账户
0xb3...0531
0xb3...0531

0xb3...0531

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.19+commit.7dd6d404
语言
Solidity
合同源代码
文件 1 的 27:AdapterCallback.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.19;

import '@uniswap/v3-periphery/contracts/libraries/TransferHelper.sol';

import './RouterStorage.sol';

struct AdapterCallbackData {
  address payer;
  address tokenIn;
  uint256 dexIndex;
}

abstract contract AdapterCallback is RouterStorage {
  /// @inheritdoc IMarginlyRouter
  function adapterCallback(address recipient, uint256 amount, bytes calldata _data) external {
    AdapterCallbackData memory data = abi.decode(_data, (AdapterCallbackData));
    require(msg.sender == adapters[data.dexIndex]);
    TransferHelper.safeTransferFrom(data.tokenIn, data.payer, recipient, amount);
  }
}
合同源代码
文件 2 的 27:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
合同源代码
文件 3 的 27:Errors.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

library Errors {
    // BulkSeller
    error BulkInsufficientSyForTrade(uint256 currentAmount, uint256 requiredAmount);
    error BulkInsufficientTokenForTrade(uint256 currentAmount, uint256 requiredAmount);
    error BulkInSufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut);
    error BulkInSufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
    error BulkInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance);
    error BulkNotMaintainer();
    error BulkNotAdmin();
    error BulkSellerAlreadyExisted(address token, address SY, address bulk);
    error BulkSellerInvalidToken(address token, address SY);
    error BulkBadRateTokenToSy(uint256 actualRate, uint256 currentRate, uint256 eps);
    error BulkBadRateSyToToken(uint256 actualRate, uint256 currentRate, uint256 eps);

    // APPROX
    error ApproxFail();
    error ApproxParamsInvalid(uint256 guessMin, uint256 guessMax, uint256 eps);
    error ApproxBinarySearchInputInvalid(
        uint256 approxGuessMin,
        uint256 approxGuessMax,
        uint256 minGuessMin,
        uint256 maxGuessMax
    );

    // MARKET + MARKET MATH CORE
    error MarketExpired();
    error MarketZeroAmountsInput();
    error MarketZeroAmountsOutput();
    error MarketZeroLnImpliedRate();
    error MarketInsufficientPtForTrade(int256 currentAmount, int256 requiredAmount);
    error MarketInsufficientPtReceived(uint256 actualBalance, uint256 requiredBalance);
    error MarketInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance);
    error MarketZeroTotalPtOrTotalAsset(int256 totalPt, int256 totalAsset);
    error MarketExchangeRateBelowOne(int256 exchangeRate);
    error MarketProportionMustNotEqualOne();
    error MarketRateScalarBelowZero(int256 rateScalar);
    error MarketScalarRootBelowZero(int256 scalarRoot);
    error MarketProportionTooHigh(int256 proportion, int256 maxProportion);

    error OracleUninitialized();
    error OracleTargetTooOld(uint32 target, uint32 oldest);
    error OracleZeroCardinality();

    error MarketFactoryExpiredPt();
    error MarketFactoryInvalidPt();
    error MarketFactoryMarketExists();

    error MarketFactoryLnFeeRateRootTooHigh(uint80 lnFeeRateRoot, uint256 maxLnFeeRateRoot);
    error MarketFactoryOverriddenFeeTooHigh(uint80 overriddenFee, uint256 marketLnFeeRateRoot);
    error MarketFactoryReserveFeePercentTooHigh(uint8 reserveFeePercent, uint8 maxReserveFeePercent);
    error MarketFactoryZeroTreasury();
    error MarketFactoryInitialAnchorTooLow(int256 initialAnchor, int256 minInitialAnchor);
    error MFNotPendleMarket(address addr);

    // ROUTER
    error RouterInsufficientLpOut(uint256 actualLpOut, uint256 requiredLpOut);
    error RouterInsufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut);
    error RouterInsufficientPtOut(uint256 actualPtOut, uint256 requiredPtOut);
    error RouterInsufficientYtOut(uint256 actualYtOut, uint256 requiredYtOut);
    error RouterInsufficientPYOut(uint256 actualPYOut, uint256 requiredPYOut);
    error RouterInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
    error RouterInsufficientSyRepay(uint256 actualSyRepay, uint256 requiredSyRepay);
    error RouterInsufficientPtRepay(uint256 actualPtRepay, uint256 requiredPtRepay);
    error RouterNotAllSyUsed(uint256 netSyDesired, uint256 netSyUsed);

    error RouterTimeRangeZero();
    error RouterCallbackNotPendleMarket(address caller);
    error RouterInvalidAction(bytes4 selector);
    error RouterInvalidFacet(address facet);

    error RouterKyberSwapDataZero();

    error SimulationResults(bool success, bytes res);

    // YIELD CONTRACT
    error YCExpired();
    error YCNotExpired();
    error YieldContractInsufficientSy(uint256 actualSy, uint256 requiredSy);
    error YCNothingToRedeem();
    error YCPostExpiryDataNotSet();
    error YCNoFloatingSy();

    // YieldFactory
    error YCFactoryInvalidExpiry();
    error YCFactoryYieldContractExisted();
    error YCFactoryZeroExpiryDivisor();
    error YCFactoryZeroTreasury();
    error YCFactoryInterestFeeRateTooHigh(uint256 interestFeeRate, uint256 maxInterestFeeRate);
    error YCFactoryRewardFeeRateTooHigh(uint256 newRewardFeeRate, uint256 maxRewardFeeRate);

    // SY
    error SYInvalidTokenIn(address token);
    error SYInvalidTokenOut(address token);
    error SYZeroDeposit();
    error SYZeroRedeem();
    error SYInsufficientSharesOut(uint256 actualSharesOut, uint256 requiredSharesOut);
    error SYInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);

    // SY-specific
    error SYQiTokenMintFailed(uint256 errCode);
    error SYQiTokenRedeemFailed(uint256 errCode);
    error SYQiTokenRedeemRewardsFailed(uint256 rewardAccruedType0, uint256 rewardAccruedType1);
    error SYQiTokenBorrowRateTooHigh(uint256 borrowRate, uint256 borrowRateMax);

    error SYCurveInvalidPid();
    error SYCurve3crvPoolNotFound();

    error SYApeDepositAmountTooSmall(uint256 amountDeposited);
    error SYBalancerInvalidPid();
    error SYInvalidRewardToken(address token);

    error SYStargateRedeemCapExceeded(uint256 amountLpDesired, uint256 amountLpRedeemable);

    error SYBalancerReentrancy();

    error NotFromTrustedRemote(uint16 srcChainId, bytes path);

    error ApxETHNotEnoughBuffer();

    // Liquidity Mining
    error VCInactivePool(address pool);
    error VCPoolAlreadyActive(address pool);
    error VCZeroVePendle(address user);
    error VCExceededMaxWeight(uint256 totalWeight, uint256 maxWeight);
    error VCEpochNotFinalized(uint256 wTime);
    error VCPoolAlreadyAddAndRemoved(address pool);

    error VEInvalidNewExpiry(uint256 newExpiry);
    error VEExceededMaxLockTime();
    error VEInsufficientLockTime();
    error VENotAllowedReduceExpiry();
    error VEZeroAmountLocked();
    error VEPositionNotExpired();
    error VEZeroPosition();
    error VEZeroSlope(uint128 bias, uint128 slope);
    error VEReceiveOldSupply(uint256 msgTime);

    error GCNotPendleMarket(address caller);
    error GCNotVotingController(address caller);

    error InvalidWTime(uint256 wTime);
    error ExpiryInThePast(uint256 expiry);
    error ChainNotSupported(uint256 chainId);

    error FDTotalAmountFundedNotMatch(uint256 actualTotalAmount, uint256 expectedTotalAmount);
    error FDEpochLengthMismatch();
    error FDInvalidPool(address pool);
    error FDPoolAlreadyExists(address pool);
    error FDInvalidNewFinishedEpoch(uint256 oldFinishedEpoch, uint256 newFinishedEpoch);
    error FDInvalidStartEpoch(uint256 startEpoch);
    error FDInvalidWTimeFund(uint256 lastFunded, uint256 wTime);
    error FDFutureFunding(uint256 lastFunded, uint256 currentWTime);

    error BDInvalidEpoch(uint256 epoch, uint256 startTime);

    // Cross-Chain
    error MsgNotFromSendEndpoint(uint16 srcChainId, bytes path);
    error MsgNotFromReceiveEndpoint(address sender);
    error InsufficientFeeToSendMsg(uint256 currentFee, uint256 requiredFee);
    error ApproxDstExecutionGasNotSet();
    error InvalidRetryData();

    // GENERIC MSG
    error ArrayLengthMismatch();
    error ArrayEmpty();
    error ArrayOutOfBounds();
    error ZeroAddress();
    error FailedToSendEther();
    error InvalidMerkleProof();

    error OnlyLayerZeroEndpoint();
    error OnlyYT();
    error OnlyYCFactory();
    error OnlyWhitelisted();

    // Swap Aggregator
    error SAInsufficientTokenIn(address tokenIn, uint256 amountExpected, uint256 amountActual);
    error UnsupportedSelector(uint256 aggregatorType, bytes4 selector);
}
合同源代码
文件 4 的 27:IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
合同源代码
文件 5 的 27:IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
合同源代码
文件 6 的 27:IMarginlyAdapter.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.19;

interface IMarginlyAdapter {
  error InsufficientAmount();
  error TooMuchRequested();
  error NotSupported();

  /// @notice swap with exact input
  /// @param recipient recipient of amountOut of tokenOut
  /// @param tokenIn address of a token to swap on dex
  /// @param tokenOut address of a token to receive from dex
  /// @param amountIn exact amount of tokenIn to swap
  /// @param minAmountOut minimal amount of tokenOut to receive
  /// @param data data for AdapterCallback
  function swapExactInput(
    address recipient,
    address tokenIn,
    address tokenOut,
    uint256 amountIn,
    uint256 minAmountOut,
    bytes calldata data
  ) external returns (uint256 amountOut);

  /// @notice swap with exact output
  /// @param recipient recipient of amountOut of tokenOut
  /// @param tokenIn address of a token to swap on dex
  /// @param tokenOut address of a token to receive from dex
  /// @param maxAmountIn maximal amount of tokenIn to swap
  /// @param amountOut exact amount of tokenOut to receive
  /// @param data data for AdapterCallback
  function swapExactOutput(
    address recipient,
    address tokenIn,
    address tokenOut,
    uint256 maxAmountIn,
    uint256 amountOut,
    bytes calldata data
  ) external returns (uint256 amountIn);
}
合同源代码
文件 7 的 27:IMarginlyRouter.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.19;

import '../abstract/AdapterCallback.sol';
import '../abstract/RouterStorage.sol';

interface IMarginlyRouter {
  /// @notice Emitted when swap with zero input or output was called
  error ZeroAmount();
  /// @notice Emitted if balance difference doesn't equal amountOut
  error WrongAmountOut();
  /// @notice Emitted when trying to renounce ownership
  error Forbidden();

