// File: scripts/IDex.sol
pragma solidity ^0.8.6;
interface IFactory{
function createPair(address tokenA, address tokenB) external returns (address pair);
function getPair(address tokenA, address tokenB) external view returns (address pair);
}
interface IPair{
function token0() external view returns (address);
function token1() external view returns (address);
function sync() external;
}
interface IRouter {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function addLiquidity(
address tokenA,
address tokenB,
uint amountATokenDesired,
uint amountBTokenDesired,
uint amountATokenMin,
uint amountBTokenMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline) external;
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
}
// File: @openzeppelin/contracts/utils/Address.sol
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// File: @openzeppelin/contracts/token/ERC20/IERC20.sol
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// File: @openzeppelin/contracts/utils/Context.sol
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// File: @openzeppelin/contracts/token/ERC20/ERC20.sol
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(
address from,
address to,
uint256 amount
) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(
address owner,
address spender,
uint256 amount
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
// File: @openzeppelin/contracts/access/Ownable.sol
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File: scripts/Snatch.sol
pragma solidity 0.8.13;
contract SNATCH is ERC20, Ownable{
using Address for address payable;
mapping(address => bool) public exemptFee;
mapping(address => bool) public isBlocked;
IRouter public router;
address public pair;
address public lpRecipient;
address public marketingWallet;
address public snatchPotWallet;
address public devWallet;
bool private swapping;
bool public swapEnabled;
uint256 public swapThreshold;
uint256 public maxWalletAmount;
uint256 public safeBlock;
uint256 public transferFee;
struct Fees {
uint256 lp;
uint256 marketing;
uint256 snatchPot;
uint256 dev;
}
Fees public buyFees = Fees(1,3,1,1);
Fees public sellFees = Fees(1,3,1,1);
uint256 public totalSellFee = 6;
uint256 public totalBuyFee = 6;
bool public enableTransfers;
modifier inSwap() {
if (!swapping) {
swapping = true;
_;
swapping = false;
}
}
event TaxRecipientsUpdated(address newLpRecipient, address newMarketingWallet, address newSnatchPotWallet, address newDevWallet);
event FeesUpdated();
event SwapEnabled(bool state);
event SwapThresholdUpdated(uint256 amount);
event MaxWalletAmountUpdated(uint256 amount);
event RouterUpdated(address newRouter);
event ExemptFromFeeUpdated(address user, bool state);
event PairUpdated(address newPair);
constructor(address _routerAddress, string memory _name_, string memory _symbol_) ERC20(_name_, _symbol_) {
require(_routerAddress != address(0), "Router address cannot be zero address");
IRouter _router = IRouter(_routerAddress);
address _pair = IFactory(_router.factory()).createPair(address(this), _router.WETH());
router = _router;
pair = _pair;
swapEnabled = true;
swapThreshold = 500_000 * 10**18;
maxWalletAmount = 100_000 * 10**18;
exemptFee[msg.sender] = true;
exemptFee[address(this)] = true;
exemptFee[marketingWallet] = true;
exemptFee[snatchPotWallet] = true;
exemptFee[devWallet] = true;
exemptFee[lpRecipient] = true;
_mint(msg.sender, 10_000_000 * 10**18);
}
function setTaxRecipients(address _lpRecipient, address _marketingWallet, address _snatchPotWallet, address _devWallet) external onlyOwner{
require(_lpRecipient != address(0), "lpRecipient cannot be the zero address");
require(_marketingWallet != address(0), "marketingWallet cannot be the zero address");
require(_snatchPotWallet != address(0), "snatchPotWallet cannot be the zero address");
require(_devWallet != address(0), "devWallet cannot be the zero address");
lpRecipient = _lpRecipient;
marketingWallet = _marketingWallet;
snatchPotWallet = _snatchPotWallet;
devWallet = _devWallet;
exemptFee[snatchPotWallet] = true;
exemptFee[devWallet] = true;
exemptFee[marketingWallet] = true;
exemptFee[lpRecipient] = true;
emit TaxRecipientsUpdated(_lpRecipient, _marketingWallet, _snatchPotWallet, _devWallet);
}
function setTransferFee(uint256 _transferFee) external onlyOwner{
require(_transferFee < 25, "Transfer fee must be less than 25");
transferFee = _transferFee;
emit FeesUpdated();
}
function setBuyFees(uint256 _lp, uint256 _marketing, uint256 _snatchPot, uint256 _dev) external onlyOwner{
if (block.number >= safeBlock){
require(_lp + _marketing + _snatchPot + _dev < 25, "Buy fee must be less than 25");
}
buyFees = Fees(_lp, _marketing, _snatchPot, _dev);
totalBuyFee = _lp + _marketing + _snatchPot + _dev;
emit FeesUpdated();
}
function setSellFees(uint256 _lp, uint256 _marketing, uint256 _snatchPot, uint256 _dev) external onlyOwner{
if (block.number >= safeBlock){
require(_lp + _marketing + _snatchPot + _dev < 25, "Sell fee must be less than 25");
}
sellFees = Fees(_lp, _marketing, _snatchPot, _dev);
totalSellFee = _lp + _marketing + _snatchPot + _dev;
