget": {
    "src/minters/FixedPrice.sol": "FixedPrice"
  },
  "evmVersion": "paris",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": true,
    "runs": 2
  },
  "remappings": [
    ":ds-test/=lib/forge-std/lib/ds-test/src/",
    ":erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    ":forge-std/=lib/forge-std/src/",
    ":openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    ":openzeppelin-contracts/=lib/openzeppelin-contracts/",
    ":openzeppelin-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    ":openzeppelin/=lib/openzeppelin-contracts/",
    ":scripty.sol/=lib/scripty.sol/",
    ":solady/=lib/solady/",
    ":solmate/=lib/solmate/",
    ":sstore2/=lib/sstore2/"
  ]
}
ABI
[{"inputs":[],"name":"AddressZero","type":"error"},{"inputs":[],"name":"Ended","type":"error"},{"inputs":[],"name":"InsufficientFunds","type":"error"},{"inputs":[],"name":"InvalidAllocation","type":"error"},{"inputs":[],"name":"InvalidPayment","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[],"name":"InvalidReserve","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"InvalidTimes","type":"error"},{"inputs":[],"name":"InvalidToken","type":"error"},{"inputs":[],"name":"NewOwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"NoAllowlist","type":"error"},{"inputs":[],"name":"NoHandoverRequest","type":"error"},{"inputs":[],"name":"NoPublicMint","type":"error"},{"inputs":[],"name":"NoSigningAuthority","type":"error"},{"inputs":[],"name":"NotStarted","type":"error"},{"inputs":[],"name":"OnlyAuthorityOrAllowlist","type":"error"},{"inputs":[],"name":"PassAlreadyClaimed","type":"error"},{"inputs":[],"name":"SlotAlreadyClaimed","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"TooMany","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_token","type":"address"},{"indexed":true,"internalType":"uint256","name":"_reserveId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_price","type":"uint256"},{"components":[{"internalType":"uint64","name":"startTime","type":"uint64"},{"internalType":"uint64","name":"endTime","type":"uint64"},{"internalType":"uint128","name":"allocation","type":"uint128"}],"indexed":false,"internalType":"struct ReserveInfo","name":"_reserveInfo","type":"tuple"},{"indexed":false,"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"},{"indexed":false,"internalType":"address","name":"_mintPassSigner","type":"address"},{"indexed":false,"internalType":"bool","name":"_openEdition","type":"bool"},{"indexed":false,"internalType":"bool","name":"_timeUnlimited","type":"bool"}],"name":"MintDetailsSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_token","type":"address"},{"indexed":true,"internalType":"uint256","name":"_reserveId","type":"uint256"},{"indexed":true,"internalType":"address","name":"_claimer","type":"address"},{"indexed":false,"internalType":"uint256","name":"_index","type":"uint256"}],"name":"PassClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_token","type":"address"},{"indexed":true,"internalType":"uint256","name":"_reserveId","type":"uint256"},{"indexed":true,"internalType":"address","name":"_buyer","type":"address"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"},{"indexed":false,"internalType":"address","name":"_to","type":"address"},{"indexed":false,"internalType":"uint256","name":"_price","type":"uint256"}],"name":"Purchase","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_token","type":"address"},{"indexed":true,"internalType":"uint256","name":"_reserveId","type":"uint256"},{"indexed":true,"internalType":"address","name":"_claimer","type":"address"},{"indexed":false,"internalType":"uint256","name":"_index","type":"uint256"}],"name":"SlotClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_token","type":"address"},{"indexed":true,"internalType":"address","name":"_creator","type":"address"},{"indexed":false,"internalType":"uint256","name":"_proceeds","type":"uint256"}],"name":"Withdrawn","type":"event"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_reserveId","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address","name":"_to","type":"address"}],"name":"buy","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_reserveId","type":"uint256"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256[]","name":"_indexes","type":"uint256[]"},{"internalType":"bytes32[][]","name":"_proofs","type":"bytes32[][]"}],"name":"buyAllowlist","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_reserveId","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_index","type":"uint256"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"buyMintPass","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"cancelOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"completeOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_reserveId","type":"uint256"},{"internalType":"uint256","name":"_reserveNonce","type":"uint256"},{"internalType":"uint256","name":"_index","type":"uint256"},{"internalType":"address","name":"_claimer","type":"address"}],"name":"generateTypedDataHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"getFirstValidReserve","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"getLatestUpdate","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"getSaleProceed","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"merkleRoots","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"ownershipHandoverExpiresAt","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"prices","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"requestOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"reserveNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"reserves","outputs":[{"internalType":"uint64","name":"startTime","type":"uint64"},{"internalType":"uint64","name":"endTime","type":"uint64"},{"internalType":"uint128","name":"allocation","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint64","name":"startTime","type":"uint64"},{"internalType":"uint64","name":"endTime","type":"uint64"},{"internalType":"uint128","name":"allocation","type":"uint128"}],"internalType":"struct ReserveInfo","name":"_reserve","type":"tuple"},{"internalType":"bytes","name":"_mintDetails","type":"bytes"}],"name":"setMintDetails","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"signingAuthorities","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]