  /// @notice Emitted when swap happened
  /// @param isExactInput true if swapExactInput, false if swapExactOutput
  /// @param dexIndex index of the dex used for swap
  /// @param receiver swap result receiver
  /// @param tokenIn address of a token swapped on dex
  /// @param tokenOut address of a token received from dex
  /// @param amountIn amount of tokenIn swapped
  /// @param amountOut amount of tokenOut received
  event Swap(
    bool isExactInput,
    uint256 dexIndex,
    address indexed receiver,
    address indexed tokenIn,
    address indexed tokenOut,
    uint256 amountIn,
    uint256 amountOut
  );

  /// @notice swap with exact input
  /// @param swapCalldata calldata for multiple swaps
  /// @param tokenIn address of a token to swap on dex
  /// @param tokenOut address of a token to receive from dex
  /// @param amountIn exact amount of tokenIn to swap
  /// @param minAmountOut minimal amount of tokenOut to receive
  /// @param amountOut resulting amount of tokenOut output
  function swapExactInput(
    uint256 swapCalldata,
    address tokenIn,
    address tokenOut,
    uint256 amountIn,
    uint256 minAmountOut
  ) external returns (uint256 amountOut);

  /// @notice swap with exact output
  /// @param swapCalldata calldata for multiple swaps
  /// @param tokenIn address of a token to swap on dex
  /// @param tokenOut address of a token to receive from dex
  /// @param maxAmountIn maximal amount of tokenIn to swap
  /// @param amountOut exact amount of tokenOut to receive
  /// @param amountIn resulting amount of tokenIn input
  function swapExactOutput(
    uint256 swapCalldata,
    address tokenIn,
    address tokenOut,
    uint256 maxAmountIn,
    uint256 amountOut
  ) external returns (uint256 amountIn);

  /// @notice this function can be called by known adapters only
  /// @param recipient to whom transfer the tokens from swap initiator
  /// @param amount amount of tokens to transfer
  /// @param data callback data with transfer details and info to verify sender
  function adapterCallback(address recipient, uint256 amount, bytes calldata data) external;
}
合同源代码
文件 8 的 27:IPGauge.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

interface IPGauge {
    function totalActiveSupply() external view returns (uint256);

    function activeBalance(address user) external view returns (uint256);

    // only available for newer factories. please check the verified contracts
    event RedeemRewards(address indexed user, uint256[] rewardsOut);
}
合同源代码
文件 9 的 27:IPInterestManagerYT.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

interface IPInterestManagerYT {
    event CollectInterestFee(uint256 amountInterestFee);

    function userInterest(address user) external view returns (uint128 lastPYIndex, uint128 accruedInterest);
}
合同源代码
文件 10 的 27:IPMarket.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IPPrincipalToken.sol";
import "./IPYieldToken.sol";
import "./IStandardizedYield.sol";
import "./IPGauge.sol";
import "../core/Market/MarketMathCore.sol";

interface IPMarket is IERC20Metadata, IPGauge {
    event Mint(address indexed receiver, uint256 netLpMinted, uint256 netSyUsed, uint256 netPtUsed);

    event Burn(
        address indexed receiverSy,
        address indexed receiverPt,
        uint256 netLpBurned,
        uint256 netSyOut,
        uint256 netPtOut
    );

    event Swap(
        address indexed caller,
        address indexed receiver,
        int256 netPtOut,
        int256 netSyOut,
        uint256 netSyFee,
        uint256 netSyToReserve
    );

    event UpdateImpliedRate(uint256 indexed timestamp, uint256 lnLastImpliedRate);

    event IncreaseObservationCardinalityNext(
        uint16 observationCardinalityNextOld,
        uint16 observationCardinalityNextNew
    );

    function mint(
        address receiver,
        uint256 netSyDesired,
        uint256 netPtDesired
    ) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed);

    function burn(
        address receiverSy,
        address receiverPt,
        uint256 netLpToBurn
    ) external returns (uint256 netSyOut, uint256 netPtOut);

    function swapExactPtForSy(
        address receiver,
        uint256 exactPtIn,
        bytes calldata data
    ) external returns (uint256 netSyOut, uint256 netSyFee);

    function swapSyForExactPt(
        address receiver,
        uint256 exactPtOut,
        bytes calldata data
    ) external returns (uint256 netSyIn, uint256 netSyFee);

    function redeemRewards(address user) external returns (uint256[] memory);

    function readState(address router) external view returns (MarketState memory market);

    function observe(uint32[] memory secondsAgos) external view returns (uint216[] memory lnImpliedRateCumulative);

    function increaseObservationsCardinalityNext(uint16 cardinalityNext) external;

    function readTokens() external view returns (IStandardizedYield _SY, IPPrincipalToken _PT, IPYieldToken _YT);

    function getRewardTokens() external view returns (address[] memory);

    function isExpired() external view returns (bool);

    function expiry() external view returns (uint256);

    function observations(
        uint256 index
    ) external view returns (uint32 blockTimestamp, uint216 lnImpliedRateCumulative, bool initialized);

    function _storage()
        external
        view
        returns (
            int128 totalPt,
            int128 totalSy,
            uint96 lastLnImpliedRate,
            uint16 observationIndex,
            uint16 observationCardinality,
            uint16 observationCardinalityNext
        );
}
合同源代码
文件 11 的 27:IPPrincipalToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

interface IPPrincipalToken is IERC20Metadata {
    function burnByYT(address user, uint256 amount) external;

    function mintByYT(address user, uint256 amount) external;

    function initialize(address _YT) external;

    function SY() external view returns (address);

    function YT() external view returns (address);

    function factory() external view returns (address);

    function expiry() external view returns (uint256);

    function isExpired() external view returns (bool);
}
合同源代码
文件 12 的 27:IPYieldToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IRewardManager.sol";
import "./IPInterestManagerYT.sol";

interface IPYieldToken is IERC20Metadata, IRewardManager, IPInterestManagerYT {
    event NewInterestIndex(uint256 indexed newIndex);

    event Mint(
        address indexed caller,
        address indexed receiverPT,
        address indexed receiverYT,
        uint256 amountSyToMint,
        uint256 amountPYOut
    );

    event Burn(address indexed caller, address indexed receiver, uint256 amountPYToRedeem, uint256 amountSyOut);

    event RedeemRewards(address indexed user, uint256[] amountRewardsOut);

    event RedeemInterest(address indexed user, uint256 interestOut);

    event CollectRewardFee(address indexed rewardToken, uint256 amountRewardFee);

    function mintPY(address receiverPT, address receiverYT) external returns (uint256 amountPYOut);

    function redeemPY(address receiver) external returns (uint256 amountSyOut);

    function redeemPYMulti(
        address[] calldata receivers,
        uint256[] calldata amountPYToRedeems
    ) external returns (uint256[] memory amountSyOuts);

    function redeemDueInterestAndRewards(
        address user,
        bool redeemInterest,
        bool redeemRewards
    ) external returns (uint256 interestOut, uint256[] memory rewardsOut);

    function rewardIndexesCurrent() external returns (uint256[] memory);

    function pyIndexCurrent() external returns (uint256);

    function pyIndexStored() external view returns (uint256);

    function getRewardTokens() external view returns (address[] memory);

    function SY() external view returns (address);

    function PT() external view returns (address);

    function factory() external view returns (address);

    function expiry() external view returns (uint256);

    function isExpired() external view returns (bool);

    function doCacheIndexSameBlock() external view returns (bool);

    function pyIndexLastUpdatedBlock() external view returns (uint128);
}
合同源代码
文件 13 的 27:IRewardManager.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

interface IRewardManager {
    function userReward(address token, address user) external view returns (uint128 index, uint128 accrued);
}
合同源代码
文件 14 的 27:IStandardizedYield.sol
// SPDX-License-Identifier: GPL-3.0-or-later
/*
 * MIT License
 * ===========
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 */

pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

interface IStandardizedYield is IERC20Metadata {
    /// @dev Emitted when any base tokens is deposited to mint shares
    event Deposit(
        address indexed caller,
        address indexed receiver,
        address indexed tokenIn,
        uint256 amountDeposited,
        uint256 amountSyOut
    );

    /// @dev Emitted when any shares are redeemed for base tokens
    event Redeem(
        address indexed caller,
        address indexed receiver,
        address indexed tokenOut,
        uint256 amountSyToRedeem,
        uint256 amountTokenOut
    );

    /// @dev check `assetInfo()` for more information
    enum AssetType {
        TOKEN,
        LIQUIDITY
    }

    /// @dev Emitted when (`user`) claims their rewards
    event ClaimRewards(address indexed user, address[] rewardTokens, uint256[] rewardAmounts);

    /**
     * @notice mints an amount of shares by depositing a base token.
     * @param receiver shares recipient address
     * @param tokenIn address of the base tokens to mint shares
     * @param amountTokenToDeposit amount of base tokens to be transferred from (`msg.sender`)
     * @param minSharesOut reverts if amount of shares minted is lower than this
     * @return amountSharesOut amount of shares minted
     * @dev Emits a {Deposit} event
     *
     * Requirements:
     * - (`tokenIn`) must be a valid base token.
     */
    function deposit(
        address receiver,
        address tokenIn,
        uint256 amountTokenToDeposit,
        uint256 minSharesOut
    ) external payable returns (uint256 amountSharesOut);

    /**
     * @notice redeems an amount of base tokens by burning some shares
     * @param receiver recipient address
     * @param amountSharesToRedeem amount of shares to be burned
     * @param tokenOut address of the base token to be redeemed
     * @param minTokenOut reverts if amount of base token redeemed is lower than this
     * @param burnFromInternalBalance if true, burns from balance of `address(this)`, otherwise burns from `msg.sender`
     * @return amountTokenOut amount of base tokens redeemed
     * @dev Emits a {Redeem} event
     *
     * Requirements:
     * - (`tokenOut`) must be a valid base token.
     */
    function redeem(
        address receiver,
        uint256 amountSharesToRedeem,
        address tokenOut,
        uint256 minTokenOut,
        bool burnFromInternalBalance
    ) external returns (uint256 amountTokenOut);

    /**
     * @notice exchangeRate * syBalance / 1e18 must return the asset balance of the account
     * @notice vice-versa, if a user uses some amount of tokens equivalent to X asset, the amount of sy
     he can mint must be X * exchangeRate / 1e18
     * @dev SYUtils's assetToSy & syToAsset should be used instead of raw multiplication
     & division
     */
    function exchangeRate() external view returns (uint256 res);

