账户
0xb3...ba2b
0xB3...bA2B

0xB3...bA2B

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.17+commit.8df45f5f
语言
Solidity
合同源代码
文件 1 的 22:AddrResolver.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.4;

import "../ResolverBase.sol";
import "./IAddrResolver.sol";
import "./IAddressResolver.sol";

abstract contract AddrResolver is
    IAddrResolver,
    IAddressResolver,
    ResolverBase
{
    uint256 private constant COIN_TYPE_ETH = 60;

    mapping(uint64 => mapping(bytes32 => mapping(uint256 => bytes))) versionable_addresses;

    /**
     * Sets the address associated with an ENS node.
     * May only be called by the owner of that node in the ENS registry.
     * @param node The node to update.
     * @param a The address to set.
     */
    function setAddr(
        bytes32 node,
        address a
    ) external virtual authorised(node) {
        setAddr(node, COIN_TYPE_ETH, addressToBytes(a));
    }

    /**
     * Returns the address associated with an ENS node.
     * @param node The ENS node to query.
     * @return The associated address.
     */
    function addr(
        bytes32 node
    ) public view virtual override returns (address payable) {
        bytes memory a = addr(node, COIN_TYPE_ETH);
        if (a.length == 0) {
            return payable(0);
        }
        return bytesToAddress(a);
    }

    function setAddr(
        bytes32 node,
        uint256 coinType,
        bytes memory a
    ) public virtual authorised(node) {
        emit AddressChanged(node, coinType, a);
        if (coinType == COIN_TYPE_ETH) {
            emit AddrChanged(node, bytesToAddress(a));
        }
        versionable_addresses[recordVersions[node]][node][coinType] = a;
    }

    function addr(
        bytes32 node,
        uint256 coinType
    ) public view virtual override returns (bytes memory) {
        return versionable_addresses[recordVersions[node]][node][coinType];
    }

    function supportsInterface(
        bytes4 interfaceID
    ) public view virtual override returns (bool) {
        return
            interfaceID == type(IAddrResolver).interfaceId ||
            interfaceID == type(IAddressResolver).interfaceId ||
            super.supportsInterface(interfaceID);
    }

    function bytesToAddress(
        bytes memory b
    ) internal pure returns (address payable a) {
        require(b.length == 20);
        assembly {
            a := div(mload(add(b, 32)), exp(256, 12))
        }
    }

    function addressToBytes(address a) internal pure returns (bytes memory b) {
        b = new bytes(20);
        assembly {
            mstore(add(b, 32), mul(a, exp(256, 12)))
        }
    }
}
合同源代码
文件 2 的 22:Buffer.sol
// SPDX-License-Identifier: BSD-2-Clause
pragma solidity ^0.8.4;

/**
* @dev A library for working with mutable byte buffers in Solidity.
*
* Byte buffers are mutable and expandable, and provide a variety of primitives
* for appending to them. At any time you can fetch a bytes object containing the
* current contents of the buffer. The bytes object should not be stored between
* operations, as it may change due to resizing of the buffer.
*/
library Buffer {
    /**
    * @dev Represents a mutable buffer. Buffers have a current value (buf) and
    *      a capacity. The capacity may be longer than the current value, in
    *      which case it can be extended without the need to allocate more memory.
    */
    struct buffer {
        bytes buf;
        uint capacity;
    }

    /**
    * @dev Initializes a buffer with an initial capacity.
    * @param buf The buffer to initialize.
    * @param capacity The number of bytes of space to allocate the buffer.
    * @return The buffer, for chaining.
    */
    function init(buffer memory buf, uint capacity) internal pure returns(buffer memory) {
        if (capacity % 32 != 0) {
            capacity += 32 - (capacity % 32);
        }
        // Allocate space for the buffer data
        buf.capacity = capacity;
        assembly {
            let ptr := mload(0x40)
            mstore(buf, ptr)
            mstore(ptr, 0)
            let fpm := add(32, add(ptr, capacity))
            if lt(fpm, ptr) {
                revert(0, 0)
            }
            mstore(0x40, fpm)
        }
        return buf;
    }

    /**
    * @dev Initializes a new buffer from an existing bytes object.
    *      Changes to the buffer may mutate the original value.
    * @param b The bytes object to initialize the buffer with.
    * @return A new buffer.
    */
    function fromBytes(bytes memory b) internal pure returns(buffer memory) {
        buffer memory buf;
        buf.buf = b;
        buf.capacity = b.length;
        return buf;
    }

    function resize(buffer memory buf, uint capacity) private pure {
        bytes memory oldbuf = buf.buf;
        init(buf, capacity);
        append(buf, oldbuf);
    }

    /**
    * @dev Sets buffer length to 0.
    * @param buf The buffer to truncate.
    * @return The original buffer, for chaining..
    */
    function truncate(buffer memory buf) internal pure returns (buffer memory) {
        assembly {
            let bufptr := mload(buf)
            mstore(bufptr, 0)
        }
        return buf;
    }

    /**
    * @dev Appends len bytes of a byte string to a buffer. Resizes if doing so would exceed
    *      the capacity of the buffer.
    * @param buf The buffer to append to.
    * @param data The data to append.
    * @param len The number of bytes to copy.
    * @return The original buffer, for chaining.
    */
    function append(buffer memory buf, bytes memory data, uint len) internal pure returns(buffer memory) {
        require(len <= data.length);

        uint off = buf.buf.length;
        uint newCapacity = off + len;
        if (newCapacity > buf.capacity) {
            resize(buf, newCapacity * 2);
        }

        uint dest;
        uint src;
        assembly {
            // Memory address of the buffer data
            let bufptr := mload(buf)
            // Length of existing buffer data
            let buflen := mload(bufptr)
            // Start address = buffer address + offset + sizeof(buffer length)
            dest := add(add(bufptr, 32), off)
            // Update buffer length if we're extending it
            if gt(newCapacity, buflen) {
                mstore(bufptr, newCapacity)
            }
            src := add(data, 32)
        }

        // Copy word-length chunks while possible
        for (; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        // Copy remaining bytes
        unchecked {
            uint mask = (256 ** (32 - len)) - 1;
            assembly {
                let srcpart := and(mload(src), not(mask))
                let destpart := and(mload(dest), mask)
                mstore(dest, or(destpart, srcpart))
            }
        }

        return buf;
    }

    /**
    * @dev Appends a byte string to a buffer. Resizes if doing so would exceed
    *      the capacity of the buffer.
    * @param buf The buffer to append to.
    * @param data The data to append.
    * @return The original buffer, for chaining.
    */
    function append(buffer memory buf, bytes memory data) internal pure returns (buffer memory) {
        return append(buf, data, data.length);
    }

