// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
import '@openzeppelin/contracts/access/Ownable.sol';
import '@openzeppelin/contracts/security/Pausable.sol';
import '@openzeppelin/contracts/utils/cryptography/MerkleProof.sol';
import '@openzeppelin/contracts/token/ERC721/IERC721.sol';
import '@openzeppelin/contracts/utils/cryptography/ECDSA.sol';
import '../interface/ICoolERC721A.sol';
import './utils/ErrorsAndEventsSimpleReRoll.sol';
//
//
//
// .@@@%#@&&,(#.
// @@@@@@@@@@@@@@@@&%
// @@@@@@@@@@@@@@@/,@@(
// &@@@% /@@@&@@@@@@@@@@#//
// @@@@@@@@ /%@@@&@@@, @@@@@@@@@@@@@@@@@@@@@#
// &@@&@@@&@@@&@@@@.. &@@@@@@&@@@@@@@&@@@@( @@@@@@& (&@@@&
// @@@@@@@@@@@@@@@@@@@@@@@@ ,@@@@@@@@@@@@@@@@@@@@@@@@, (@@@@&* @@@&@/ &@@@@.
// ,@@@@@@@@@@@@@@@@@@@@& &@@@@@@@@@@@@@@@@@@@@@@@@@&@@@( *@@@@@ ,&@@@@@@@@@@@@@@@@@@@&
// &@@@@@@@@@@@@@@@@@% &@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@@@@@ @@@@& @@@@@@@@@@@@@@@@@@@&.
// #@@@@@@@@@@@@&@@@@@@% ,&@@@@@@@@@@@@@&@@@@@@@@@@@@@@@&@@@@@@@@@@@@@@@* @@@@& %&@@@@@@@@@@@@@@@&@@@@#
// @@@@@@@@@@@@@@@@@@@@@@@ ,&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@@@@@@@@@@@@@@@ &@@@@ &@@@@@@@@@@@@@@@@@@@@@@@(
// .&@@@@@@@@@@@@@@@@@@@@@@* &@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@@@@@@@@@@@@@& .@@@@* *@&@@@@@@@@@@@@@@@@@@@@@
// &@@@@@@@@@@@@@@@@@@@@@@ &@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@@@@@@@@@@@@& @@@@( *&@@@@@@@@@@@@@@@@@@@&
// &@@@&@@@&@@@&@@@&@& .&@@&@@@&@@@&@@@&@@@&@@@&@@@&@@@&@@@&@@@&@@@&@&. /&@@&# (@@&@@@&@@@&@@@&@%
// *@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@@@@@@@@@@@@@@ .@@@@@@@@@@@@@@@@@@@@@@@&/
// &@@@@@@@@@@@@@@@@@@@# @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@@@@@@@@@@@@@& %@&@@@@@@@@@@@@@@@@@@@@
// /@@@@@@@@@@@@@@@@@@/ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@/ #@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@
// #@@@@@@@@@@@@&@@@@@@@& (@&@@@@@@@@@, .*%@@@&&&&&@@@@@@@@&@ *@@@@@@@@@&@ *@%* @@%&@@@@(. %@@@&%@@
// ,@@@(@@@@@/#@@@ ./@&&&&&&@% &@@@@@@@@@&@@ %@@@@&. ,@@@@@@
// ,*.#&&%.,.
//
//
/// @title CombinatorSimpleReRoll
/// @author Adam Goodman
/// @notice This contract allows the burning of Cool Pets to upgrade them, and simplified re-rolling of traits
contract CombinatorSimpleReRoll is Ownable, Pausable, ErrorsAndEventsSimpleReRoll {
using ECDSA for bytes32;
IERC721 public _oldCoolPets;
ICoolERC721A public _newCoolPets;
uint256 public _burnWindowStart;
uint256 public _burnWindowEnd;
uint256 public _maxSlots = 3;
uint256 public _selectPetCost = 0.02 ether;
uint256 public _reRollCost = 0.02 ether;
uint256 public _maxSelectablePetType = 3;
uint256 public _timestampWindow = 180;
bytes32 public _merkleRoot;
/// @dev Have to send old pets to 0x000...01 as transfer to 0x0 reverts, and old pets does not expose a burn function
address public _nullAddress = address(1);
/// @dev address for message signature verification
address public _systemAddress;
/// @dev address for withdrawing funds
address public _withdrawAddress;
/// @dev Hold nonces for combining to allow for tracking gem inventory off-chain
mapping(address => uint256) public _currentNonce;
/// @dev Hold used signatures for re-rolling
mapping(bytes => bool) public _usedSignatures;
// Mapping to only allow a merkle proof array to be used once.