    /**
     * @notice claims reward for (`user`)
     * @param user the user receiving their rewards
     * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens`
     * @dev
     * Emits a `ClaimRewards` event
     * See {getRewardTokens} for list of reward tokens
     */
    function claimRewards(address user) external returns (uint256[] memory rewardAmounts);

    /**
     * @notice get the amount of unclaimed rewards for (`user`)
     * @param user the user to check for
     * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens`
     */
    function accruedRewards(address user) external view returns (uint256[] memory rewardAmounts);

    function rewardIndexesCurrent() external returns (uint256[] memory indexes);

    function rewardIndexesStored() external view returns (uint256[] memory indexes);

    /**
     * @notice returns the list of reward token addresses
     */
    function getRewardTokens() external view returns (address[] memory);

    /**
     * @notice returns the address of the underlying yield token
     */
    function yieldToken() external view returns (address);

    /**
     * @notice returns all tokens that can mint this SY
     */
    function getTokensIn() external view returns (address[] memory res);

    /**
     * @notice returns all tokens that can be redeemed by this SY
     */
    function getTokensOut() external view returns (address[] memory res);

    function isValidTokenIn(address token) external view returns (bool);

    function isValidTokenOut(address token) external view returns (bool);

    function previewDeposit(
        address tokenIn,
        uint256 amountTokenToDeposit
    ) external view returns (uint256 amountSharesOut);

    function previewRedeem(
        address tokenOut,
        uint256 amountSharesToRedeem
    ) external view returns (uint256 amountTokenOut);

    /**
     * @notice This function contains information to interpret what the asset is
     * @return assetType the type of the asset (0 for ERC20 tokens, 1 for AMM liquidity tokens,
        2 for bridged yield bearing tokens like wstETH, rETH on Arbi whose the underlying asset doesn't exist on the chain)
     * @return assetAddress the address of the asset
     * @return assetDecimals the decimals of the asset
     */
    function assetInfo() external view returns (AssetType assetType, address assetAddress, uint8 assetDecimals);
}
合同源代码
文件 15 的 27:LogExpMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity ^0.8.0;

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        unchecked {
            require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent");

            if (x < 0) {
                // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
                // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
                // Fixed point division requires multiplying by ONE_18.
                return ((ONE_18 * ONE_18) / exp(-x));
            }

            // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
            // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
            // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
            // decomposition.
            // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
            // decomposition, which will be lower than the smallest x_n.
            // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
            // We mutate x by subtracting x_n, making it the remainder of the decomposition.

            // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
            // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
            // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
            // decomposition.

            // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
            // it and compute the accumulated product.

            int256 firstAN;
            if (x >= x0) {
                x -= x0;
                firstAN = a0;
            } else if (x >= x1) {
                x -= x1;
                firstAN = a1;
            } else {
                firstAN = 1; // One with no decimal places
            }

            // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
            // smaller terms.
            x *= 100;

            // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
            // one. Recall that fixed point multiplication requires dividing by ONE_20.
            int256 product = ONE_20;

            if (x >= x2) {
                x -= x2;
                product = (product * a2) / ONE_20;
            }
            if (x >= x3) {
                x -= x3;
                product = (product * a3) / ONE_20;
            }
            if (x >= x4) {
                x -= x4;
                product = (product * a4) / ONE_20;
            }
            if (x >= x5) {
                x -= x5;
                product = (product * a5) / ONE_20;
            }
            if (x >= x6) {
                x -= x6;
                product = (product * a6) / ONE_20;
            }
            if (x >= x7) {
                x -= x7;
                product = (product * a7) / ONE_20;
            }
            if (x >= x8) {
                x -= x8;
                product = (product * a8) / ONE_20;
            }
            if (x >= x9) {
                x -= x9;
                product = (product * a9) / ONE_20;
            }

            // x10 and x11 are unnecessary here since we have high enough precision already.

            // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
            // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

            int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
            int256 term; // Each term in the sum, where the nth term is (x^n / n!).

            // The first term is simply x.
            term = x;
            seriesSum += term;

            // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
            // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

            term = ((term * x) / ONE_20) / 2;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 3;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 4;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 5;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 6;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 7;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 8;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 9;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 10;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 11;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 12;
            seriesSum += term;

            // 12 Taylor terms are sufficient for 18 decimal precision.

            // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
            // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
            // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
            // and then drop two digits to return an 18 decimal value.

            return (((product * seriesSum) / ONE_20) * firstAN) / 100;
        }
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        unchecked {
            // The real natural logarithm is not defined for negative numbers or zero.
            require(a > 0, "out of bounds");
            if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
                return _ln_36(a) / ONE_18;
            } else {
                return _ln(a);
            }
        }
    }

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        unchecked {
            if (y == 0) {
                // We solve the 0^0 indetermination by making it equal one.
                return uint256(ONE_18);
            }

            if (x == 0) {
                return 0;
            }

            // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
            // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
            // x^y = exp(y * ln(x)).

            // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
            require(x < 2 ** 255, "x out of bounds");
            int256 x_int256 = int256(x);

            // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
            // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

            // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
            require(y < MILD_EXPONENT_BOUND, "y out of bounds");
            int256 y_int256 = int256(y);

            int256 logx_times_y;
            if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
                int256 ln_36_x = _ln_36(x_int256);

                // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
                // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
                // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
                // (downscaled) last 18 decimals.
                logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
            } else {
                logx_times_y = _ln(x_int256) * y_int256;
            }
            logx_times_y /= ONE_18;

            // Finally, we compute exp(y * ln(x)) to arrive at x^y
            require(
                MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
                "product out of bounds"
            );

            return uint256(exp(logx_times_y));
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        unchecked {
            if (a < ONE_18) {
                // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
                // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
                // Fixed point division requires multiplying by ONE_18.
                return (-_ln((ONE_18 * ONE_18) / a));
            }

            // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
            // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
            // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
            // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
            // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
            // decomposition, which will be lower than the smallest a_n.
            // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
            // We mutate a by subtracting a_n, making it the remainder of the decomposition.

            // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
            // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
            // ONE_18 to convert them to fixed point.
            // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
            // by it and compute the accumulated sum.

            int256 sum = 0;
            if (a >= a0 * ONE_18) {
                a /= a0; // Integer, not fixed point division
                sum += x0;
            }

            if (a >= a1 * ONE_18) {
                a /= a1; // Integer, not fixed point division
                sum += x1;
            }

            // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
            sum *= 100;
            a *= 100;

            // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

            if (a >= a2) {
                a = (a * ONE_20) / a2;
                sum += x2;
            }

            if (a >= a3) {
                a = (a * ONE_20) / a3;
                sum += x3;
            }

            if (a >= a4) {
                a = (a * ONE_20) / a4;
                sum += x4;
            }

            if (a >= a5) {
                a = (a * ONE_20) / a5;
                sum += x5;
            }

            if (a >= a6) {
                a = (a * ONE_20) / a6;
                sum += x6;
            }

            if (a >= a7) {
                a = (a * ONE_20) / a7;
                sum += x7;
            }

            if (a >= a8) {
                a = (a * ONE_20) / a8;
                sum += x8;
            }

            if (a >= a9) {
                a = (a * ONE_20) / a9;
                sum += x9;
            }

            if (a >= a10) {
                a = (a * ONE_20) / a10;
                sum += x10;
            }

            if (a >= a11) {
                a = (a * ONE_20) / a11;
                sum += x11;
            }

            // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
            // that converges rapidly for values of `a` close to one - the same one used in ln_36.
            // Let z = (a - 1) / (a + 1).
            // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
            // division by ONE_20.
            int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
            int256 z_squared = (z * z) / ONE_20;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_20;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 11;

            // 6 Taylor terms are sufficient for 36 decimal precision.

            // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
            seriesSum *= 2;

            // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
            // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
            // value.

            return (sum + seriesSum) / 100;
        }
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        unchecked {
            // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
            // worthwhile.

            // First, we transform x to a 36 digit fixed point value.
            x *= ONE_18;

            // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
            // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
            // division by ONE_36.
            int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
            int256 z_squared = (z * z) / ONE_36;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_36;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 11;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 13;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 15;

            // 8 Taylor terms are sufficient for 36 decimal precision.

            // All that remains is multiplying by 2 (non fixed point).
            return seriesSum * 2;
        }
    }
}
合同源代码
文件 16 的 27:MarketApproxLib.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "../../core/libraries/math/PMath.sol";
import "../../core/Market/MarketMathCore.sol";

struct ApproxParams {
    uint256 guessMin;
    uint256 guessMax;
    uint256 guessOffchain; // pass 0 in to skip this variable
    uint256 maxIteration; // every iteration, the diff between guessMin and guessMax will be divided by 2
    uint256 eps; // the max eps between the returned result & the correct result, base 1e18. Normally this number will be set
    // to 1e15 (1e18/1000 = 0.1%)
}

/// Further explanation of the eps. Take swapExactSyForPt for example. To calc the corresponding amount of Pt to swap out,
/// it's necessary to run an approximation algorithm, because by default there only exists the Pt to Sy formula
/// To approx, the 5 values above will have to be provided, and the approx process will run as follows:
/// mid = (guessMin + guessMax) / 2 // mid here is the current guess of the amount of Pt out
/// netSyNeed = calcSwapSyForExactPt(mid)
/// if (netSyNeed > exactSyIn) guessMax = mid - 1 // since the maximum Sy in can't exceed the exactSyIn
/// else guessMin = mid (1)
/// For the (1), since netSyNeed <= exactSyIn, the result might be usable. If the netSyNeed is within eps of
/// exactSyIn (ex eps=0.1% => we have used 99.9% the amount of Sy specified), mid will be chosen as the final guess result

/// for guessOffchain, this is to provide a shortcut to guessing. The offchain SDK can precalculate the exact result
/// before the tx is sent. When the tx reaches the contract, the guessOffchain will be checked first, and if it satisfies the
/// approximation, it will be used (and save all the guessing). It's expected that this shortcut will be used in most cases
/// except in cases that there is a trade in the same market right before the tx

library MarketApproxPtInLib {
    using MarketMathCore for MarketState;
    using PYIndexLib for PYIndex;
    using PMath for uint256;
    using PMath for int256;
    using LogExpMath for int256;

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swap in
     *     - Try swapping & get netSyOut
     *     - Stop when netSyOut greater & approx minSyOut
     *     - guess & approx is for netPtIn
     */
    function approxSwapPtForExactSy(
        MarketState memory market,
        PYIndex index,
        uint256 minSyOut,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256, /*netPtIn*/ uint256, /*netSyOut*/ uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            // no limit on min
            approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);
            (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess);

            if (netSyOut >= minSyOut) {
                if (PMath.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) {
                    return (guess, netSyOut, netSyFee);
                }
                approx.guessMax = guess;
            } else {
                approx.guessMin = guess;
            }
        }
        revert Errors.ApproxFail();
    }