    /**
    * @dev Appends a byte to the buffer. Resizes if doing so would exceed the
    *      capacity of the buffer.
    * @param buf The buffer to append to.
    * @param data The data to append.
    * @return The original buffer, for chaining.
    */
    function appendUint8(buffer memory buf, uint8 data) internal pure returns(buffer memory) {
        uint off = buf.buf.length;
        uint offPlusOne = off + 1;
        if (off >= buf.capacity) {
            resize(buf, offPlusOne * 2);
        }

        assembly {
            // Memory address of the buffer data
            let bufptr := mload(buf)
            // Address = buffer address + sizeof(buffer length) + off
            let dest := add(add(bufptr, off), 32)
            mstore8(dest, data)
            // Update buffer length if we extended it
            if gt(offPlusOne, mload(bufptr)) {
                mstore(bufptr, offPlusOne)
            }
        }

        return buf;
    }

    /**
    * @dev Appends len bytes of bytes32 to a buffer. Resizes if doing so would
    *      exceed the capacity of the buffer.
    * @param buf The buffer to append to.
    * @param data The data to append.
    * @param len The number of bytes to write (left-aligned).
    * @return The original buffer, for chaining.
    */
    function append(buffer memory buf, bytes32 data, uint len) private pure returns(buffer memory) {
        uint off = buf.buf.length;
        uint newCapacity = len + off;
        if (newCapacity > buf.capacity) {
            resize(buf, newCapacity * 2);
        }

        unchecked {
            uint mask = (256 ** len) - 1;
            // Right-align data
            data = data >> (8 * (32 - len));
            assembly {
                // Memory address of the buffer data
                let bufptr := mload(buf)
                // Address = buffer address + sizeof(buffer length) + newCapacity
                let dest := add(bufptr, newCapacity)
                mstore(dest, or(and(mload(dest), not(mask)), data))
                // Update buffer length if we extended it
                if gt(newCapacity, mload(bufptr)) {
                    mstore(bufptr, newCapacity)
                }
            }
        }
        return buf;
    }

    /**
    * @dev Appends a bytes20 to the buffer. Resizes if doing so would exceed
    *      the capacity of the buffer.
    * @param buf The buffer to append to.
    * @param data The data to append.
    * @return The original buffer, for chhaining.
    */
    function appendBytes20(buffer memory buf, bytes20 data) internal pure returns (buffer memory) {
        return append(buf, bytes32(data), 20);
    }

    /**
    * @dev Appends a bytes32 to the buffer. Resizes if doing so would exceed
    *      the capacity of the buffer.
    * @param buf The buffer to append to.
    * @param data The data to append.
    * @return The original buffer, for chaining.
    */
    function appendBytes32(buffer memory buf, bytes32 data) internal pure returns (buffer memory) {
        return append(buf, data, 32);
    }

    /**
     * @dev Appends a byte to the end of the buffer. Resizes if doing so would
     *      exceed the capacity of the buffer.
     * @param buf The buffer to append to.
     * @param data The data to append.
     * @param len The number of bytes to write (right-aligned).
     * @return The original buffer.
     */
    function appendInt(buffer memory buf, uint data, uint len) internal pure returns(buffer memory) {
        uint off = buf.buf.length;
        uint newCapacity = len + off;
        if (newCapacity > buf.capacity) {
            resize(buf, newCapacity * 2);
        }

        uint mask = (256 ** len) - 1;
        assembly {
            // Memory address of the buffer data
            let bufptr := mload(buf)
            // Address = buffer address + sizeof(buffer length) + newCapacity
            let dest := add(bufptr, newCapacity)
            mstore(dest, or(and(mload(dest), not(mask)), data))
            // Update buffer length if we extended it
            if gt(newCapacity, mload(bufptr)) {
                mstore(bufptr, newCapacity)
            }
        }
        return buf;
    }
}
合同源代码
文件 3 的 22:BytesUtils.sol
pragma solidity ^0.8.4;

library BytesUtils {
    error OffsetOutOfBoundsError(uint256 offset, uint256 length);

    /*
     * @dev Returns the keccak-256 hash of a byte range.
     * @param self The byte string to hash.
     * @param offset The position to start hashing at.
     * @param len The number of bytes to hash.
     * @return The hash of the byte range.
     */
    function keccak(
        bytes memory self,
        uint256 offset,
        uint256 len
    ) internal pure returns (bytes32 ret) {
        require(offset + len <= self.length);
        assembly {
            ret := keccak256(add(add(self, 32), offset), len)
        }
    }

    /*
     * @dev Returns a positive number if `other` comes lexicographically after
     *      `self`, a negative number if it comes before, or zero if the
     *      contents of the two bytes are equal.
     * @param self The first bytes to compare.
     * @param other The second bytes to compare.
     * @return The result of the comparison.
     */
    function compare(
        bytes memory self,
        bytes memory other
    ) internal pure returns (int256) {
        return compare(self, 0, self.length, other, 0, other.length);
    }

    /*
     * @dev Returns a positive number if `other` comes lexicographically after
     *      `self`, a negative number if it comes before, or zero if the
     *      contents of the two bytes are equal. Comparison is done per-rune,
     *      on unicode codepoints.
     * @param self The first bytes to compare.
     * @param offset The offset of self.
     * @param len    The length of self.
     * @param other The second bytes to compare.
     * @param otheroffset The offset of the other string.
     * @param otherlen    The length of the other string.
     * @return The result of the comparison.
     */
    function compare(
        bytes memory self,
        uint256 offset,
        uint256 len,
        bytes memory other,
        uint256 otheroffset,
        uint256 otherlen
    ) internal pure returns (int256) {
        if (offset + len > self.length) {
            revert OffsetOutOfBoundsError(offset + len, self.length);
        }
        if (otheroffset + otherlen > other.length) {
            revert OffsetOutOfBoundsError(otheroffset + otherlen, other.length);
        }

        uint256 shortest = len;
        if (otherlen < len) shortest = otherlen;

        uint256 selfptr;
        uint256 otherptr;

        assembly {
            selfptr := add(self, add(offset, 32))
            otherptr := add(other, add(otheroffset, 32))
        }
        for (uint256 idx = 0; idx < shortest; idx += 32) {
            uint256 a;
            uint256 b;
            assembly {
                a := mload(selfptr)
                b := mload(otherptr)
            }
            if (a != b) {
                // Mask out irrelevant bytes and check again
                uint256 mask;
                if (shortest - idx >= 32) {
                    mask = type(uint256).max;
                } else {
                    mask = ~(2 ** (8 * (idx + 32 - shortest)) - 1);
                }
                int256 diff = int256(a & mask) - int256(b & mask);
                if (diff != 0) return diff;
            }
            selfptr += 32;
            otherptr += 32;
        }

        return int256(len) - int256(otherlen);
    }

    /*
     * @dev Returns true if the two byte ranges are equal.
     * @param self The first byte range to compare.
     * @param offset The offset into the first byte range.
     * @param other The second byte range to compare.
     * @param otherOffset The offset into the second byte range.
     * @param len The number of bytes to compare
     * @return True if the byte ranges are equal, false otherwise.
     */
    function equals(
        bytes memory self,
        uint256 offset,
        bytes memory other,
        uint256 otherOffset,
        uint256 len
    ) internal pure returns (bool) {
        return keccak(self, offset, len) == keccak(other, otherOffset, len);
    }

    /*
     * @dev Returns true if the two byte ranges are equal with offsets.
     * @param self The first byte range to compare.
     * @param offset The offset into the first byte range.
     * @param other The second byte range to compare.
     * @param otherOffset The offset into the second byte range.
     * @return True if the byte ranges are equal, false otherwise.
     */
    function equals(
        bytes memory self,
        uint256 offset,
        bytes memory other,
        uint256 otherOffset
    ) internal pure returns (bool) {
        return
            keccak(self, offset, self.length - offset) ==
            keccak(other, otherOffset, other.length - otherOffset);
    }

    /*
     * @dev Compares a range of 'self' to all of 'other' and returns True iff
     *      they are equal.
     * @param self The first byte range to compare.
     * @param offset The offset into the first byte range.
     * @param other The second byte range to compare.
     * @return True if the byte ranges are equal, false otherwise.
     */
    function equals(
        bytes memory self,
        uint256 offset,
        bytes memory other
    ) internal pure returns (bool) {
        return
            self.length == offset + other.length &&
            equals(self, offset, other, 0, other.length);
    }