// Merkle proofs are not guaranteed to be unique to a specific Merkle root. So store them by root.
mapping(bytes32 => mapping(bytes32 => bool)) public _usedMerkleProofs;
constructor(
address oldCoolPets,
address newCoolPets,
address systemAddress,
address withdrawAddress,
uint64 burnWindowStart,
uint64 burnWindowEnd
) {
_oldCoolPets = IERC721(oldCoolPets);
_newCoolPets = ICoolERC721A(newCoolPets);
_systemAddress = systemAddress;
_withdrawAddress = withdrawAddress;
setBurnWindow(burnWindowStart, burnWindowEnd);
_pause();
}
/// @notice Modifier to check if the burn window is open, otherwise revert
modifier withinBurnWindow() {
if (block.timestamp < _burnWindowStart) {
revert BurnWindowNotStarted();
}
if (block.timestamp > _burnWindowEnd) {
revert BurnWindowEnded();
}
_;
}
/// @notice Checks the input nonce matches the users nonce, and increments the nonce
modifier validateNonce(address account, uint256 nonce) {
if (nonce != _currentNonce[account]) {
revert InvalidNonce(_currentNonce[account], nonce);
}
_currentNonce[account]++;
_;
}
/// @notice Burns given old Cool Pets and mints upgraded Cool Pets
/// @param firstPetId The first old Cool Pet to burn
/// @param secondPetId The second old Cool Pet to burn
/// @param gemTokenIds The gem token ids to use in each slot for the new Cool Pet - in order of slot
/// @param signature The signature to validate the sender, nonce, gemIds and gemTokenIds
/// @param nonce The nonce for the sender - must be greater than the last nonce used, stops signature replay, starts at 0
/// @param petSelection The pet type to mint - 0 for random
function combine(
uint256 firstPetId,
uint256 secondPetId,
uint256[] calldata gemTokenIds,
bytes calldata signature,
uint256 nonce,
uint256 petSelection,
uint256 timestamp
) external payable whenNotPaused withinBurnWindow validateNonce(msg.sender, nonce) {
if (msg.sender != tx.origin) revert OnlyEOA();
if (gemTokenIds.length != _maxSlots) revert InvalidGemArrays();
if (timestamp < block.timestamp - _timestampWindow || timestamp > block.timestamp + 60)
revert OutsideTimestampWindow();
if (
!_isValidSignature(
keccak256(
abi.encodePacked(msg.sender, nonce, gemTokenIds, petSelection, timestamp, address(this))
),
signature
)
) revert InvalidSignature();
_handlePetSelection(petSelection);
_handleOldPetBurning(firstPetId, secondPetId);
uint256 mintedId = _newCoolPets.nextTokenId();
_newCoolPets.mint(msg.sender, 1);
emit Combined(msg.sender, firstPetId, secondPetId, mintedId, gemTokenIds, petSelection);
}
/// @notice re-roll a pets traits
/// @param tokenId The token id of the pet to re-roll
/// @param signature The signature to validate the sender, tokenId and timestamp
/// @param timestamp The timestamp of the re-roll - must be within the timestamp window
function reRoll(
uint256 tokenId,
bytes calldata signature,
uint256 timestamp,
bool reRollForm,
bytes32[] calldata merkleProof
) external payable whenNotPaused {
if (msg.sender != tx.origin) revert OnlyEOA();
if (_newCoolPets.ownerOf(tokenId) != msg.sender) revert OnlyOwnerOf(tokenId);
if (timestamp < block.timestamp - _timestampWindow || timestamp > block.timestamp + 60)
revert OutsideTimestampWindow();
if (
!_isValidSignature(
keccak256(abi.encodePacked(msg.sender, tokenId, timestamp, reRollForm, address(this))),
signature
)
) revert InvalidSignature();
if (_usedSignatures[signature]) revert SignatureAlreadyUsed();
_usedSignatures[signature] = true;
_handleReRollCost(merkleProof);
emit ReRolled(msg.sender, tokenId, reRollForm);
}
/// @notice Get the current nonce for an account
function getNonce(address account) external view returns (uint256) {
return _currentNonce[account];
}
/// @notice Get nonces for a list of accounts
function getNonceBatch(address[] memory accounts) external view returns (uint256[] memory) {
uint256[] memory nonces = new uint256[](accounts.length);
for (uint256 i = 0; i < accounts.length; i++) {
nonces[i] = _currentNonce[accounts[i]];
}
return nonces;
}
/// @notice Pauses the contract - stopping minting via the public mint function
/// @dev Only the owner can call this function
/// Emit handled by {OpenZeppelin Pausable}
function pause() external onlyOwner {
_pause();
}
/// @notice Unpauses the contract - allowing minting via the public mint function