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swap in
     *     - Flashswap the corresponding amount of SY out
     *     - Pair those amount with exactSyIn SY to tokenize into PT & YT
     *     - PT to repay the flashswap, YT transferred to user
     *     - Stop when the amount of SY to be pulled to tokenize PT to repay loan approx the exactSyIn
     *     - guess & approx is for netYtOut (also netPtIn)
     */
    function approxSwapExactSyForYt(
        MarketState memory market,
        PYIndex index,
        uint256 exactSyIn,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256, /*netYtOut*/ uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            approx.guessMin = PMath.max(approx.guessMin, index.syToAsset(exactSyIn));
            approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp));
            validateApprox(approx);
        }

        // at minimum we will flashswap exactSyIn since we have enough SY to payback the PT loan

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess);

            uint256 netSyToTokenizePt = index.assetToSyUp(guess);

            // for sure netSyToTokenizePt >= netSyOut since we are swapping PT to SY
            uint256 netSyToPull = netSyToTokenizePt - netSyOut;

            if (netSyToPull <= exactSyIn) {
                if (PMath.isASmallerApproxB(netSyToPull, exactSyIn, approx.eps)) {
                    return (guess, netSyFee);
                }
                approx.guessMin = guess;
            } else {
                approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    struct Args5 {
        MarketState market;
        PYIndex index;
        uint256 totalPtIn;
        uint256 netSyHolding;
        uint256 blockTime;
        ApproxParams approx;
    }

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swap to SY
     *     - Swap PT to SY
     *     - Pair the remaining PT with the SY to add liquidity
     *     - Stop when the ratio of PT / totalPt & SY / totalSy is approx
     *     - guess & approx is for netPtSwap
     */
    function approxSwapPtToAddLiquidity(
        MarketState memory _market,
        PYIndex _index,
        uint256 _totalPtIn,
        uint256 _netSyHolding,
        uint256 _blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256, /*netPtSwap*/ uint256, /*netSyFromSwap*/ uint256 /*netSyFee*/) {
        Args5 memory a = Args5(_market, _index, _totalPtIn, _netSyHolding, _blockTime, approx);
        MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);
        if (approx.guessOffchain == 0) {
            // no limit on min
            approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(a.market, comp));
            approx.guessMax = PMath.min(approx.guessMax, a.totalPtIn);
            validateApprox(approx);
            require(a.market.totalLp != 0, "no existing lp");
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, ) = calcNumerators(
                a.market,
                a.index,
                a.totalPtIn,
                a.netSyHolding,
                comp,
                guess
            );

            if (PMath.isAApproxB(syNumerator, ptNumerator, approx.eps)) {
                return (guess, netSyOut, netSyFee);
            }

            if (syNumerator <= ptNumerator) {
                // needs more SY --> swap more PT
                approx.guessMin = guess + 1;
            } else {
                // needs less SY --> swap less PT
                approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    function calcNumerators(
        MarketState memory market,
        PYIndex index,
        uint256 totalPtIn,
        uint256 netSyHolding,
        MarketPreCompute memory comp,
        uint256 guess
    )
        internal
        pure
        returns (uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve)
    {
        (netSyOut, netSyFee, netSyToReserve) = calcSyOut(market, comp, index, guess);

        uint256 newTotalPt = uint256(market.totalPt) + guess;
        uint256 newTotalSy = (uint256(market.totalSy) - netSyOut - netSyToReserve);

        // it is desired that
        // (netSyOut + netSyHolding) / newTotalSy = netPtRemaining / newTotalPt
        // which is equivalent to
        // (netSyOut + netSyHolding) * newTotalPt = netPtRemaining * newTotalSy

        syNumerator = (netSyOut + netSyHolding) * newTotalPt;
        ptNumerator = (totalPtIn - guess) * newTotalSy;
    }

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swap to SY
     *     - Flashswap the corresponding amount of SY out
     *     - Tokenize all the SY into PT + YT
     *     - PT to repay the flashswap, YT transferred to user
     *     - Stop when the additional amount of PT to pull to repay the loan approx the exactPtIn
     *     - guess & approx is for totalPtToSwap
     */
    function approxSwapExactPtForYt(
        MarketState memory market,
        PYIndex index,
        uint256 exactPtIn,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256, /*netYtOut*/ uint256, /*totalPtToSwap*/ uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            approx.guessMin = PMath.max(approx.guessMin, exactPtIn);
            approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess);

            uint256 netAssetOut = index.syToAsset(netSyOut);

            // guess >= netAssetOut since we are swapping PT to SY
            uint256 netPtToPull = guess - netAssetOut;

            if (netPtToPull <= exactPtIn) {
                if (PMath.isASmallerApproxB(netPtToPull, exactPtIn, approx.eps)) {
                    return (netAssetOut, guess, netSyFee);
                }
                approx.guessMin = guess;
            } else {
                approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    ////////////////////////////////////////////////////////////////////////////////

    function calcSyOut(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        uint256 netPtIn
    ) internal pure returns (uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve) {
        (int256 _netSyOut, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(comp, index, -int256(netPtIn));
        netSyOut = uint256(_netSyOut);
        netSyFee = uint256(_netSyFee);
        netSyToReserve = uint256(_netSyToReserve);
    }

    function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) {
        if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain;
        if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2;
        revert Errors.ApproxFail();
    }

    /// INTENDED TO BE CALLED BY WHEN GUESS.OFFCHAIN == 0 ONLY ///

    function validateApprox(ApproxParams memory approx) internal pure {
        if (approx.guessMin > approx.guessMax || approx.eps > PMath.ONE) {
            revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps);
        }
    }

    function calcMaxPtIn(MarketState memory market, MarketPreCompute memory comp) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 hi = uint256(comp.totalAsset) - 1;

        while (low != hi) {
            uint256 mid = (low + hi + 1) / 2;
            if (calcSlope(comp, market.totalPt, int256(mid)) < 0) hi = mid - 1;
            else low = mid;
        }
        return low;
    }

    function calcSlope(MarketPreCompute memory comp, int256 totalPt, int256 ptToMarket) internal pure returns (int256) {
        int256 diffAssetPtToMarket = comp.totalAsset - ptToMarket;
        int256 sumPt = ptToMarket + totalPt;

        require(diffAssetPtToMarket > 0 && sumPt > 0, "invalid ptToMarket");

        int256 part1 = (ptToMarket * (totalPt + comp.totalAsset)).divDown(sumPt * diffAssetPtToMarket);

        int256 part2 = sumPt.divDown(diffAssetPtToMarket).ln();
        int256 part3 = PMath.IONE.divDown(comp.rateScalar);

        return comp.rateAnchor - (part1 - part2).mulDown(part3);
    }
}

library MarketApproxPtOutLib {
    using MarketMathCore for MarketState;
    using PYIndexLib for PYIndex;
    using PMath for uint256;
    using PMath for int256;
    using LogExpMath for int256;

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swapExactOut
     *     - Calculate the amount of SY needed
     *     - Stop when the netSyIn is smaller approx exactSyIn
     *     - guess & approx is for netSyIn
     */
    function approxSwapExactSyForPt(
        MarketState memory market,
        PYIndex index,
        uint256 exactSyIn,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256, /*netPtOut*/ uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            // no limit on min
            approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyIn, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess);

            if (netSyIn <= exactSyIn) {
                if (PMath.isASmallerApproxB(netSyIn, exactSyIn, approx.eps)) {
                    return (guess, netSyFee);
                }
                approx.guessMin = guess;
            } else {
                approx.guessMax = guess - 1;
            }
        }

        revert Errors.ApproxFail();
    }

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swapExactOut
     *     - Flashswap that amount of PT & pair with YT to redeem SY
     *     - Use the SY to repay the flashswap debt and the remaining is transferred to user
     *     - Stop when the netSyOut is greater approx the minSyOut
     *     - guess & approx is for netSyOut
     */
    function approxSwapYtForExactSy(
        MarketState memory market,
        PYIndex index,
        uint256 minSyOut,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256, /*netYtIn*/ uint256, /*netSyOut*/ uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            // no limit on min
            approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess);

            uint256 netAssetToRepay = index.syToAssetUp(netSyOwed);
            uint256 netSyOut = index.assetToSy(guess - netAssetToRepay);

            if (netSyOut >= minSyOut) {
                if (PMath.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) {
                    return (guess, netSyOut, netSyFee);
                }
                approx.guessMax = guess;
            } else {
                approx.guessMin = guess + 1;
            }
        }
        revert Errors.ApproxFail();
    }

    struct Args6 {
        MarketState market;
        PYIndex index;
        uint256 totalSyIn;
        uint256 netPtHolding;
        uint256 blockTime;
        ApproxParams approx;
    }

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swapExactOut
     *     - Swap that amount of PT out
     *     - Pair the remaining PT with the SY to add liquidity
     *     - Stop when the ratio of PT / totalPt & SY / totalSy is approx
     *     - guess & approx is for netPtFromSwap
     */
    function approxSwapSyToAddLiquidity(
        MarketState memory _market,
        PYIndex _index,
        uint256 _totalSyIn,
        uint256 _netPtHolding,
        uint256 _blockTime,
        ApproxParams memory _approx
    ) internal pure returns (uint256, /*netPtFromSwap*/ uint256, /*netSySwap*/ uint256 /*netSyFee*/) {
        Args6 memory a = Args6(_market, _index, _totalSyIn, _netPtHolding, _blockTime, _approx);

        MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);
        if (a.approx.guessOffchain == 0) {
            // no limit on min
            a.approx.guessMax = PMath.min(a.approx.guessMax, calcMaxPtOut(comp, a.market.totalPt));
            validateApprox(a.approx);
            require(a.market.totalLp != 0, "no existing lp");
        }

        for (uint256 iter = 0; iter < a.approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(a.approx, iter);

            (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) = calcSyIn(a.market, comp, a.index, guess);

            if (netSyIn > a.totalSyIn) {
                a.approx.guessMax = guess - 1;
                continue;
            }

            uint256 syNumerator;
            uint256 ptNumerator;

            {
                uint256 newTotalPt = uint256(a.market.totalPt) - guess;
                uint256 netTotalSy = uint256(a.market.totalSy) + netSyIn - netSyToReserve;