    /*
     * @dev Returns true if the two byte ranges are equal.
     * @param self The first byte range to compare.
     * @param other The second byte range to compare.
     * @return True if the byte ranges are equal, false otherwise.
     */
    function equals(
        bytes memory self,
        bytes memory other
    ) internal pure returns (bool) {
        return
            self.length == other.length &&
            equals(self, 0, other, 0, self.length);
    }

    /*
     * @dev Returns the 8-bit number at the specified index of self.
     * @param self The byte string.
     * @param idx The index into the bytes
     * @return The specified 8 bits of the string, interpreted as an integer.
     */
    function readUint8(
        bytes memory self,
        uint256 idx
    ) internal pure returns (uint8 ret) {
        return uint8(self[idx]);
    }

    /*
     * @dev Returns the 16-bit number at the specified index of self.
     * @param self The byte string.
     * @param idx The index into the bytes
     * @return The specified 16 bits of the string, interpreted as an integer.
     */
    function readUint16(
        bytes memory self,
        uint256 idx
    ) internal pure returns (uint16 ret) {
        require(idx + 2 <= self.length);
        assembly {
            ret := and(mload(add(add(self, 2), idx)), 0xFFFF)
        }
    }

    /*
     * @dev Returns the 32-bit number at the specified index of self.
     * @param self The byte string.
     * @param idx The index into the bytes
     * @return The specified 32 bits of the string, interpreted as an integer.
     */
    function readUint32(
        bytes memory self,
        uint256 idx
    ) internal pure returns (uint32 ret) {
        require(idx + 4 <= self.length);
        assembly {
            ret := and(mload(add(add(self, 4), idx)), 0xFFFFFFFF)
        }
    }

    /*
     * @dev Returns the 32 byte value at the specified index of self.
     * @param self The byte string.
     * @param idx The index into the bytes
     * @return The specified 32 bytes of the string.
     */
    function readBytes32(
        bytes memory self,
        uint256 idx
    ) internal pure returns (bytes32 ret) {
        require(idx + 32 <= self.length);
        assembly {
            ret := mload(add(add(self, 32), idx))
        }
    }

    /*
     * @dev Returns the 32 byte value at the specified index of self.
     * @param self The byte string.
     * @param idx The index into the bytes
     * @return The specified 32 bytes of the string.
     */
    function readBytes20(
        bytes memory self,
        uint256 idx
    ) internal pure returns (bytes20 ret) {
        require(idx + 20 <= self.length);
        assembly {
            ret := and(
                mload(add(add(self, 32), idx)),
                0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000
            )
        }
    }

    /*
     * @dev Returns the n byte value at the specified index of self.
     * @param self The byte string.
     * @param idx The index into the bytes.
     * @param len The number of bytes.
     * @return The specified 32 bytes of the string.
     */
    function readBytesN(
        bytes memory self,
        uint256 idx,
        uint256 len
    ) internal pure returns (bytes32 ret) {
        require(len <= 32);
        require(idx + len <= self.length);
        assembly {
            let mask := not(sub(exp(256, sub(32, len)), 1))
            ret := and(mload(add(add(self, 32), idx)), mask)
        }
    }

    function memcpy(uint256 dest, uint256 src, uint256 len) private pure {
        // Copy word-length chunks while possible
        for (; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        // Copy remaining bytes
        unchecked {
            uint256 mask = (256 ** (32 - len)) - 1;
            assembly {
                let srcpart := and(mload(src), not(mask))
                let destpart := and(mload(dest), mask)
                mstore(dest, or(destpart, srcpart))
            }
        }
    }

    /*
     * @dev Copies a substring into a new byte string.
     * @param self The byte string to copy from.
     * @param offset The offset to start copying at.
     * @param len The number of bytes to copy.
     */
    function substring(
        bytes memory self,
        uint256 offset,
        uint256 len
    ) internal pure returns (bytes memory) {
        require(offset + len <= self.length);

        bytes memory ret = new bytes(len);
        uint256 dest;
        uint256 src;

        assembly {
            dest := add(ret, 32)
            src := add(add(self, 32), offset)
        }
        memcpy(dest, src, len);

        return ret;
    }

    // Maps characters from 0x30 to 0x7A to their base32 values.
    // 0xFF represents invalid characters in that range.
    bytes constant base32HexTable =
        hex"00010203040506070809FFFFFFFFFFFFFF0A0B0C0D0E0F101112131415161718191A1B1C1D1E1FFFFFFFFFFFFFFFFFFFFF0A0B0C0D0E0F101112131415161718191A1B1C1D1E1F";

    /**
     * @dev Decodes unpadded base32 data of up to one word in length.
     * @param self The data to decode.
     * @param off Offset into the string to start at.
     * @param len Number of characters to decode.
     * @return The decoded data, left aligned.
     */
    function base32HexDecodeWord(
        bytes memory self,
        uint256 off,
        uint256 len
    ) internal pure returns (bytes32) {
        require(len <= 52);

        uint256 ret = 0;
        uint8 decoded;
        for (uint256 i = 0; i < len; i++) {
            bytes1 char = self[off + i];
            require(char >= 0x30 && char <= 0x7A);
            decoded = uint8(base32HexTable[uint256(uint8(char)) - 0x30]);
            require(decoded <= 0x20);
            if (i == len - 1) {
                break;
            }
            ret = (ret << 5) | decoded;
        }

        uint256 bitlen = len * 5;
        if (len % 8 == 0) {
            // Multiple of 8 characters, no padding
            ret = (ret << 5) | decoded;
        } else if (len % 8 == 2) {
            // Two extra characters - 1 byte
            ret = (ret << 3) | (decoded >> 2);
            bitlen -= 2;
        } else if (len % 8 == 4) {
            // Four extra characters - 2 bytes
            ret = (ret << 1) | (decoded >> 4);
            bitlen -= 4;
        } else if (len % 8 == 5) {
            // Five extra characters - 3 bytes
            ret = (ret << 4) | (decoded >> 1);
            bitlen -= 1;
        } else if (len % 8 == 7) {
            // Seven extra characters - 4 bytes
            ret = (ret << 2) | (decoded >> 3);
            bitlen -= 3;
        } else {
            revert();
        }

        return bytes32(ret << (256 - bitlen));
    }

    /**
     * @dev Finds the first occurrence of the byte `needle` in `self`.
     * @param self The string to search
     * @param off The offset to start searching at
     * @param len The number of bytes to search
     * @param needle The byte to search for
     * @return The offset of `needle` in `self`, or 2**256-1 if it was not found.
     */
    function find(
        bytes memory self,
        uint256 off,
        uint256 len,
        bytes1 needle
    ) internal pure returns (uint256) {
        for (uint256 idx = off; idx < off + len; idx++) {
            if (self[idx] == needle) {
                return idx;
            }
        }
        return type(uint256).max;
    }
}
合同源代码
文件 4 的 22:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
合同源代码
文件 5 的 22:Controllable.sol
pragma solidity ^0.8.4;

import "@openzeppelin/contracts/access/Ownable.sol";

contract Controllable is Ownable {
    mapping(address => bool) public controllers;

    event ControllerChanged(address indexed controller, bool enabled);

    modifier onlyController() {
        require(
            controllers[msg.sender],
            "Controllable: Caller is not a controller"
        );
        _;
    }

    function setController(address controller, bool enabled) public onlyOwner {
        controllers[controller] = enabled;
        emit ControllerChanged(controller, enabled);
    }
}
合同源代码
文件 6 的 22:DNSClaimChecker.sol
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