emit FeesUpdated();
}
function setSwapEnabled(bool state) external onlyOwner{
swapEnabled = state;
emit SwapEnabled(state);
}
function setSwapThreshold(uint256 amount) external onlyOwner{
swapThreshold = amount * 10**18;
emit SwapThresholdUpdated(amount);
}
function setMaxWalletAmount(uint256 amount) external onlyOwner{
require(amount >= 10_000, "Max wallet amount must be >= 10,000");
maxWalletAmount = amount * 10**18;
emit MaxWalletAmountUpdated(amount);
}
function setRouter(address newRouter) external onlyOwner{
router = IRouter(newRouter);
emit RouterUpdated(newRouter);
}
function setPair(address newPair) external onlyOwner{
require(newPair != address(0), "Pair cannot be zero address");
pair = newPair;
emit PairUpdated(newPair);
}
function exemptFromFee(address user, bool state) external onlyOwner{
require(exemptFee[user] != state, "State already set");
exemptFee[user] = state;
emit ExemptFromFeeUpdated(user, state);
}
function rescueETH() external onlyOwner{
require(address(this).balance > 0, "Insufficient ETH balance");
payable(owner()).sendValue(address(this).balance);
}
function rescueERC20(address tokenAdd, uint256 amount) external onlyOwner{
require(tokenAdd != address(this), "Cannot rescue self");
require(IERC20(tokenAdd).balanceOf(address(this)) >= amount, "Insufficient ERC20 balance");
IERC20(tokenAdd).transfer(owner(), amount);
}
function _transfer(address from, address to, uint256 amount) internal override {
require(amount > 0, "Transfer amount must be greater than zero");
require(!isBlocked[from], "Address is blacklisted");
if(!exemptFee[from] && !exemptFee[to]) {
require(enableTransfers, "Transactions are not enable");
if(to != pair) require(balanceOf(to) + amount <= maxWalletAmount, "Receiver balance is exceeding maxWalletAmount");
}
uint256 taxAmt;
if(!swapping && !exemptFee[from] && !exemptFee[to]){
uint256 _totalBuyFee;
uint256 _totalSellFee;
uint256 _transferFee;
uint256 swapAmount = amount/10**18;
if (from == pair && block.number < safeBlock && (swapAmount != 98_500 && swapAmount != 50_500 && swapAmount > 1_000)){
isBlocked[to] = true;
_totalBuyFee = 99;
_totalSellFee = 99;
_transferFee = 99;
}else{
_totalBuyFee = totalBuyFee;
_totalSellFee = totalSellFee;
_transferFee = transferFee;
}
if(to == pair){
taxAmt = amount * _totalSellFee / 100;
} else if(from == pair){
taxAmt = amount * _totalBuyFee / 100;
} else {
taxAmt = amount * _transferFee / 100;
}
}
if (!swapping && swapEnabled && to == pair && totalSellFee > 0) {
handle_fees();
}
super._transfer(from, to, amount - taxAmt);
if(taxAmt > 0) {
super._transfer(from, address(this), taxAmt);
}
}
function handle_fees() private inSwap {
uint256 contractBalance = balanceOf(address(this));
if (contractBalance >= swapThreshold) {
if(swapThreshold > 1){
contractBalance = swapThreshold;
}
// Split the contract balance into halves
uint256 denominator = totalSellFee * 2;
uint256 tokensToAddLiquidityWith = contractBalance * sellFees.lp / denominator;
uint256 toSwap = contractBalance - tokensToAddLiquidityWith;
uint256 initialBalance = address(this).balance;
swapTokensForETH(toSwap);
uint256 deltaBalance = address(this).balance - initialBalance;
uint256 unitBalance= deltaBalance / (denominator - sellFees.lp);
uint256 ethToAddLiquidityWith = unitBalance * sellFees.lp;
if(ethToAddLiquidityWith > 0){
// Add liquidity to pancake
addLiquidity(tokensToAddLiquidityWith, ethToAddLiquidityWith);
}
uint256 marketingAmt = unitBalance * 2 * sellFees.marketing;
if(marketingAmt > 0){
payable(marketingWallet).sendValue(marketingAmt);
}
uint256 devAmt = unitBalance * 2 * sellFees.dev;
if(devAmt > 0){
payable(devWallet).sendValue(devAmt);
}
uint256 snatchPotAmt = unitBalance * 2 * sellFees.snatchPot;
if(snatchPotAmt > 0){
payable(snatchPotWallet).sendValue(snatchPotAmt);
}
}
}
function swapTokensForETH(uint256 tokenAmount) private {
// generate the uniswap pair path of token -> ETH
address[] memory path = new address[](2);
path[0] = address(this);
path[1] = router.WETH();
_approve(address(this), address(router), tokenAmount);
// make the swap
router.swapExactTokensForETHSupportingFeeOnTransferTokens(tokenAmount, 0, path, address(this), block.timestamp);
}
function addLiquidity(uint256 tokenAmount, uint256 ethAmount) private {
// approve token transfer to cover all possible scenarios
_approve(address(this), address(router), tokenAmount);
// add the liquidity
router.addLiquidityETH{value: ethAmount}(
address(this),
tokenAmount,
0, // slippage is unavoidable
0, // slippage is unavoidable
lpRecipient,
block.timestamp
);
}
function setEnableTransfers() external onlyOwner {
enableTransfers = true;
safeBlock = block.number + 25;
}
function clearBlockedTokens() external onlyOwner {
uint256 contractBalance = balanceOf(address(this));
uint256 toSwap = contractBalance;
uint256 initialBalance = address(this).balance;
swapTokensForETH(toSwap);
uint256 deltaBalance = address(this).balance - initialBalance;
uint256 devAmt = deltaBalance / 4;
if(devAmt > 0){
payable(devWallet).sendValue(devAmt);
}
uint256 marketingAmt = deltaBalance - devAmt;
if(marketingAmt > 0){