                // it is desired that
                // (netPtFromSwap + netPtHolding) / newTotalPt = netSyRemaining / netTotalSy
                // which is equivalent to
                // (netPtFromSwap + netPtHolding) * netTotalSy = netSyRemaining * newTotalPt

                ptNumerator = (guess + a.netPtHolding) * netTotalSy;
                syNumerator = (a.totalSyIn - netSyIn) * newTotalPt;
            }

            if (PMath.isAApproxB(ptNumerator, syNumerator, a.approx.eps)) {
                return (guess, netSyIn, netSyFee);
            }

            if (ptNumerator <= syNumerator) {
                // needs more PT
                a.approx.guessMin = guess + 1;
            } else {
                // needs less PT
                a.approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swapExactOut
     *     - Flashswap that amount of PT out
     *     - Pair all the PT with the YT to redeem SY
     *     - Use the SY to repay the flashswap debt
     *     - Stop when the amount of YT required to pair with PT is approx exactYtIn
     *     - guess & approx is for netPtFromSwap
     */
    function approxSwapExactYtForPt(
        MarketState memory market,
        PYIndex index,
        uint256 exactYtIn,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256, /*netPtOut*/ uint256, /*totalPtSwapped*/ uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            approx.guessMin = PMath.max(approx.guessMin, exactYtIn);
            approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess);

            uint256 netYtToPull = index.syToAssetUp(netSyOwed);

            if (netYtToPull <= exactYtIn) {
                if (PMath.isASmallerApproxB(netYtToPull, exactYtIn, approx.eps)) {
                    return (guess - netYtToPull, guess, netSyFee);
                }
                approx.guessMin = guess;
            } else {
                approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    ////////////////////////////////////////////////////////////////////////////////

    function calcSyIn(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        uint256 netPtOut
    ) internal pure returns (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) {
        (int256 _netSyIn, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(comp, index, int256(netPtOut));

        // all safe since totalPt and totalSy is int128
        netSyIn = uint256(-_netSyIn);
        netSyFee = uint256(_netSyFee);
        netSyToReserve = uint256(_netSyToReserve);
    }

    function calcMaxPtOut(MarketPreCompute memory comp, int256 totalPt) internal pure returns (uint256) {
        int256 logitP = (comp.feeRate - comp.rateAnchor).mulDown(comp.rateScalar).exp();
        int256 proportion = logitP.divDown(logitP + PMath.IONE);
        int256 numerator = proportion.mulDown(totalPt + comp.totalAsset);
        int256 maxPtOut = totalPt - numerator;
        // only get 99.9% of the theoretical max to accommodate some precision issues
        return (uint256(maxPtOut) * 999) / 1000;
    }

    function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) {
        if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain;
        if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2;
        revert Errors.ApproxFail();
    }

    function validateApprox(ApproxParams memory approx) internal pure {
        if (approx.guessMin > approx.guessMax || approx.eps > PMath.ONE) {
            revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps);
        }
    }
}
合同源代码
文件 17 的 27:MarketMathCore.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "../libraries/math/PMath.sol";
import "../libraries/math/LogExpMath.sol";

import "../StandardizedYield/PYIndex.sol";
import "../libraries/MiniHelpers.sol";
import "../libraries/Errors.sol";

struct MarketState {
    int256 totalPt;
    int256 totalSy;
    int256 totalLp;
    address treasury;
    /// immutable variables ///
    int256 scalarRoot;
    uint256 expiry;
    /// fee data ///
    uint256 lnFeeRateRoot;
    uint256 reserveFeePercent; // base 100
    /// last trade data ///
    uint256 lastLnImpliedRate;
}

// params that are expensive to compute, therefore we pre-compute them
struct MarketPreCompute {
    int256 rateScalar;
    int256 totalAsset;
    int256 rateAnchor;
    int256 feeRate;
}

// solhint-disable ordering
library MarketMathCore {
    using PMath for uint256;
    using PMath for int256;
    using LogExpMath for int256;
    using PYIndexLib for PYIndex;

    int256 internal constant MINIMUM_LIQUIDITY = 10 ** 3;
    int256 internal constant PERCENTAGE_DECIMALS = 100;
    uint256 internal constant DAY = 86400;
    uint256 internal constant IMPLIED_RATE_TIME = 365 * DAY;

    int256 internal constant MAX_MARKET_PROPORTION = (1e18 * 96) / 100;

    using PMath for uint256;
    using PMath for int256;

    /*///////////////////////////////////////////////////////////////
                UINT FUNCTIONS TO PROXY TO CORE FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function addLiquidity(
        MarketState memory market,
        uint256 syDesired,
        uint256 ptDesired,
        uint256 blockTime
    ) internal pure returns (uint256 lpToReserve, uint256 lpToAccount, uint256 syUsed, uint256 ptUsed) {
        (int256 _lpToReserve, int256 _lpToAccount, int256 _syUsed, int256 _ptUsed) = addLiquidityCore(
            market,
            syDesired.Int(),
            ptDesired.Int(),
            blockTime
        );

        lpToReserve = _lpToReserve.Uint();
        lpToAccount = _lpToAccount.Uint();
        syUsed = _syUsed.Uint();
        ptUsed = _ptUsed.Uint();
    }

    function removeLiquidity(
        MarketState memory market,
        uint256 lpToRemove
    ) internal pure returns (uint256 netSyToAccount, uint256 netPtToAccount) {
        (int256 _syToAccount, int256 _ptToAccount) = removeLiquidityCore(market, lpToRemove.Int());

        netSyToAccount = _syToAccount.Uint();
        netPtToAccount = _ptToAccount.Uint();
    }

    function swapExactPtForSy(
        MarketState memory market,
        PYIndex index,
        uint256 exactPtToMarket,
        uint256 blockTime
    ) internal pure returns (uint256 netSyToAccount, uint256 netSyFee, uint256 netSyToReserve) {
        (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(
            market,
            index,
            exactPtToMarket.neg(),
            blockTime
        );

        netSyToAccount = _netSyToAccount.Uint();
        netSyFee = _netSyFee.Uint();
        netSyToReserve = _netSyToReserve.Uint();
    }

    function swapSyForExactPt(
        MarketState memory market,
        PYIndex index,
        uint256 exactPtToAccount,
        uint256 blockTime
    ) internal pure returns (uint256 netSyToMarket, uint256 netSyFee, uint256 netSyToReserve) {
        (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(
            market,
            index,
            exactPtToAccount.Int(),
            blockTime
        );

        netSyToMarket = _netSyToAccount.neg().Uint();
        netSyFee = _netSyFee.Uint();
        netSyToReserve = _netSyToReserve.Uint();
    }

    /*///////////////////////////////////////////////////////////////
                    CORE FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function addLiquidityCore(
        MarketState memory market,
        int256 syDesired,
        int256 ptDesired,
        uint256 blockTime
    ) internal pure returns (int256 lpToReserve, int256 lpToAccount, int256 syUsed, int256 ptUsed) {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (syDesired == 0 || ptDesired == 0) revert Errors.MarketZeroAmountsInput();
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        if (market.totalLp == 0) {
            lpToAccount = PMath.sqrt((syDesired * ptDesired).Uint()).Int() - MINIMUM_LIQUIDITY;
            lpToReserve = MINIMUM_LIQUIDITY;
            syUsed = syDesired;
            ptUsed = ptDesired;
        } else {
            int256 netLpByPt = (ptDesired * market.totalLp) / market.totalPt;
            int256 netLpBySy = (syDesired * market.totalLp) / market.totalSy;
            if (netLpByPt < netLpBySy) {
                lpToAccount = netLpByPt;
                ptUsed = ptDesired;
                syUsed = (market.totalSy * lpToAccount) / market.totalLp;
            } else {
                lpToAccount = netLpBySy;
                syUsed = syDesired;
                ptUsed = (market.totalPt * lpToAccount) / market.totalLp;
            }
        }

        if (lpToAccount <= 0) revert Errors.MarketZeroAmountsOutput();

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.totalSy += syUsed;
        market.totalPt += ptUsed;
        market.totalLp += lpToAccount + lpToReserve;
    }

    function removeLiquidityCore(
        MarketState memory market,
        int256 lpToRemove
    ) internal pure returns (int256 netSyToAccount, int256 netPtToAccount) {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (lpToRemove == 0) revert Errors.MarketZeroAmountsInput();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        netSyToAccount = (lpToRemove * market.totalSy) / market.totalLp;
        netPtToAccount = (lpToRemove * market.totalPt) / market.totalLp;

        if (netSyToAccount == 0 && netPtToAccount == 0) revert Errors.MarketZeroAmountsOutput();

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.totalLp = market.totalLp.subNoNeg(lpToRemove);
        market.totalPt = market.totalPt.subNoNeg(netPtToAccount);
        market.totalSy = market.totalSy.subNoNeg(netSyToAccount);
    }

    function executeTradeCore(
        MarketState memory market,
        PYIndex index,
        int256 netPtToAccount,
        uint256 blockTime
    ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();
        if (market.totalPt <= netPtToAccount)
            revert Errors.MarketInsufficientPtForTrade(market.totalPt, netPtToAccount);

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        MarketPreCompute memory comp = getMarketPreCompute(market, index, blockTime);

        (netSyToAccount, netSyFee, netSyToReserve) = calcTrade(market, comp, index, netPtToAccount);

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        _setNewMarketStateTrade(market, comp, index, netPtToAccount, netSyToAccount, netSyToReserve, blockTime);
    }

    function getMarketPreCompute(
        MarketState memory market,
        PYIndex index,
        uint256 blockTime
    ) internal pure returns (MarketPreCompute memory res) {
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        uint256 timeToExpiry = market.expiry - blockTime;

        res.rateScalar = _getRateScalar(market, timeToExpiry);
        res.totalAsset = index.syToAsset(market.totalSy);

        if (market.totalPt == 0 || res.totalAsset == 0)
            revert Errors.MarketZeroTotalPtOrTotalAsset(market.totalPt, res.totalAsset);

        res.rateAnchor = _getRateAnchor(
            market.totalPt,
            market.lastLnImpliedRate,
            res.totalAsset,
            res.rateScalar,
            timeToExpiry
        );
        res.feeRate = _getExchangeRateFromImpliedRate(market.lnFeeRateRoot, timeToExpiry);
    }

    function calcTrade(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        int256 netPtToAccount
    ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) {
        int256 preFeeExchangeRate = _getExchangeRate(
            market.totalPt,
            comp.totalAsset,
            comp.rateScalar,
            comp.rateAnchor,
            netPtToAccount
        );

        int256 preFeeAssetToAccount = netPtToAccount.divDown(preFeeExchangeRate).neg();
        int256 fee = comp.feeRate;

        if (netPtToAccount > 0) {
            int256 postFeeExchangeRate = preFeeExchangeRate.divDown(fee);
            if (postFeeExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(postFeeExchangeRate);

            fee = preFeeAssetToAccount.mulDown(PMath.IONE - fee);
        } else {
            fee = ((preFeeAssetToAccount * (PMath.IONE - fee)) / fee).neg();
        }

        int256 netAssetToReserve = (fee * market.reserveFeePercent.Int()) / PERCENTAGE_DECIMALS;
        int256 netAssetToAccount = preFeeAssetToAccount - fee;

        netSyToAccount = netAssetToAccount < 0
            ? index.assetToSyUp(netAssetToAccount)
            : index.assetToSy(netAssetToAccount);
        netSyFee = index.assetToSy(fee);
        netSyToReserve = index.assetToSy(netAssetToReserve);
    }

    function _setNewMarketStateTrade(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        int256 netPtToAccount,
        int256 netSyToAccount,
        int256 netSyToReserve,
        uint256 blockTime
    ) internal pure {
        uint256 timeToExpiry = market.expiry - blockTime;

        market.totalPt = market.totalPt.subNoNeg(netPtToAccount);
        market.totalSy = market.totalSy.subNoNeg(netSyToAccount + netSyToReserve);

        market.lastLnImpliedRate = _getLnImpliedRate(
            market.totalPt,
            index.syToAsset(market.totalSy),
            comp.rateScalar,
            comp.rateAnchor,
            timeToExpiry
        );

        if (market.lastLnImpliedRate == 0) revert Errors.MarketZeroLnImpliedRate();
    }

    function _getRateAnchor(
        int256 totalPt,
        uint256 lastLnImpliedRate,
        int256 totalAsset,
        int256 rateScalar,
        uint256 timeToExpiry
    ) internal pure returns (int256 rateAnchor) {
        int256 newExchangeRate = _getExchangeRateFromImpliedRate(lastLnImpliedRate, timeToExpiry);

        if (newExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(newExchangeRate);