import "../dnssec-oracle/DNSSEC.sol";
import "../dnssec-oracle/BytesUtils.sol";
import "../dnssec-oracle/RRUtils.sol";
import "../utils/HexUtils.sol";
import "@ensdomains/buffer/contracts/Buffer.sol";

library DNSClaimChecker {
    using BytesUtils for bytes;
    using HexUtils for bytes;
    using RRUtils for *;
    using Buffer for Buffer.buffer;

    uint16 constant CLASS_INET = 1;
    uint16 constant TYPE_TXT = 16;

    function getOwnerAddress(
        bytes memory name,
        bytes memory data
    ) internal pure returns (address, bool) {
        // Add "_ens." to the front of the name.
        Buffer.buffer memory buf;
        buf.init(name.length + 5);
        buf.append("\x04_ens");
        buf.append(name);

        for (
            RRUtils.RRIterator memory iter = data.iterateRRs(0);
            !iter.done();
            iter.next()
        ) {
            if (iter.name().compareNames(buf.buf) != 0) continue;
            bool found;
            address addr;
            (addr, found) = parseRR(data, iter.rdataOffset, iter.nextOffset);
            if (found) {
                return (addr, true);
            }
        }

        return (address(0x0), false);
    }

    function parseRR(
        bytes memory rdata,
        uint256 idx,
        uint256 endIdx
    ) internal pure returns (address, bool) {
        while (idx < endIdx) {
            uint256 len = rdata.readUint8(idx);
            idx += 1;

            bool found;
            address addr;
            (addr, found) = parseString(rdata, idx, len);

            if (found) return (addr, true);
            idx += len;
        }

        return (address(0x0), false);
    }

    function parseString(
        bytes memory str,
        uint256 idx,
        uint256 len
    ) internal pure returns (address, bool) {
        // TODO: More robust parsing that handles whitespace and multiple key/value pairs
        if (str.readUint32(idx) != 0x613d3078) return (address(0x0), false); // 0x613d3078 == 'a=0x'
        return str.hexToAddress(idx + 4, idx + len);
    }
}
合同源代码
文件 7 的 22:DNSRegistrar.sol
//SPDX-License-Identifier: MIT

pragma solidity ^0.8.4;

import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import "@ensdomains/buffer/contracts/Buffer.sol";
import "../dnssec-oracle/BytesUtils.sol";
import "../dnssec-oracle/DNSSEC.sol";
import "../dnssec-oracle/RRUtils.sol";
import "../registry/ENSRegistry.sol";
import "../root/Root.sol";
import "../resolvers/profiles/AddrResolver.sol";
import "./DNSClaimChecker.sol";
import "./PublicSuffixList.sol";
import "./IDNSRegistrar.sol";

/**
 * @dev An ENS registrar that allows the owner of a DNS name to claim the
 *      corresponding name in ENS.
 */
contract DNSRegistrar is IDNSRegistrar, IERC165 {
    using BytesUtils for bytes;
    using Buffer for Buffer.buffer;
    using RRUtils for *;

    ENS public immutable ens;
    DNSSEC public immutable oracle;
    PublicSuffixList public suffixes;
    address public immutable previousRegistrar;
    address public immutable resolver;
    // A mapping of the most recent signatures seen for each claimed domain.
    mapping(bytes32 => uint32) public inceptions;

    error NoOwnerRecordFound();
    error PermissionDenied(address caller, address owner);
    error PreconditionNotMet();
    error StaleProof();
    error InvalidPublicSuffix(bytes name);

    struct OwnerRecord {
        bytes name;
        address owner;
        address resolver;
        uint64 ttl;
    }

    event Claim(
        bytes32 indexed node,
        address indexed owner,
        bytes dnsname,
        uint32 inception
    );
    event NewPublicSuffixList(address suffixes);

    constructor(
        address _previousRegistrar,
        address _resolver,
        DNSSEC _dnssec,
        PublicSuffixList _suffixes,
        ENS _ens
    ) {
        previousRegistrar = _previousRegistrar;
        resolver = _resolver;
        oracle = _dnssec;
        suffixes = _suffixes;
        emit NewPublicSuffixList(address(suffixes));
        ens = _ens;
    }

    /**
     * @dev This contract's owner-only functions can be invoked by the owner of the ENS root.
     */
    modifier onlyOwner() {
        Root root = Root(ens.owner(bytes32(0)));
        address owner = root.owner();
        require(msg.sender == owner);
        _;
    }

    function setPublicSuffixList(PublicSuffixList _suffixes) public onlyOwner {
        suffixes = _suffixes;
        emit NewPublicSuffixList(address(suffixes));
    }

    /**
     * @dev Submits proofs to the DNSSEC oracle, then claims a name using those proofs.
     * @param name The name to claim, in DNS wire format.
     * @param input A chain of signed DNS RRSETs ending with a text record.
     */
    function proveAndClaim(
        bytes memory name,
        DNSSEC.RRSetWithSignature[] memory input
    ) public override {
        (bytes32 rootNode, bytes32 labelHash, address addr) = _claim(
            name,
            input
        );
        ens.setSubnodeOwner(rootNode, labelHash, addr);
    }

    function proveAndClaimWithResolver(
        bytes memory name,
        DNSSEC.RRSetWithSignature[] memory input,
        address resolver,
        address addr
    ) public override {
        (bytes32 rootNode, bytes32 labelHash, address owner) = _claim(
            name,
            input
        );
        if (msg.sender != owner) {
            revert PermissionDenied(msg.sender, owner);
        }
        ens.setSubnodeRecord(rootNode, labelHash, owner, resolver, 0);
        if (addr != address(0)) {
            if (resolver == address(0)) {
                revert PreconditionNotMet();
            }
            bytes32 node = keccak256(abi.encodePacked(rootNode, labelHash));
            // Set the resolver record
            AddrResolver(resolver).setAddr(node, addr);
        }
    }

    function supportsInterface(
        bytes4 interfaceID
    ) external pure override returns (bool) {
        return
            interfaceID == type(IERC165).interfaceId ||
            interfaceID == type(IDNSRegistrar).interfaceId;
    }

    function _claim(
        bytes memory name,
        DNSSEC.RRSetWithSignature[] memory input
    ) internal returns (bytes32 parentNode, bytes32 labelHash, address addr) {
        (bytes memory data, uint32 inception) = oracle.verifyRRSet(input);

        // Get the first label
        uint256 labelLen = name.readUint8(0);
        labelHash = name.keccak(1, labelLen);

        bytes memory parentName = name.substring(
            labelLen + 1,
            name.length - labelLen - 1
        );