/// @dev Only the owner can call this function
/// Emit handled by {OpenZeppelin Pausable}
function unpause() external onlyOwner {
_unpause();
}
/// @notice Sets the max slots for an input gem array
/// @dev Only the owner can call this function
/// @param maxSlots The max slots for an input gem array
function setMaxSlots(uint256 maxSlots) external onlyOwner {
_maxSlots = maxSlots;
emit MaxSlotsSet(maxSlots);
}
/// @notice Sets the system address for signature verification
/// @dev Only the owner can call this function
/// @param systemAddress The address of the system
function setSystemAddress(address systemAddress) external onlyOwner {
_systemAddress = systemAddress;
emit SystemAddressSet(systemAddress);
}
/// @notice Sets the withdraw address for the contract
/// @dev Only the owner can call this function
/// @param withdrawAddress The address to withdraw to
function setWithdrawAddress(address withdrawAddress) external onlyOwner {
_withdrawAddress = withdrawAddress;
emit WithdrawAddressSet(withdrawAddress);
}
/// @notice Sets the cost for selecting a specific pet type
/// @dev Only the owner can call this function
/// @param selectPetCost The cost for selecting a specific pet type
function setSelectPetCost(uint256 selectPetCost) external onlyOwner {
_selectPetCost = selectPetCost;
emit SelectPetCostSet(selectPetCost);
}
/// @notice Sets the cost for re-rolling a pet
/// @dev Only the owner can call this function
/// @param reRollCost The cost for re-rolling a pet
function setReRollCost(uint256 reRollCost) external onlyOwner {
_reRollCost = reRollCost;
emit ReRollCostSet(reRollCost);
}
/// @notice Sets the maximum value for a pet selection
/// @dev Only the owner can call this function
/// @param maxSelectablePetType The maximum value for a pet selection
function setMaxSelectablePetType(uint256 maxSelectablePetType) external onlyOwner {
_maxSelectablePetType = maxSelectablePetType;
emit MaxSelectablePetTypeSet(maxSelectablePetType);
}
/// @notice Sets the address of the old Cool Pets contract
/// @dev Only the owner can call this function
/// @param oldCoolPets The address of the old Cool Pets contract
function setOldCoolPetsAddress(address oldCoolPets) external onlyOwner {
_oldCoolPets = IERC721(oldCoolPets);
emit OldCoolPetsAddressSet(oldCoolPets);
}
/// @notice Sets the address of the new Cool Pets contract
/// @dev Only the owner can call this function
/// @param newCoolPets The address of the new Cool Pets contract
function setNewCoolPetsAddress(address newCoolPets) external onlyOwner {
_newCoolPets = ICoolERC721A(newCoolPets);
emit NewCoolPetsAddressSet(newCoolPets);
}
/// @notice Sets the timestamp window, in seconds
/// @dev Only the owner can call this function, used for signature verification
/// @param timestampWindow The timestamp window, in seconds
function setTimestampWindow(uint256 timestampWindow) external onlyOwner {
_timestampWindow = timestampWindow;
emit TimestampWindowSet(timestampWindow);
}
/// @notice Check if a merkle proof is valid for a user and if it has been used
/// @param account The address to check
/// @param merkleProof The merkle proof to check
/// @return Whether the merkle proof is valid and has not been used
function isValidMerkleProofAndUnused(
address account,
bytes32[] calldata merkleProof
) external view returns (bool) {
if (_merkleRoot == bytes32(0)) {
return false;
}
if (!isValidMerkleProof(account, merkleProof)) {
return false;
}
bytes32 node = keccak256(abi.encodePacked(account));
return !_usedMerkleProofs[_merkleRoot][node];
}
/// @notice Sets the burn window, start and end times are in seconds since unix epoch
/// @dev Only the owner can call this function
/// @param burnWindowStart The start time of the burn window
/// @param burnWindowEnd The end time of the burn window
function setBurnWindow(uint256 burnWindowStart, uint256 burnWindowEnd) public onlyOwner {
if (burnWindowEnd < burnWindowStart) {
revert InvalidBurnWindow();
}
_burnWindowStart = burnWindowStart;
_burnWindowEnd = burnWindowEnd;
emit BurnWindowSet(burnWindowStart, burnWindowEnd);
}
/// @notice Sets the merkle root for the allowlist
/// @dev Only the owner can call this function, setting the merkle root does not change
/// whether the allowlist is enabled or not