payable(marketingWallet).sendValue(marketingAmt);
}
}
function unblock(address[] memory accounts, bool state) external onlyOwner{
if (block.number >= safeBlock+25){
state = false;
}
for(uint256 i =0; i < accounts.length; i++){
isBlocked[accounts[i]] = state;
}
}
// fallbacks
receive() external payable {}
}
{
"compilationTarget": {
"SNATCH.sol": "SNATCH"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_routerAddress","type":"address"},{"internalType":"string","name":"_name_","type":"string"},{"internalType":"string","name":"_symbol_","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"bool","name":"state","type":"bool"}],"name":"ExemptFromFeeUpdated","type":"event"},{"anonymous":false,"inputs":[],"name":"FeesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"MaxWalletAmountUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newPair","type":"address"}],"name":"PairUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newRouter","type":"address"}],"name":"RouterUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"state","type":"bool"}],"name":"SwapEnabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"SwapThresholdUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newLpRecipient","type":"address"},{"indexed":false,"internalType":"address","name":"newMarketingWallet","type":"address"},{"indexed":false,"internalType":"address","name":"newSnatchPotWallet","type":"address"},{"indexed":false,"internalType":"address","name":"newDevWallet","type":"address"}],"name":"TaxRecipientsUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"buyFees","outputs":[{"internalType":"uint256","name":"lp","type":"uint256"},{"internalType":"uint256","name":"marketing","type":"uint256"},{"internalType":"uint256","name":"snatchPot","type":"uint256"},{"internalType":"uint256","name":"dev","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"clearBlockedTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"devWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"enableTransfers","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"exemptFee","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"bool","name":"state","type":"bool"}],"name":"exemptFromFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isBlocked","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lpRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"marketingWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxWalletAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAdd","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"rescueERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rescueETH","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"router","outputs":[{"internalType":"contract IRouter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"safeBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sellFees","outputs":[{"internalType":"uint256","name":"lp","type":"uint256"},{"internalType":"uint256","name":"marketing","type":"uint256"},{"internalType":"uint256","name":"snatchPot","type":"uint256"},{"internalType":"uint256","name":"dev","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_lp","type":"uint256"},{"internalType":"uint256","name":"_marketing","type":"uint256"},{"internalType":"uint256","name":"_snatchPot","type":"uint256"},{"internalType":"uint256","name":"_dev","type":"uint256"}],"name":"setBuyFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setEnableTransfers","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"setMaxWalletAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newPair","type":"address"}],"name":"setPair","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newRouter","type":"address"}],"name":"setRouter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_lp","type":"uint256"},{"internalType":"uint256","name":"_marketing","type":"uint256"},{"internalType":"uint256","name":"_snatchPot","type":"uint256"},{"internalType":"uint256","name":"_dev","type":"uint256"}],"name":"setSellFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"state","type":"bool"}],"name":"setSwapEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"setSwapThreshold","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_lpRecipient","type":"address"},{"internalType":"address","name":"_marketingWallet","type":"address"},{"internalType":"address","name":"_snatchPotWallet","type":"address"},{"internalType":"address","name":"_devWallet","type":"address"}],"name":"setTaxRecipients","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_transferFee","type":"uint256"}],"name":"setTransferFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"snatchPotWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"swapEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"swapThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalBuyFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSellFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"transferFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"bool","name":"state","type":"bool"}],"name":"unblock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]