        // Make sure the parent name is enabled
        parentNode = enableNode(parentName);

        bytes32 node = keccak256(abi.encodePacked(parentNode, labelHash));
        if (!RRUtils.serialNumberGte(inception, inceptions[node])) {
            revert StaleProof();
        }
        inceptions[node] = inception;

        bool found;
        (addr, found) = DNSClaimChecker.getOwnerAddress(name, data);
        if (!found) {
            revert NoOwnerRecordFound();
        }

        emit Claim(node, addr, name, inception);
    }

    function enableNode(bytes memory domain) public returns (bytes32 node) {
        // Name must be in the public suffix list.
        if (!suffixes.isPublicSuffix(domain)) {
            revert InvalidPublicSuffix(domain);
        }
        return _enableNode(domain, 0);
    }

    function _enableNode(
        bytes memory domain,
        uint256 offset
    ) internal returns (bytes32 node) {
        uint256 len = domain.readUint8(offset);
        if (len == 0) {
            return bytes32(0);
        }

        bytes32 parentNode = _enableNode(domain, offset + len + 1);
        bytes32 label = domain.keccak(offset + 1, len);
        node = keccak256(abi.encodePacked(parentNode, label));
        address owner = ens.owner(node);
        if (owner == address(0) || owner == previousRegistrar) {
            if (parentNode == bytes32(0)) {
                Root root = Root(ens.owner(bytes32(0)));
                root.setSubnodeOwner(label, address(this));
                ens.setResolver(node, resolver);
            } else {
                ens.setSubnodeRecord(
                    parentNode,
                    label,
                    address(this),
                    resolver,
                    0
                );
            }
        } else if (owner != address(this)) {
            revert PreconditionNotMet();
        }
        return node;
    }
}
合同源代码
文件 8 的 22:DNSSEC.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
pragma experimental ABIEncoderV2;

abstract contract DNSSEC {
    bytes public anchors;

    struct RRSetWithSignature {
        bytes rrset;
        bytes sig;
    }

    event AlgorithmUpdated(uint8 id, address addr);
    event DigestUpdated(uint8 id, address addr);

    function verifyRRSet(
        RRSetWithSignature[] memory input
    ) external view virtual returns (bytes memory rrs, uint32 inception);

    function verifyRRSet(
        RRSetWithSignature[] memory input,
        uint256 now
    ) public view virtual returns (bytes memory rrs, uint32 inception);
}
合同源代码
文件 9 的 22:ENS.sol
pragma solidity >=0.8.4;

interface ENS {
    // Logged when the owner of a node assigns a new owner to a subnode.
    event NewOwner(bytes32 indexed node, bytes32 indexed label, address owner);

    // Logged when the owner of a node transfers ownership to a new account.
    event Transfer(bytes32 indexed node, address owner);

    // Logged when the resolver for a node changes.
    event NewResolver(bytes32 indexed node, address resolver);

    // Logged when the TTL of a node changes
    event NewTTL(bytes32 indexed node, uint64 ttl);

    // Logged when an operator is added or removed.
    event ApprovalForAll(
        address indexed owner,
        address indexed operator,
        bool approved
    );

    function setRecord(
        bytes32 node,
        address owner,
        address resolver,
        uint64 ttl
    ) external;

    function setSubnodeRecord(
        bytes32 node,
        bytes32 label,
        address owner,
        address resolver,
        uint64 ttl
    ) external;

    function setSubnodeOwner(
        bytes32 node,
        bytes32 label,
        address owner
    ) external returns (bytes32);

    function setResolver(bytes32 node, address resolver) external;

    function setOwner(bytes32 node, address owner) external;

    function setTTL(bytes32 node, uint64 ttl) external;

    function setApprovalForAll(address operator, bool approved) external;

    function owner(bytes32 node) external view returns (address);

    function resolver(bytes32 node) external view returns (address);

    function ttl(bytes32 node) external view returns (uint64);

    function recordExists(bytes32 node) external view returns (bool);

    function isApprovedForAll(
        address owner,
        address operator
    ) external view returns (bool);
}
合同源代码
文件 10 的 22:ENSRegistry.sol
pragma solidity >=0.8.4;

import "./ENS.sol";

/**
 * The ENS registry contract.
 */
contract ENSRegistry is ENS {
    struct Record {
        address owner;
        address resolver;
        uint64 ttl;
    }

    mapping(bytes32 => Record) records;
    mapping(address => mapping(address => bool)) operators;

    // Permits modifications only by the owner of the specified node.
    modifier authorised(bytes32 node) {
        address owner = records[node].owner;
        require(owner == msg.sender || operators[owner][msg.sender]);
        _;
    }

    /**
     * @dev Constructs a new ENS registry.
     */
    constructor() public {
        records[0x0].owner = msg.sender;
    }

    /**
     * @dev Sets the record for a node.
     * @param node The node to update.
     * @param owner The address of the new owner.
     * @param resolver The address of the resolver.
     * @param ttl The TTL in seconds.
     */
    function setRecord(
        bytes32 node,
        address owner,
        address resolver,
        uint64 ttl
    ) external virtual override {
        setOwner(node, owner);
        _setResolverAndTTL(node, resolver, ttl);
    }

    /**
     * @dev Sets the record for a subnode.
     * @param node The parent node.
     * @param label The hash of the label specifying the subnode.
     * @param owner The address of the new owner.
     * @param resolver The address of the resolver.
     * @param ttl The TTL in seconds.
     */
    function setSubnodeRecord(
        bytes32 node,
        bytes32 label,
        address owner,
        address resolver,
        uint64 ttl
    ) external virtual override {
        bytes32 subnode = setSubnodeOwner(node, label, owner);
        _setResolverAndTTL(subnode, resolver, ttl);
    }

    /**
     * @dev Transfers ownership of a node to a new address. May only be called by the current owner of the node.
     * @param node The node to transfer ownership of.
     * @param owner The address of the new owner.
     */
    function setOwner(
        bytes32 node,
        address owner
    ) public virtual override authorised(node) {
        _setOwner(node, owner);
        emit Transfer(node, owner);
    }

    /**
     * @dev Transfers ownership of a subnode keccak256(node, label) to a new address. May only be called by the owner of the parent node.
     * @param node The parent node.
     * @param label The hash of the label specifying the subnode.
     * @param owner The address of the new owner.
     */
    function setSubnodeOwner(
        bytes32 node,
        bytes32 label,
        address owner
    ) public virtual override authorised(node) returns (bytes32) {
        bytes32 subnode = keccak256(abi.encodePacked(node, label));
        _setOwner(subnode, owner);
        emit NewOwner(node, label, owner);
        return subnode;
    }

    /**
     * @dev Sets the resolver address for the specified node.
     * @param node The node to update.
     * @param resolver The address of the resolver.
     */
    function setResolver(
        bytes32 node,
        address resolver
    ) public virtual override authorised(node) {
        emit NewResolver(node, resolver);
        records[node].resolver = resolver;
    }

    /**
     * @dev Sets the TTL for the specified node.
     * @param node The node to update.
     * @param ttl The TTL in seconds.
     */
    function setTTL(
        bytes32 node,
        uint64 ttl
    ) public virtual override authorised(node) {
        emit NewTTL(node, ttl);
        records[node].ttl = ttl;
    }

    /**
     * @dev Enable or disable approval for a third party ("operator") to manage
     *  all of `msg.sender`'s ENS records. Emits the ApprovalForAll event.
     * @param operator Address to add to the set of authorized operators.
     * @param approved True if the operator is approved, false to revoke approval.
     */
    function setApprovalForAll(
        address operator,
        bool approved
    ) external virtual override {
        operators[msg.sender][operator] = approved;
        emit ApprovalForAll(msg.sender, operator, approved);
    }

    /**
     * @dev Returns the address that owns the specified node.
     * @param node The specified node.
     * @return address of the owner.
     */
    function owner(
        bytes32 node
    ) public view virtual override returns (address) {
        address addr = records[node].owner;
        if (addr == address(this)) {
            return address(0x0);
        }

        return addr;
    }

    /**
     * @dev Returns the address of the resolver for the specified node.
     * @param node The specified node.
     * @return address of the resolver.
     */
    function resolver(
        bytes32 node
    ) public view virtual override returns (address) {
        return records[node].resolver;
    }

    /**
     * @dev Returns the TTL of a node, and any records associated with it.
     * @param node The specified node.
     * @return ttl of the node.
     */
    function ttl(bytes32 node) public view virtual override returns (uint64) {
        return records[node].ttl;
    }

    /**
     * @dev Returns whether a record has been imported to the registry.
     * @param node The specified node.
     * @return Bool if record exists
     */
    function recordExists(
        bytes32 node
    ) public view virtual override returns (bool) {
        return records[node].owner != address(0x0);
    }