/// @param merkleRoot The new merkle root
function setMerkleRoot(bytes32 merkleRoot) external onlyOwner {
_merkleRoot = merkleRoot;
emit MerkleRootSet(merkleRoot);
}
/// @notice Checks if a given address is on the merkle tree allowlist
/// @dev Merkle trees can be generated using https://github.com/OpenZeppelin/merkle-tree
/// @param account The address to check
/// @param merkleProof The merkle proof to check
/// @return Whether the address is on the allowlist or not
function isValidMerkleProof(
address account,
bytes32[] calldata merkleProof
) public view virtual returns (bool) {
return
MerkleProof.verifyCalldata(
merkleProof,
_merkleRoot,
keccak256(bytes.concat(keccak256(abi.encode(account))))
);
}
/// @notice Handles the cost of re-rolling a pet
/// @dev Reverts if the incorrect amount of funds are sent, gives a discount for re-rolling all traits
function _handleReRollCost(bytes32[] calldata merkleProof) internal {
if (merkleProof.length > 0 && _merkleRoot != bytes32(0)) {
if (msg.value != 0) revert IncorrectFundsSent(0, msg.value);
if (!isValidMerkleProof(msg.sender, merkleProof)) revert InvalidMerkleProof();
// bytes32 unique identifier for each merkle proof
bytes32 node = keccak256(abi.encodePacked(msg.sender));
if (_usedMerkleProofs[_merkleRoot][node]) {
revert InvalidMerkleProof();
}
_usedMerkleProofs[_merkleRoot][node] = true;
} else {
if (msg.value != _reRollCost) revert IncorrectFundsSent(_reRollCost, msg.value);
payable(_withdrawAddress).transfer(_reRollCost);
}
}
/// @notice Handles the ownership (or approval) checks and burning of the old pets
/// @param firstPetId The first old Cool Pet to burn
/// @param secondPetId The second old Cool Pet to burn
function _handleOldPetBurning(uint256 firstPetId, uint256 secondPetId) internal {
// Check the sender is the owner or approved for each old pet
// then burn the old pets
_oldCoolPets.transferFrom(_getOwnerIfApproved(firstPetId), _nullAddress, firstPetId);
_oldCoolPets.transferFrom(_getOwnerIfApproved(secondPetId), _nullAddress, secondPetId);
}
/// @notice handles validating the selected pet type and sending on the funds
/// @dev If the pet selection is 0 then no pet was selected, so no funds should be sent
/// @param petSelection The selected pet type
function _handlePetSelection(uint256 petSelection) internal {
if (petSelection > _maxSelectablePetType) {
revert PetSelectionOutOfRange(petSelection, _maxSelectablePetType);
}
if (petSelection > 0) {
if (msg.value != _selectPetCost) {
revert IncorrectFundsSent(_selectPetCost, msg.value);
}
payable(_withdrawAddress).transfer(msg.value);
} else {
if (msg.value > 0) {
revert IncorrectFundsSent(0, msg.value);
}
}
}
/// @notice Verify hashed data
/// @param hash - Hashed data bundle
/// @param signature - Signature to check hash against
/// @return bool - Is verified or not
function _isValidSignature(bytes32 hash, bytes calldata signature) internal view returns (bool) {
bytes32 signedHash = hash.toEthSignedMessageHash();
return signedHash.recover(signature) == _systemAddress;
}
/// @notice Checks if a given Fracture is owned by or approved for the sender
/// @dev This can be used to stop users from being able to burn Fractures someone else owns without their permission
/// @param tokenId The Fracture to check
/// @return The owner of the token
function _getOwnerIfApproved(uint256 tokenId) internal view returns (address) {
address owner = _oldCoolPets.ownerOf(tokenId);
if (owner == msg.sender) {
return owner;
}
if (_oldCoolPets.isApprovedForAll(owner, msg.sender)) {
return owner;
}
if (_oldCoolPets.getApproved(tokenId) == msg.sender) {
return owner;
}
revert NotOldCoolPetOwnerNorApproved(msg.sender, tokenId);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
contract ErrorsAndEventsSimpleReRoll {
error BurnWindowNotStarted();
error BurnWindowEnded();
error NotOldCoolPetOwnerNorApproved(address account, uint256 oldPetId);
error InvalidMerkleProof();
error OnlyEOA();
error OnlyOwnerOf(uint256 tokenId);
error OutsideTimestampWindow();
error IncorrectFundsSent(uint256 expected, uint256 actual);
error InvalidArrayLength();
error InvalidBurnWindow();
error InvalidGemArrays();
error InvalidNonce(uint256 expected, uint256 actual);
error InvalidSignature();