        {
            int256 proportion = totalPt.divDown(totalPt + totalAsset);

            int256 lnProportion = _logProportion(proportion);

            rateAnchor = newExchangeRate - lnProportion.divDown(rateScalar);
        }
    }

    /// @notice Calculates the current market implied rate.
    /// @return lnImpliedRate the implied rate
    function _getLnImpliedRate(
        int256 totalPt,
        int256 totalAsset,
        int256 rateScalar,
        int256 rateAnchor,
        uint256 timeToExpiry
    ) internal pure returns (uint256 lnImpliedRate) {
        // This will check for exchange rates < PMath.IONE
        int256 exchangeRate = _getExchangeRate(totalPt, totalAsset, rateScalar, rateAnchor, 0);

        // exchangeRate >= 1 so its ln >= 0
        uint256 lnRate = exchangeRate.ln().Uint();

        lnImpliedRate = (lnRate * IMPLIED_RATE_TIME) / timeToExpiry;
    }

    /// @notice Converts an implied rate to an exchange rate given a time to expiry. The
    /// formula is E = e^rt
    function _getExchangeRateFromImpliedRate(
        uint256 lnImpliedRate,
        uint256 timeToExpiry
    ) internal pure returns (int256 exchangeRate) {
        uint256 rt = (lnImpliedRate * timeToExpiry) / IMPLIED_RATE_TIME;

        exchangeRate = LogExpMath.exp(rt.Int());
    }

    function _getExchangeRate(
        int256 totalPt,
        int256 totalAsset,
        int256 rateScalar,
        int256 rateAnchor,
        int256 netPtToAccount
    ) internal pure returns (int256 exchangeRate) {
        int256 numerator = totalPt.subNoNeg(netPtToAccount);

        int256 proportion = (numerator.divDown(totalPt + totalAsset));

        if (proportion > MAX_MARKET_PROPORTION)
            revert Errors.MarketProportionTooHigh(proportion, MAX_MARKET_PROPORTION);

        int256 lnProportion = _logProportion(proportion);

        exchangeRate = lnProportion.divDown(rateScalar) + rateAnchor;

        if (exchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(exchangeRate);
    }

    function _logProportion(int256 proportion) internal pure returns (int256 res) {
        if (proportion == PMath.IONE) revert Errors.MarketProportionMustNotEqualOne();

        int256 logitP = proportion.divDown(PMath.IONE - proportion);

        res = logitP.ln();
    }

    function _getRateScalar(MarketState memory market, uint256 timeToExpiry) internal pure returns (int256 rateScalar) {
        rateScalar = (market.scalarRoot * IMPLIED_RATE_TIME.Int()) / timeToExpiry.Int();
        if (rateScalar <= 0) revert Errors.MarketRateScalarBelowZero(rateScalar);
    }

    function setInitialLnImpliedRate(
        MarketState memory market,
        PYIndex index,
        int256 initialAnchor,
        uint256 blockTime
    ) internal pure {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        int256 totalAsset = index.syToAsset(market.totalSy);
        uint256 timeToExpiry = market.expiry - blockTime;
        int256 rateScalar = _getRateScalar(market, timeToExpiry);

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.lastLnImpliedRate = _getLnImpliedRate(
            market.totalPt,
            totalAsset,
            rateScalar,
            initialAnchor,
            timeToExpiry
        );
    }
}
合同源代码
文件 18 的 27:Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
合同源代码
文件 19 的 27:MiniHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

library MiniHelpers {
    function isCurrentlyExpired(uint256 expiry) internal view returns (bool) {
        return (expiry <= block.timestamp);
    }

    function isExpired(uint256 expiry, uint256 blockTime) internal pure returns (bool) {
        return (expiry <= blockTime);
    }

    function isTimeInThePast(uint256 timestamp) internal view returns (bool) {
        return (timestamp <= block.timestamp); // same definition as isCurrentlyExpired
    }
}
合同源代码
文件 20 的 27:Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
合同源代码
文件 21 的 27:Ownable2Step.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.0;

import "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
        _transferOwnership(sender);
    }
}
合同源代码
文件 22 的 27:PMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.8.0;

/* solhint-disable private-vars-leading-underscore, reason-string */

library PMath {
    uint256 internal constant ONE = 1e18; // 18 decimal places
    int256 internal constant IONE = 1e18; // 18 decimal places

    function subMax0(uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            return (a >= b ? a - b : 0);
        }
    }

    function subNoNeg(int256 a, int256 b) internal pure returns (int256) {
        require(a >= b, "negative");
        return a - b; // no unchecked since if b is very negative, a - b might overflow
    }

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        unchecked {
            return product / ONE;
        }
    }

    function mulDown(int256 a, int256 b) internal pure returns (int256) {
        int256 product = a * b;
        unchecked {
            return product / IONE;
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 aInflated = a * ONE;
        unchecked {
            return aInflated / b;
        }
    }

    function divDown(int256 a, int256 b) internal pure returns (int256) {
        int256 aInflated = a * IONE;
        unchecked {
            return aInflated / b;
        }
    }

    function rawDivUp(uint256 a, uint256 b) internal pure returns (uint256) {
        return (a + b - 1) / b;
    }

    // @author Uniswap
    function sqrt(uint256 y) internal pure returns (uint256 z) {
        if (y > 3) {
            z = y;
            uint256 x = y / 2 + 1;
            while (x < z) {
                z = x;
                x = (y / x + x) / 2;
            }
        } else if (y != 0) {
            z = 1;
        }
    }

    function square(uint256 x) internal pure returns (uint256) {
        return x * x;
    }

    function squareDown(uint256 x) internal pure returns (uint256) {
        return mulDown(x, x);
    }

    function abs(int256 x) internal pure returns (uint256) {
        return uint256(x > 0 ? x : -x);
    }

    function neg(int256 x) internal pure returns (int256) {
        return x * (-1);
    }

    function neg(uint256 x) internal pure returns (int256) {
        return Int(x) * (-1);
    }

    function max(uint256 x, uint256 y) internal pure returns (uint256) {
        return (x > y ? x : y);
    }

    function max(int256 x, int256 y) internal pure returns (int256) {
        return (x > y ? x : y);
    }

    function min(uint256 x, uint256 y) internal pure returns (uint256) {
        return (x < y ? x : y);
    }

    function min(int256 x, int256 y) internal pure returns (int256) {
        return (x < y ? x : y);
    }

    /*///////////////////////////////////////////////////////////////
                               SIGNED CASTS
    //////////////////////////////////////////////////////////////*/

    function Int(uint256 x) internal pure returns (int256) {
        require(x <= uint256(type(int256).max));
        return int256(x);
    }

    function Int128(int256 x) internal pure returns (int128) {
        require(type(int128).min <= x && x <= type(int128).max);
        return int128(x);
    }

    function Int128(uint256 x) internal pure returns (int128) {
        return Int128(Int(x));
    }

    /*///////////////////////////////////////////////////////////////
                               UNSIGNED CASTS
    //////////////////////////////////////////////////////////////*/

    function Uint(int256 x) internal pure returns (uint256) {
        require(x >= 0);
        return uint256(x);
    }

    function Uint32(uint256 x) internal pure returns (uint32) {
        require(x <= type(uint32).max);
        return uint32(x);
    }

    function Uint64(uint256 x) internal pure returns (uint64) {
        require(x <= type(uint64).max);
        return uint64(x);
    }

    function Uint112(uint256 x) internal pure returns (uint112) {
        require(x <= type(uint112).max);
        return uint112(x);
    }

    function Uint96(uint256 x) internal pure returns (uint96) {
        require(x <= type(uint96).max);
        return uint96(x);
    }

    function Uint128(uint256 x) internal pure returns (uint128) {
        require(x <= type(uint128).max);
        return uint128(x);
    }

    function Uint192(uint256 x) internal pure returns (uint192) {
        require(x <= type(uint192).max);
        return uint192(x);
    }

    function isAApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
        return mulDown(b, ONE - eps) <= a && a <= mulDown(b, ONE + eps);
    }

    function isAGreaterApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
        return a >= b && a <= mulDown(b, ONE + eps);
    }

    function isASmallerApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
        return a <= b && a >= mulDown(b, ONE - eps);
    }
}
合同源代码
文件 23 的 27:PYIndex.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../../interfaces/IPYieldToken.sol";
import "../../interfaces/IPPrincipalToken.sol";

import "./SYUtils.sol";
import "../libraries/math/PMath.sol";

type PYIndex is uint256;

library PYIndexLib {
    using PMath for uint256;
    using PMath for int256;

    function newIndex(IPYieldToken YT) internal returns (PYIndex) {
        return PYIndex.wrap(YT.pyIndexCurrent());
    }

    function syToAsset(PYIndex index, uint256 syAmount) internal pure returns (uint256) {
        return SYUtils.syToAsset(PYIndex.unwrap(index), syAmount);
    }

    function assetToSy(PYIndex index, uint256 assetAmount) internal pure returns (uint256) {
        return SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount);
    }

    function assetToSyUp(PYIndex index, uint256 assetAmount) internal pure returns (uint256) {
        return SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount);
    }

    function syToAssetUp(PYIndex index, uint256 syAmount) internal pure returns (uint256) {
        uint256 _index = PYIndex.unwrap(index);
        return SYUtils.syToAssetUp(_index, syAmount);
    }

    function syToAsset(PYIndex index, int256 syAmount) internal pure returns (int256) {
        int256 sign = syAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.syToAsset(PYIndex.unwrap(index), syAmount.abs())).Int();
    }

    function assetToSy(PYIndex index, int256 assetAmount) internal pure returns (int256) {
        int256 sign = assetAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount.abs())).Int();
    }

    function assetToSyUp(PYIndex index, int256 assetAmount) internal pure returns (int256) {
        int256 sign = assetAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount.abs())).Int();
    }
}
合同源代码
文件 24 的 27:PendleMarketAdapter.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.19;

import '@openzeppelin/contracts/utils/math/Math.sol';
import '@openzeppelin/contracts/access/Ownable2Step.sol';

import '@pendle/core-v2/contracts/router/base/MarketApproxLib.sol';
import '@pendle/core-v2/contracts/interfaces/IPMarket.sol';
import '@pendle/core-v2/contracts/core/StandardizedYield/PYIndex.sol';

import '@uniswap/v3-periphery/contracts/libraries/TransferHelper.sol';

import '../interfaces/IMarginlyAdapter.sol';
import '../interfaces/IMarginlyRouter.sol';