    /**
     * @dev Query if an address is an authorized operator for another address.
     * @param owner The address that owns the records.
     * @param operator The address that acts on behalf of the owner.
     * @return True if `operator` is an approved operator for `owner`, false otherwise.
     */
    function isApprovedForAll(
        address owner,
        address operator
    ) external view virtual override returns (bool) {
        return operators[owner][operator];
    }

    function _setOwner(bytes32 node, address owner) internal virtual {
        records[node].owner = owner;
    }

    function _setResolverAndTTL(
        bytes32 node,
        address resolver,
        uint64 ttl
    ) internal {
        if (resolver != records[node].resolver) {
            records[node].resolver = resolver;
            emit NewResolver(node, resolver);
        }

        if (ttl != records[node].ttl) {
            records[node].ttl = ttl;
            emit NewTTL(node, ttl);
        }
    }
}
合同源代码
文件 11 的 22:ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
合同源代码
文件 12 的 22:HexUtils.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

library HexUtils {
    /**
     * @dev Attempts to parse bytes32 from a hex string
     * @param str The string to parse
     * @param idx The offset to start parsing at
     * @param lastIdx The (exclusive) last index in `str` to consider. Use `str.length` to scan the whole string.
     */
    function hexStringToBytes32(
        bytes memory str,
        uint256 idx,
        uint256 lastIdx
    ) internal pure returns (bytes32 r, bool valid) {
        uint256 hexLength = lastIdx - idx;
        if ((hexLength != 64 && hexLength != 40) || hexLength % 2 == 1) {
            revert("Invalid string length");
        }
        valid = true;
        assembly {
            // check that the index to read to is not past the end of the string
            if gt(lastIdx, mload(str)) {
                revert(0, 0)
            }

            function getHex(c) -> ascii {
                // chars 48-57: 0-9
                if and(gt(c, 47), lt(c, 58)) {
                    ascii := sub(c, 48)
                    leave
                }
                // chars 65-70: A-F
                if and(gt(c, 64), lt(c, 71)) {
                    ascii := add(sub(c, 65), 10)
                    leave
                }
                // chars 97-102: a-f
                if and(gt(c, 96), lt(c, 103)) {
                    ascii := add(sub(c, 97), 10)
                    leave
                }
                // invalid char
                ascii := 0xff
            }

            let ptr := add(str, 32)
            for {
                let i := idx
            } lt(i, lastIdx) {
                i := add(i, 2)
            } {
                let byte1 := getHex(byte(0, mload(add(ptr, i))))
                let byte2 := getHex(byte(0, mload(add(ptr, add(i, 1)))))
                // if either byte is invalid, set invalid and break loop
                if or(eq(byte1, 0xff), eq(byte2, 0xff)) {
                    valid := false
                    break
                }
                let combined := or(shl(4, byte1), byte2)
                r := or(shl(8, r), combined)
            }
        }
    }

    /**
     * @dev Attempts to parse an address from a hex string
     * @param str The string to parse
     * @param idx The offset to start parsing at
     * @param lastIdx The (exclusive) last index in `str` to consider. Use `str.length` to scan the whole string.
     */
    function hexToAddress(
        bytes memory str,
        uint256 idx,
        uint256 lastIdx
    ) internal pure returns (address, bool) {
        if (lastIdx - idx < 40) return (address(0x0), false);
        (bytes32 r, bool valid) = hexStringToBytes32(str, idx, lastIdx);
        return (address(uint160(uint256(r))), valid);
    }
}
合同源代码
文件 13 的 22:IAddrResolver.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.4;

/**
 * Interface for the legacy (ETH-only) addr function.
 */
interface IAddrResolver {
    event AddrChanged(bytes32 indexed node, address a);

    /**
     * Returns the address associated with an ENS node.
     * @param node The ENS node to query.
     * @return The associated address.
     */
    function addr(bytes32 node) external view returns (address payable);
}
合同源代码
文件 14 的 22:IAddressResolver.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.4;

/**
 * Interface for the new (multicoin) addr function.
 */
interface IAddressResolver {
    event AddressChanged(
        bytes32 indexed node,
        uint256 coinType,
        bytes newAddress
    );

    function addr(
        bytes32 node,
        uint256 coinType
    ) external view returns (bytes memory);
}
合同源代码
文件 15 的 22:IDNSRegistrar.sol
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

import "../dnssec-oracle/DNSSEC.sol";

interface IDNSRegistrar {
    function proveAndClaim(
        bytes memory name,
        DNSSEC.RRSetWithSignature[] memory input
    ) external;

    function proveAndClaimWithResolver(
        bytes memory name,
        DNSSEC.RRSetWithSignature[] memory input,
        address resolver,
        address addr
    ) external;
}
合同源代码
文件 16 的 22:IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
合同源代码
文件 17 的 22:IVersionableResolver.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.4;

interface IVersionableResolver {
    event VersionChanged(bytes32 indexed node, uint64 newVersion);

    function recordVersions(bytes32 node) external view returns (uint64);
}
合同源代码
文件 18 的 22:Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
合同源代码
文件 19 的 22:PublicSuffixList.sol
pragma solidity ^0.8.4;

interface PublicSuffixList {
    function isPublicSuffix(bytes calldata name) external view returns (bool);
}
合同源代码
文件 20 的 22:RRUtils.sol
pragma solidity ^0.8.4;

import "./BytesUtils.sol";
import "@ensdomains/buffer/contracts/Buffer.sol";

/**
 * @dev RRUtils is a library that provides utilities for parsing DNS resource records.
 */
library RRUtils {
    using BytesUtils for *;
    using Buffer for *;

    /**
     * @dev Returns the number of bytes in the DNS name at 'offset' in 'self'.
     * @param self The byte array to read a name from.
     * @param offset The offset to start reading at.
     * @return The length of the DNS name at 'offset', in bytes.
     */
    function nameLength(
        bytes memory self,
        uint256 offset
    ) internal pure returns (uint256) {
        uint256 idx = offset;
        while (true) {
            assert(idx < self.length);
            uint256 labelLen = self.readUint8(idx);
            idx += labelLen + 1;
            if (labelLen == 0) {
                break;
            }
        }
        return idx - offset;
    }

    /**
     * @dev Returns a DNS format name at the specified offset of self.
     * @param self The byte array to read a name from.
     * @param offset The offset to start reading at.
     * @return ret The name.
     */
    function readName(
        bytes memory self,
        uint256 offset
    ) internal pure returns (bytes memory ret) {
        uint256 len = nameLength(self, offset);
        return self.substring(offset, len);
    }