error PetSelectionOutOfRange(uint256 petType, uint256 maxSelectablePetType);
error SignatureAlreadyUsed();
event BurnWindowSet(uint256 burnWindowStart, uint256 burnWindowEnd);
event Combined(
address indexed account,
uint256 firstPetId,
uint256 secondPetId,
uint256 indexed mintedId,
uint256[] gemTokenIds,
uint256 petSelection
);
event MaxSlotsSet(uint256 maxSlots);
event MaxSelectablePetTypeSet(uint256 maxSelectablePetType);
event MerkleRootSet(bytes32 merkleRoot);
event NewCoolPetsAddressSet(address newCoolPets);
event OldCoolPetsAddressSet(address oldCoolPets);
event ReRolled(address indexed account, uint256 indexed tokenId, bool reRollForm);
event ReRollCostSet(uint256 rerollCost);
event SelectPetCostSet(uint256 selectPetCost);
event SystemAddressSet(address systemAddress);
event TimestampWindowSet(uint256 timestampWindow);
event WithdrawAddressSet(address withdrawAddress);
event Withdrawn(address indexed to, uint256 amount);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
interface ICoolERC721A {
/// @notice Mint an amount of tokens to the given address
/// @dev Can only be called by an account with the MINTER_ROLE
/// Will revert if called when paused, see _beforeTokenTransfer
/// @param to The address to mint the token to
/// @param amount The amount of tokens to mint
function mint(address to, uint256 amount) external;
/// @notice Externally exposes the _nextTokenId function
/// @dev used for referencing when burning fractures
/// @return The next token id
function nextTokenId() external view returns (uint256);
/// @notice Returns the owner of a tokenId
/// @return owner The owner address
function ownerOf(uint256 tokenId) external view returns (address owner);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
{
"compilationTarget": {
"contracts/minting/CombinatorSimpleReRoll.sol": "CombinatorSimpleReRoll"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"oldCoolPets","type":"address"},{"internalType":"address","name":"newCoolPets","type":"address"},{"internalType":"address","name":"systemAddress","type":"address"},{"internalType":"address","name":"withdrawAddress","type":"address"},{"internalType":"uint64","name":"burnWindowStart","type":"uint64"},{"internalType":"uint64","name":"burnWindowEnd","type":"uint64"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"BurnWindowEnded","type":"error"},{"inputs":[],"name":"BurnWindowNotStarted","type":"error"},{"inputs":[{"internalType":"uint256","name":"expected","type":"uint256"},{"internalType":"uint256","name":"actual","type":"uint256"}],"name":"IncorrectFundsSent","type":"error"},{"inputs":[],"name":"InvalidArrayLength","type":"error"},{"inputs":[],"name":"InvalidBurnWindow","type":"error"},{"inputs":[],"name":"InvalidGemArrays","type":"error"},{"inputs":[],"name":"InvalidMerkleProof","type":"error"},{"inputs":[{"internalType":"uint256","name":"expected","type":"uint256"},{"internalType":"uint256","name":"actual","type":"uint256"}],"name":"InvalidNonce","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"oldPetId","type":"uint256"}],"name":"NotOldCoolPetOwnerNorApproved","type":"error"},{"inputs":[],"name":"OnlyEOA","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"OnlyOwnerOf","type":"error"},{"inputs":[],"name":"OutsideTimestampWindow","type":"error"},{"inputs":[{"internalType":"uint256","name":"petType","type":"uint256"},{"internalType":"uint256","name":"maxSelectablePetType","type":"uint256"}],"name":"PetSelectionOutOfRange","type":"error"},{"inputs":[],"name":"SignatureAlreadyUsed","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"burnWindowStart","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"burnWindowEnd","type":"uint256"}],"name":"BurnWindowSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"firstPetId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"secondPetId","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"mintedId","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"gemTokenIds","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"petSelection","type":"uint256"}],"name":"Combined","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"maxSelectablePetType","type":"uint256"}],"name":"MaxSelectablePetTypeSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"maxSlots","type":"uint256"}],"name":"MaxSlotsSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"name":"MerkleRootSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newCoolPets","type":"address"}],"name":"NewCoolPetsAddressSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldCoolPets","type":"address"}],"name":"OldCoolPetsAddressSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"rerollCost","type":"uint256"}],"name":"ReRollCostSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"bool","name":"reRollForm","type":"bool"}],"name":"ReRolled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"selectPetCost","type":"uint256"}],"name":"SelectPetCostSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"systemAddress","type":"address"}],"name":"SystemAddressSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"timestampWindow","type":"uint256"}],"name":"TimestampWindowSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"withdrawAddress","type":"address"}],"name":"WithdrawAddressSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdrawn","type":"event"},{"inputs":[],"name":"_burnWindowEnd","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_burnWindowStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"_currentNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_maxSelectablePetType","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_maxSlots","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_merkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_newCoolPets","outputs":[{"internalType":"contract ICoolERC721A","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_nullAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_oldCoolPets","outputs":[{"internalType":"contract IERC721","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_reRollCost","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_selectPetCost","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_systemAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_timestampWindow","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"_usedMerkleProofs","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"","type":"bytes"}],"name":"_usedSignatures","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_withdrawAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"firstPetId","type":"uint256"},{"internalType":"uint256","name":"secondPetId","type":"uint256"},{"internalType":"uint256[]","name":"gemTokenIds","type":"uint256[]"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"petSelection","type":"uint256"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"combine","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"}],"name":"getNonceBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"isValidMerkleProof","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"isValidMerkleProofAndUnused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"bool","name":"reRollForm","type":"bool"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"reRoll","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"burnWindowStart","type":"uint256"},{"internalType":"uint256","name":"burnWindowEnd","type":"uint256"}],"name":"setBurnWindow","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"maxSelectablePetType","type":"uint256"}],"name":"setMaxSelectablePetType","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"maxSlots","type":"uint256"}],"name":"setMaxSlots","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"name":"setMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newCoolPets","type":"address"}],"name":"setNewCoolPetsAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"oldCoolPets","type":"address"}],"name":"setOldCoolPetsAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"reRollCost","type":"uint256"}],"name":"setReRollCost","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"selectPetCost","type":"uint256"}],"name":"setSelectPetCost","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"systemAddress","type":"address"}],"name":"setSystemAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"timestampWindow","type":"uint256"}],"name":"setTimestampWindow","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"withdrawAddress","type":"address"}],"name":"setWithdrawAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"}]