/// @dev This adapter is using for swaps PT token (Principal token) to IB token (Interest bearing)  in Pendle Market without trading pools
contract PendleMarketAdapter is IMarginlyAdapter, Ownable2Step {
  using PYIndexLib for IPYieldToken;

  struct PendleMarketData {
    IPMarket market;
    IStandardizedYield sy;
    IPPrincipalToken pt;
    IPYieldToken yt;
    address ib;
    uint8 slippage;
  }

  struct PoolData {
    address pendleMarket;
    uint8 slippage;
  }

  struct PoolInput {
    address pendleMarket;
    uint8 slippage;
    address ptToken;
    address ibToken;
  }

  struct CallbackData {
    address tokenIn;
    address tokenOut;
    address router;
    bytes adapterCallbackData;
  }

  uint256 private constant PENDLE_ONE = 1e18;
  uint256 private constant EPSILON = 1e15;
  uint256 private constant ONE = 100;
  uint256 private constant MAX_ITERATIONS = 10;

  mapping(address => mapping(address => PoolData)) public getPoolData;

  event NewPair(address indexed ptToken, address indexed ibToken, address pendleMarket, uint8 slippage);

  error ApproximationFailed();
  error UnknownPair();
  error WrongPoolInput();

  constructor(PoolInput[] memory poolsData) {
    _addPools(poolsData);
  }

  function addPools(PoolInput[] calldata poolsData) external onlyOwner {
    _addPools(poolsData);
  }

  /// @dev During swap Pt to exact SY before maturity a little amount of SY might stay at the adapter contract
  function redeemDust(address tokenA, address tokenB, address recipient) external onlyOwner {
    PoolData memory poolData = getPoolData[tokenA][tokenB];
    PendleMarketData memory marketData = _getMarketData(poolData, tokenA, tokenB);

    _pendleRedeemSy(marketData, recipient, IERC20(address(marketData.sy)).balanceOf(address(this)));
  }

  function swapExactInput(
    address recipient,
    address tokenIn,
    address tokenOut,
    uint256 amountIn,
    uint256 minAmountOut,
    bytes calldata data
  ) external returns (uint256 amountOut) {
    PoolData memory poolData = _getPoolDataSafe(tokenIn, tokenOut);
    PendleMarketData memory marketData = _getMarketData(poolData, tokenIn, tokenOut);

    if (marketData.yt.isExpired()) {
      amountOut = _swapExactInputPostMaturity(marketData, recipient, tokenIn, amountIn, data);
    } else {
      amountOut = _swapExactInputPreMaturity(marketData, recipient, tokenIn, tokenOut, amountIn, minAmountOut, data);
    }

    if (amountOut < minAmountOut) revert InsufficientAmount();
  }

  function swapExactOutput(
    address recipient,
    address tokenIn,
    address tokenOut,
    uint256 maxAmountIn,
    uint256 amountOut,
    bytes calldata data
  ) external returns (uint256 amountIn) {
    PoolData memory poolData = _getPoolDataSafe(tokenIn, tokenOut);
    PendleMarketData memory marketData = _getMarketData(poolData, tokenIn, tokenOut);

    if (marketData.yt.isExpired()) {
      amountIn = _swapExactOutputPostMaturity(marketData, recipient, tokenIn, amountOut, data);
    } else {
      amountIn = _swapExactOutputPreMaturity(marketData, recipient, tokenIn, tokenOut, maxAmountIn, amountOut, data);
    }

    if (amountIn > maxAmountIn) revert TooMuchRequested();
  }

  /// @dev Triggered by PendleMarket
  function swapCallback(int256 ptToAccount, int256 syToAccount, bytes calldata _data) external {
    require(ptToAccount > 0 || syToAccount > 0);

    CallbackData memory data = abi.decode(_data, (CallbackData));
    PoolData memory poolData = _getPoolDataSafe(data.tokenIn, data.tokenOut);
    require(msg.sender == poolData.pendleMarket);

    if (syToAccount > 0) {
      // this clause is realized in case of both exactInput and exactOutput with pt tokens as input
      // we need to send pt tokens from router-call initiator to finalize the swap
      IMarginlyRouter(data.router).adapterCallback(msg.sender, uint256(-ptToAccount), data.adapterCallbackData);
    } else {
      // this clause is realized when pt tokens is output
      // we need to redeem ib tokens from pt and transfer them to pendle
      IMarginlyRouter(data.router).adapterCallback(address(this), uint256(-syToAccount), data.adapterCallbackData);
      _pendleMintSy(_getMarketData(poolData, data.tokenIn, data.tokenOut), msg.sender, uint256(-syToAccount));
    }
  }

  function _getPoolDataSafe(address tokenA, address tokenB) private view returns (PoolData memory poolData) {
    poolData = getPoolData[tokenA][tokenB];
    if (poolData.pendleMarket == address(0)) revert UnknownPair();
  }

  function _getMarketData(
    PoolData memory poolData,
    address tokenA,
    address tokenB
  ) private view returns (PendleMarketData memory) {
    IPMarket market = IPMarket(poolData.pendleMarket);
    (IStandardizedYield sy, IPPrincipalToken pt, IPYieldToken yt) = market.readTokens();
    address ibToken = address(pt) == tokenA ? tokenB : tokenA;
    return PendleMarketData({market: market, sy: sy, pt: pt, yt: yt, ib: ibToken, slippage: poolData.slippage});
  }

  function _swapExactInputPreMaturity(
    PendleMarketData memory marketData,
    address recipient,
    address tokenIn,
    address tokenOut,
    uint256 amountIn,
    uint256 minAmountOut,
    bytes calldata data
  ) private returns (uint256 amountOut) {
    if (tokenIn == address(marketData.pt)) {
      // pt to pendle -> sy to ib unwrap and to recipient
      IMarginlyRouter(msg.sender).adapterCallback(address(marketData.market), amountIn, data);
      (uint256 syAmountOut, ) = marketData.market.swapExactPtForSy(address(this), amountIn, new bytes(0));
      amountOut = _pendleRedeemSy(marketData, recipient, syAmountOut);
    } else {
      // tokenIn ib to sy wrap (in swap callback) -> sy to pendle -> pt to recipient
      CallbackData memory swapCallbackData = CallbackData({
        tokenIn: tokenIn,
        tokenOut: tokenOut,
        router: msg.sender,
        adapterCallbackData: data
      });
      amountOut = _pendleApproxSwapExactSyForPt(
        marketData,
        recipient,
        amountIn,
        minAmountOut,
        abi.encode(swapCallbackData)
      );
    }
  }

  function _swapExactOutputPreMaturity(
    PendleMarketData memory marketData,
    address recipient,
    address tokenIn,
    address tokenOut,
    uint256 maxAmountIn,
    uint256 amountOut,
    bytes calldata data
  ) private returns (uint256 amountIn) {
    CallbackData memory swapCallbackData = CallbackData({
      tokenIn: tokenIn,
      tokenOut: tokenOut,
      router: msg.sender,
      adapterCallbackData: data
    });

    if (tokenIn == address(marketData.pt)) {
      // approx Pt to Sy -> in callback send Pt to PendleMarket
      // then unwrap Sy to Ib and send to recepient
      (, uint256 ptAmountIn) = _pendleApproxSwapPtForExactSy(
        marketData,
        address(this),
        amountOut,
        maxAmountIn,
        abi.encode(swapCallbackData)
      );
      amountIn = ptAmountIn;
      // use amountOut here, because actualSyAmountOut a little bit more than amountOut
      _pendleRedeemSy(marketData, recipient, amountOut);
    } else {
      // Sy to Pt -> in callback unwrap Sy to Ib and send to pendle market
      (amountIn, ) = marketData.market.swapSyForExactPt(recipient, amountOut, abi.encode(swapCallbackData));
    }
  }

  function _swapExactInputPostMaturity(
    PendleMarketData memory marketData,
    address recipient,
    address tokenIn,
    uint256 amountIn,
    bytes calldata data
  ) private returns (uint256 amountOut) {
    if (tokenIn == address(marketData.pt)) {
      // pt redeem -> sy -> unwrap sy to ib
      uint256 syRedeemed = _redeemPY(marketData.yt, msg.sender, amountIn, data);
      amountOut = _pendleRedeemSy(marketData, recipient, syRedeemed);
    } else {
      // sy to pt swap is not possible after maturity
      revert NotSupported();
    }
  }

  function _swapExactOutputPostMaturity(
    PendleMarketData memory marketData,
    address recipient,
    address tokenIn,
    uint256 amountOut,
    bytes calldata data
  ) private returns (uint256 amountIn) {
    if (tokenIn == address(marketData.pt)) {
      // https://github.com/pendle-finance/pendle-core-v2-public/blob/bc27b10c33ac16d6e1936a9ddd24d536b00c96a4/contracts/core/YieldContractsV2/PendleYieldTokenV2.sol#L301
      uint256 index = marketData.yt.pyIndexCurrent();
      amountIn = Math.mulDiv(amountOut, index, PENDLE_ONE, Math.Rounding.Up);
      uint256 syAmountOut = _redeemPY(marketData.yt, msg.sender, amountIn, data);
      _pendleRedeemSy(marketData, recipient, syAmountOut);
    } else {
      // sy to pt swap is not possible after maturity
      revert NotSupported();
    }
  }

  function _pendleApproxSwapExactSyForPt(
    PendleMarketData memory marketData,
    address recipient,
    uint256 syAmountIn,
    uint256 minPtAmountOut,
    bytes memory data
  ) private returns (uint256 ptAmountOut) {
    uint8 slippage = marketData.slippage;
    ApproxParams memory approx = ApproxParams({
      guessMin: minPtAmountOut,
      guessMax: (minPtAmountOut * (ONE + slippage)) / (ONE - slippage),
      guessOffchain: 0,
      maxIteration: MAX_ITERATIONS,
      eps: EPSILON
    });