    /**
     * @dev Returns the number of labels in the DNS name at 'offset' in 'self'.
     * @param self The byte array to read a name from.
     * @param offset The offset to start reading at.
     * @return The number of labels in the DNS name at 'offset', in bytes.
     */
    function labelCount(
        bytes memory self,
        uint256 offset
    ) internal pure returns (uint256) {
        uint256 count = 0;
        while (true) {
            assert(offset < self.length);
            uint256 labelLen = self.readUint8(offset);
            offset += labelLen + 1;
            if (labelLen == 0) {
                break;
            }
            count += 1;
        }
        return count;
    }

    uint256 constant RRSIG_TYPE = 0;
    uint256 constant RRSIG_ALGORITHM = 2;
    uint256 constant RRSIG_LABELS = 3;
    uint256 constant RRSIG_TTL = 4;
    uint256 constant RRSIG_EXPIRATION = 8;
    uint256 constant RRSIG_INCEPTION = 12;
    uint256 constant RRSIG_KEY_TAG = 16;
    uint256 constant RRSIG_SIGNER_NAME = 18;

    struct SignedSet {
        uint16 typeCovered;
        uint8 algorithm;
        uint8 labels;
        uint32 ttl;
        uint32 expiration;
        uint32 inception;
        uint16 keytag;
        bytes signerName;
        bytes data;
        bytes name;
    }

    function readSignedSet(
        bytes memory data
    ) internal pure returns (SignedSet memory self) {
        self.typeCovered = data.readUint16(RRSIG_TYPE);
        self.algorithm = data.readUint8(RRSIG_ALGORITHM);
        self.labels = data.readUint8(RRSIG_LABELS);
        self.ttl = data.readUint32(RRSIG_TTL);
        self.expiration = data.readUint32(RRSIG_EXPIRATION);
        self.inception = data.readUint32(RRSIG_INCEPTION);
        self.keytag = data.readUint16(RRSIG_KEY_TAG);
        self.signerName = readName(data, RRSIG_SIGNER_NAME);
        self.data = data.substring(
            RRSIG_SIGNER_NAME + self.signerName.length,
            data.length - RRSIG_SIGNER_NAME - self.signerName.length
        );
    }

    function rrs(
        SignedSet memory rrset
    ) internal pure returns (RRIterator memory) {
        return iterateRRs(rrset.data, 0);
    }

    /**
     * @dev An iterator over resource records.
     */
    struct RRIterator {
        bytes data;
        uint256 offset;
        uint16 dnstype;
        uint16 class;
        uint32 ttl;
        uint256 rdataOffset;
        uint256 nextOffset;
    }

    /**
     * @dev Begins iterating over resource records.
     * @param self The byte string to read from.
     * @param offset The offset to start reading at.
     * @return ret An iterator object.
     */
    function iterateRRs(
        bytes memory self,
        uint256 offset
    ) internal pure returns (RRIterator memory ret) {
        ret.data = self;
        ret.nextOffset = offset;
        next(ret);
    }

    /**
     * @dev Returns true iff there are more RRs to iterate.
     * @param iter The iterator to check.
     * @return True iff the iterator has finished.
     */
    function done(RRIterator memory iter) internal pure returns (bool) {
        return iter.offset >= iter.data.length;
    }

    /**
     * @dev Moves the iterator to the next resource record.
     * @param iter The iterator to advance.
     */
    function next(RRIterator memory iter) internal pure {
        iter.offset = iter.nextOffset;
        if (iter.offset >= iter.data.length) {
            return;
        }

        // Skip the name
        uint256 off = iter.offset + nameLength(iter.data, iter.offset);

        // Read type, class, and ttl
        iter.dnstype = iter.data.readUint16(off);
        off += 2;
        iter.class = iter.data.readUint16(off);
        off += 2;
        iter.ttl = iter.data.readUint32(off);
        off += 4;

        // Read the rdata
        uint256 rdataLength = iter.data.readUint16(off);
        off += 2;
        iter.rdataOffset = off;
        iter.nextOffset = off + rdataLength;
    }

    /**
     * @dev Returns the name of the current record.
     * @param iter The iterator.
     * @return A new bytes object containing the owner name from the RR.
     */
    function name(RRIterator memory iter) internal pure returns (bytes memory) {
        return
            iter.data.substring(
                iter.offset,
                nameLength(iter.data, iter.offset)
            );
    }

    /**
     * @dev Returns the rdata portion of the current record.
     * @param iter The iterator.
     * @return A new bytes object containing the RR's RDATA.
     */
    function rdata(
        RRIterator memory iter
    ) internal pure returns (bytes memory) {
        return
            iter.data.substring(
                iter.rdataOffset,
                iter.nextOffset - iter.rdataOffset
            );
    }

    uint256 constant DNSKEY_FLAGS = 0;
    uint256 constant DNSKEY_PROTOCOL = 2;
    uint256 constant DNSKEY_ALGORITHM = 3;
    uint256 constant DNSKEY_PUBKEY = 4;

    struct DNSKEY {
        uint16 flags;
        uint8 protocol;
        uint8 algorithm;
        bytes publicKey;
    }

    function readDNSKEY(
        bytes memory data,
        uint256 offset,
        uint256 length
    ) internal pure returns (DNSKEY memory self) {
        self.flags = data.readUint16(offset + DNSKEY_FLAGS);
        self.protocol = data.readUint8(offset + DNSKEY_PROTOCOL);
        self.algorithm = data.readUint8(offset + DNSKEY_ALGORITHM);
        self.publicKey = data.substring(
            offset + DNSKEY_PUBKEY,
            length - DNSKEY_PUBKEY
        );
    }

    uint256 constant DS_KEY_TAG = 0;
    uint256 constant DS_ALGORITHM = 2;
    uint256 constant DS_DIGEST_TYPE = 3;
    uint256 constant DS_DIGEST = 4;

    struct DS {
        uint16 keytag;
        uint8 algorithm;
        uint8 digestType;
        bytes digest;
    }

    function readDS(
        bytes memory data,
        uint256 offset,
        uint256 length
    ) internal pure returns (DS memory self) {
        self.keytag = data.readUint16(offset + DS_KEY_TAG);
        self.algorithm = data.readUint8(offset + DS_ALGORITHM);
        self.digestType = data.readUint8(offset + DS_DIGEST_TYPE);
        self.digest = data.substring(offset + DS_DIGEST, length - DS_DIGEST);
    }

    function isSubdomainOf(
        bytes memory self,
        bytes memory other
    ) internal pure returns (bool) {
        uint256 off = 0;
        uint256 counts = labelCount(self, 0);
        uint256 othercounts = labelCount(other, 0);

        while (counts > othercounts) {
            off = progress(self, off);
            counts--;
        }

        return self.equals(off, other, 0);
    }

    function compareNames(
        bytes memory self,
        bytes memory other
    ) internal pure returns (int256) {
        if (self.equals(other)) {
            return 0;
        }

        uint256 off;
        uint256 otheroff;
        uint256 prevoff;
        uint256 otherprevoff;
        uint256 counts = labelCount(self, 0);
        uint256 othercounts = labelCount(other, 0);

        // Keep removing labels from the front of the name until both names are equal length
        while (counts > othercounts) {
            prevoff = off;
            off = progress(self, off);
            counts--;
        }

        while (othercounts > counts) {
            otherprevoff = otheroff;
            otheroff = progress(other, otheroff);
            othercounts--;
        }

        // Compare the last nonequal labels to each other
        while (counts > 0 && !self.equals(off, other, otheroff)) {
            prevoff = off;
            off = progress(self, off);
            otherprevoff = otheroff;
            otheroff = progress(other, otheroff);
            counts -= 1;
        }

        if (off == 0) {
            return -1;
        }
        if (otheroff == 0) {
            return 1;
        }

        return
            self.compare(
                prevoff + 1,
                self.readUint8(prevoff),
                other,
                otherprevoff + 1,
                other.readUint8(otherprevoff)
            );
    }

    /**
     * @dev Compares two serial numbers using RFC1982 serial number math.
     */
    function serialNumberGte(
        uint32 i1,
        uint32 i2
    ) internal pure returns (bool) {
        unchecked {
            return int32(i1) - int32(i2) >= 0;
        }
    }

    function progress(
        bytes memory body,
        uint256 off
    ) internal pure returns (uint256) {
        return off + 1 + body.readUint8(off);
    }

    /**
     * @dev Computes the keytag for a chunk of data.
     * @param data The data to compute a keytag for.
     * @return The computed key tag.
     */
    function computeKeytag(bytes memory data) internal pure returns (uint16) {
        /* This function probably deserves some explanation.
         * The DNSSEC keytag function is a checksum that relies on summing up individual bytes
         * from the input string, with some mild bitshifting. Here's a Naive solidity implementation:
         *
         *     function computeKeytag(bytes memory data) internal pure returns (uint16) {
         *         uint ac;
         *         for (uint i = 0; i < data.length; i++) {
         *             ac += i & 1 == 0 ? uint16(data.readUint8(i)) << 8 : data.readUint8(i);
         *         }
         *         return uint16(ac + (ac >> 16));
         *     }
         *
         * The EVM, with its 256 bit words, is exceedingly inefficient at doing byte-by-byte operations;
         * the code above, on reasonable length inputs, consumes over 100k gas. But we can make the EVM's
         * large words work in our favour.
         *
         * The code below works by treating the input as a series of 256 bit words. It first masks out
         * even and odd bytes from each input word, adding them to two separate accumulators `ac1` and `ac2`.
         * The bytes are separated by empty bytes, so as long as no individual sum exceeds 2^16-1, we're
         * effectively summing 16 different numbers with each EVM ADD opcode.
         *
         * Once it's added up all the inputs, it has to add all the 16 bit values in `ac1` and `ac2` together.
         * It does this using the same trick - mask out every other value, shift to align them, add them together.
         * After the first addition on both accumulators, there's enough room to add the two accumulators together,
         * and the remaining sums can be done just on ac1.
         */
        unchecked {
            require(data.length <= 8192, "Long keys not permitted");
            uint256 ac1;
            uint256 ac2;
            for (uint256 i = 0; i < data.length + 31; i += 32) {
                uint256 word;
                assembly {
                    word := mload(add(add(data, 32), i))
                }
                if (i + 32 > data.length) {
                    uint256 unused = 256 - (data.length - i) * 8;
                    word = (word >> unused) << unused;
                }
                ac1 +=
                    (word &
                        0xFF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00) >>
                    8;
                ac2 += (word &
                    0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF);
            }
            ac1 =
                (ac1 &
                    0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) +
                ((ac1 &
                    0xFFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000) >>
                    16);
            ac2 =
                (ac2 &
                    0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) +
                ((ac2 &
                    0xFFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000) >>
                    16);
            ac1 = (ac1 << 8) + ac2;
            ac1 =
                (ac1 &
                    0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) +
                ((ac1 &
                    0xFFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000) >>
                    32);
            ac1 =
                (ac1 &
                    0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) +
                ((ac1 &
                    0xFFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF0000000000000000) >>
                    64);
            ac1 =
                (ac1 &
                    0x00000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) +
                (ac1 >> 128);
            ac1 += (ac1 >> 16) & 0xFFFF;
            return uint16(ac1);
        }
    }
}
合同源代码
文件 21 的 22:ResolverBase.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.4;

import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import "./profiles/IVersionableResolver.sol";

abstract contract ResolverBase is ERC165, IVersionableResolver {
    mapping(bytes32 => uint64) public recordVersions;

    function isAuthorised(bytes32 node) internal view virtual returns (bool);

    modifier authorised(bytes32 node) {
        require(isAuthorised(node));
        _;
    }

    /**
     * Increments the record version associated with an ENS node.
     * May only be called by the owner of that node in the ENS registry.
     * @param node The node to update.
     */
    function clearRecords(bytes32 node) public virtual authorised(node) {
        recordVersions[node]++;
        emit VersionChanged(node, recordVersions[node]);
    }

    function supportsInterface(
        bytes4 interfaceID
    ) public view virtual override returns (bool) {
        return
            interfaceID == type(IVersionableResolver).interfaceId ||
            super.supportsInterface(interfaceID);
    }
}
合同源代码
文件 22 的 22:Root.sol
pragma solidity ^0.8.4;

import "../registry/ENS.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "./Controllable.sol";

contract Root is Ownable, Controllable {
    bytes32 private constant ROOT_NODE = bytes32(0);

    bytes4 private constant INTERFACE_META_ID =
        bytes4(keccak256("supportsInterface(bytes4)"));

    event TLDLocked(bytes32 indexed label);

    ENS public ens;
    mapping(bytes32 => bool) public locked;

    constructor(ENS _ens) public {
        ens = _ens;
    }

    function setSubnodeOwner(
        bytes32 label,
        address owner
    ) external onlyController {
        require(!locked[label]);
        ens.setSubnodeOwner(ROOT_NODE, label, owner);
    }

    function setResolver(address resolver) external onlyOwner {
        ens.setResolver(ROOT_NODE, resolver);
    }

    function lock(bytes32 label) external onlyOwner {
        emit TLDLocked(label);
        locked[label] = true;
    }

    function supportsInterface(
        bytes4 interfaceID
    ) external pure returns (bool) {
        return interfaceID == INTERFACE_META_ID;
    }
}
设置
{
  "compilationTarget": {
    "contracts/dnsregistrar/DNSRegistrar.sol": "DNSRegistrar"
  },
  "evmVersion": "london",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs",
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 1200
  },
  "remappings": []
}
ABI
[{"inputs":[{"internalType":"address","name":"_previousRegistrar","type":"address"},{"internalType":"address","name":"_resolver","type":"address"},{"internalType":"contract DNSSEC","name":"_dnssec","type":"address"},{"internalType":"contract PublicSuffixList","name":"_suffixes","type":"address"},{"internalType":"contract ENS","name":"_ens","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"bytes","name":"name","type":"bytes"}],"name":"InvalidPublicSuffix","type":"error"},{"inputs":[],"name":"NoOwnerRecordFound","type":"error"},{"inputs":[{"internalType":"uint256","name":"offset","type":"uint256"},{"internalType":"uint256","name":"length","type":"uint256"}],"name":"OffsetOutOfBoundsError","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"PermissionDenied","type":"error"},{"inputs":[],"name":"PreconditionNotMet","type":"error"},{"inputs":[],"name":"StaleProof","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"node","type":"bytes32"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"bytes","name":"dnsname","type":"bytes"},{"indexed":false,"internalType":"uint32","name":"inception","type":"uint32"}],"name":"Claim","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"suffixes","type":"address"}],"name":"NewPublicSuffixList","type":"event"},{"inputs":[{"internalType":"bytes","name":"domain","type":"bytes"}],"name":"enableNode","outputs":[{"internalType":"bytes32","name":"node","type":"bytes32"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"ens","outputs":[{"internalType":"contract ENS","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"inceptions","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"oracle","outputs":[{"internalType":"contract DNSSEC","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"previousRegistrar","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"name","type":"bytes"},{"components":[{"internalType":"bytes","name":"rrset","type":"bytes"},{"internalType":"bytes","name":"sig","type":"bytes"}],"internalType":"struct DNSSEC.RRSetWithSignature[]","name":"input","type":"tuple[]"}],"name":"proveAndClaim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"name","type":"bytes"},{"components":[{"internalType":"bytes","name":"rrset","type":"bytes"},{"internalType":"bytes","name":"sig","type":"bytes"}],"internalType":"struct DNSSEC.RRSetWithSignature[]","name":"input","type":"tuple[]"},{"internalType":"address","name":"resolver","type":"address"},{"internalType":"address","name":"addr","type":"address"}],"name":"proveAndClaimWithResolver","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"resolver","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract PublicSuffixList","name":"_suffixes","type":"address"}],"name":"setPublicSuffixList","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"suffixes","outputs":[{"internalType":"contract PublicSuffixList","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceID","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"}]