    (ptAmountOut, ) = MarketApproxPtOutLib.approxSwapExactSyForPt(
      marketData.market.readState(address(this)),
      marketData.yt.newIndex(),
      syAmountIn,
      block.timestamp,
      approx
    );
    (uint256 actualSyAmountIn, ) = marketData.market.swapSyForExactPt(recipient, ptAmountOut, data);
    if (actualSyAmountIn > syAmountIn) revert ApproximationFailed();
  }

  function _pendleApproxSwapPtForExactSy(
    PendleMarketData memory marketData,
    address recipient,
    uint256 syAmountOut,
    uint256 maxPtAmountIn,
    bytes memory data
  ) private returns (uint256 actualSyAmountOut, uint256 actualPtAmountIn) {
    uint8 slippage = marketData.slippage;
    ApproxParams memory approx = ApproxParams({
      guessMin: (maxPtAmountIn * (ONE - slippage)) / (ONE + slippage),
      guessMax: maxPtAmountIn,
      guessOffchain: 0,
      maxIteration: MAX_ITERATIONS,
      eps: EPSILON
    });

    (actualPtAmountIn, , ) = MarketApproxPtInLib.approxSwapPtForExactSy(
      IPMarket(marketData.market).readState(address(this)),
      marketData.yt.newIndex(),
      syAmountOut,
      block.timestamp,
      approx
    );
    if (actualPtAmountIn > maxPtAmountIn) revert ApproximationFailed();

    (actualSyAmountOut, ) = marketData.market.swapExactPtForSy(recipient, actualPtAmountIn, data);
    if (actualSyAmountOut < syAmountOut) revert ApproximationFailed();
  }

  function _pendleMintSy(
    PendleMarketData memory marketData,
    address recipient,
    uint256 ibIn
  ) private returns (uint256 syMinted) {
    TransferHelper.safeApprove(marketData.ib, address(marketData.sy), ibIn);
    // setting `minSyOut` value as ibIn (1:1 swap)
    syMinted = IStandardizedYield(marketData.sy).deposit(recipient, marketData.ib, ibIn, ibIn);
  }

  function _pendleRedeemSy(
    PendleMarketData memory marketData,
    address recipient,
    uint256 syIn
  ) private returns (uint256 ibRedeemed) {
    // setting `minTokenOut` value as syIn (1:1 swap)
    ibRedeemed = IStandardizedYield(marketData.sy).redeem(recipient, syIn, marketData.ib, syIn, false);
  }

  function _redeemPY(
    IPYieldToken yt,
    address router,
    uint256 ptAmount,
    bytes memory adapterCallbackData
  ) private returns (uint256 syRedeemed) {
    IMarginlyRouter(router).adapterCallback(address(yt), ptAmount, adapterCallbackData);
    syRedeemed = yt.redeemPY(address(this));
  }

  function _addPools(PoolInput[] memory poolsData) private {
    PoolInput memory input;
    uint256 length = poolsData.length;
    for (uint256 i; i < length; ) {
      input = poolsData[i];

      if (
        input.ptToken == address(0) ||
        input.ibToken == address(0) ||
        input.pendleMarket == address(0) ||
        input.slippage >= ONE
      ) revert WrongPoolInput();

      (IStandardizedYield sy, IPPrincipalToken pt, ) = IPMarket(input.pendleMarket).readTokens();
      if (input.ptToken != address(pt)) revert WrongPoolInput();
      if (!sy.isValidTokenIn(input.ibToken) || !sy.isValidTokenOut(input.ibToken)) revert WrongPoolInput();

      PoolData memory poolData = PoolData({pendleMarket: input.pendleMarket, slippage: input.slippage});

      getPoolData[input.ptToken][input.ibToken] = poolData;
      getPoolData[input.ibToken][input.ptToken] = poolData;

      emit NewPair(input.ptToken, input.ibToken, input.pendleMarket, input.slippage);

      unchecked {
        ++i;
      }
    }
  }
}
合同源代码
文件 25 的 27:RouterStorage.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.19;

import '@openzeppelin/contracts/access/Ownable2Step.sol';

import '../interfaces/IMarginlyAdapter.sol';
import '../interfaces/IMarginlyRouter.sol';

struct AdapterInput {
  uint256 dexIndex;
  address adapter;
}

abstract contract RouterStorage is IMarginlyRouter, Ownable2Step {
  /// @notice Emitted when new adapter is added
  event NewAdapter(uint256 dexIndex, address indexed adapter);

  error UnknownDex();

  mapping(uint256 => address) public adapters;

  constructor(AdapterInput[] memory _adapters) {
    AdapterInput memory input;
    uint256 length = _adapters.length;
    for (uint256 i; i < length; ) {
      input = _adapters[i];
      adapters[input.dexIndex] = input.adapter;
      emit NewAdapter(input.dexIndex, input.adapter);

      unchecked {
        ++i;
      }
    }
  }

  function addDexAdapters(AdapterInput[] calldata _adapters) external onlyOwner {
    AdapterInput memory input;
    uint256 length = _adapters.length;
    for (uint256 i; i < length; ) {
      input = _adapters[i];
      adapters[input.dexIndex] = input.adapter;
      emit NewAdapter(input.dexIndex, input.adapter);

      unchecked {
        ++i;
      }
    }
  }

  function getAdapterSafe(uint256 dexIndex) internal view returns (IMarginlyAdapter) {
    address adapterAddress = adapters[dexIndex];
    if (adapterAddress == address(0)) revert UnknownDex();
    return IMarginlyAdapter(adapterAddress);
  }

  function renounceOwnership() public override onlyOwner {
    revert Forbidden();
  }
}
合同源代码
文件 26 的 27:SYUtils.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

library SYUtils {
    uint256 internal constant ONE = 1e18;

    function syToAsset(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) {
        return (syAmount * exchangeRate) / ONE;
    }

    function syToAssetUp(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) {
        return (syAmount * exchangeRate + ONE - 1) / ONE;
    }

    function assetToSy(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) {
        return (assetAmount * ONE) / exchangeRate;
    }

    function assetToSyUp(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) {
        return (assetAmount * ONE + exchangeRate - 1) / exchangeRate;
    }
}
合同源代码
文件 27 的 27:TransferHelper.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.6.0;

import '@openzeppelin/contracts/token/ERC20/IERC20.sol';

library TransferHelper {
    /// @notice Transfers tokens from the targeted address to the given destination
    /// @notice Errors with 'STF' if transfer fails
    /// @param token The contract address of the token to be transferred
    /// @param from The originating address from which the tokens will be transferred
    /// @param to The destination address of the transfer
    /// @param value The amount to be transferred
    function safeTransferFrom(
        address token,
        address from,
        address to,
        uint256 value
    ) internal {
        (bool success, bytes memory data) =
            token.call(abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'STF');
    }

    /// @notice Transfers tokens from msg.sender to a recipient
    /// @dev Errors with ST if transfer fails
    /// @param token The contract address of the token which will be transferred
    /// @param to The recipient of the transfer
    /// @param value The value of the transfer
    function safeTransfer(
        address token,
        address to,
        uint256 value
    ) internal {
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'ST');
    }

    /// @notice Approves the stipulated contract to spend the given allowance in the given token
    /// @dev Errors with 'SA' if transfer fails
    /// @param token The contract address of the token to be approved
    /// @param to The target of the approval
    /// @param value The amount of the given token the target will be allowed to spend
    function safeApprove(
        address token,
        address to,
        uint256 value
    ) internal {
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'SA');
    }

    /// @notice Transfers ETH to the recipient address
    /// @dev Fails with `STE`
    /// @param to The destination of the transfer
    /// @param value The value to be transferred
    function safeTransferETH(address to, uint256 value) internal {
        (bool success, ) = to.call{value: value}(new bytes(0));
        require(success, 'STE');
    }
}
设置
{
  "compilationTarget": {
    "contracts/adapters/PendleMarketAdapter.sol": "PendleMarketAdapter"
  },
  "evmVersion": "paris",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": true,
    "runs": 100000
  },
  "remappings": []
}
ABI
[{"inputs":[{"components":[{"internalType":"address","name":"pendleMarket","type":"address"},{"internalType":"uint8","name":"slippage","type":"uint8"},{"internalType":"address","name":"ptToken","type":"address"},{"internalType":"address","name":"ibToken","type":"address"}],"internalType":"struct PendleMarketAdapter.PoolInput[]","name":"poolsData","type":"tuple[]"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ApproxFail","type":"error"},{"inputs":[{"internalType":"uint256","name":"guessMin","type":"uint256"},{"internalType":"uint256","name":"guessMax","type":"uint256"},{"internalType":"uint256","name":"eps","type":"uint256"}],"name":"ApproxParamsInvalid","type":"error"},{"inputs":[],"name":"ApproximationFailed","type":"error"},{"inputs":[],"name":"InsufficientAmount","type":"error"},{"inputs":[{"internalType":"int256","name":"exchangeRate","type":"int256"}],"name":"MarketExchangeRateBelowOne","type":"error"},{"inputs":[],"name":"MarketExpired","type":"error"},{"inputs":[],"name":"MarketProportionMustNotEqualOne","type":"error"},{"inputs":[{"internalType":"int256","name":"proportion","type":"int256"},{"internalType":"int256","name":"maxProportion","type":"int256"}],"name":"MarketProportionTooHigh","type":"error"},{"inputs":[{"internalType":"int256","name":"rateScalar","type":"int256"}],"name":"MarketRateScalarBelowZero","type":"error"},{"inputs":[{"internalType":"int256","name":"totalPt","type":"int256"},{"internalType":"int256","name":"totalAsset","type":"int256"}],"name":"MarketZeroTotalPtOrTotalAsset","type":"error"},{"inputs":[],"name":"NotSupported","type":"error"},{"inputs":[],"name":"TooMuchRequested","type":"error"},{"inputs":[],"name":"UnknownPair","type":"error"},{"inputs":[],"name":"WrongPoolInput","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"ptToken","type":"address"},{"indexed":true,"internalType":"address","name":"ibToken","type":"address"},{"indexed":false,"internalType":"address","name":"pendleMarket","type":"address"},{"indexed":false,"internalType":"uint8","name":"slippage","type":"uint8"}],"name":"NewPair","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"pendleMarket","type":"address"},{"internalType":"uint8","name":"slippage","type":"uint8"},{"internalType":"address","name":"ptToken","type":"address"},{"internalType":"address","name":"ibToken","type":"address"}],"internalType":"struct PendleMarketAdapter.PoolInput[]","name":"poolsData","type":"tuple[]"}],"name":"addPools","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"getPoolData","outputs":[{"internalType":"address","name":"pendleMarket","type":"address"},{"internalType":"uint8","name":"slippage","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenA","type":"address"},{"internalType":"address","name":"tokenB","type":"address"},{"internalType":"address","name":"recipient","type":"address"}],"name":"redeemDust","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"int256","name":"ptToAccount","type":"int256"},{"internalType":"int256","name":"syToAccount","type":"int256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"swapCallback","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"address","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"swapExactInput","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"address","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"maxAmountIn","type":"uint256"},{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"swapExactOutput","outputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]