// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: ISC
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IMigratorChef {
// Perform LP token migration from legacy PancakeSwap to CakeSwap.
// Take the current LP token address and return the new LP token address.
// Migrator should have full access to the caller's LP token.
// Return the new LP token address.
//
// XXX Migrator must have allowance access to PancakeSwap LP tokens.
// CakeSwap must mint EXACTLY the same amount of CakeSwap LP tokens or
// else something bad will happen. Traditional PancakeSwap does not
// do that so be careful!
function migrate(IERC20 token) external returns (IERC20);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;
interface IVotingEscrow {
function transfer_ownership(address) external;
function commit_smart_wallet_checker(address) external;
function get_last_user_slope(address) external view returns (int128);
function user_point_history__ts(address, uint256) external view returns (uint256);
function locked__end(address) external view returns (uint256);
function checkpoint() external;
function deposit_for(address, uint256) external;
function create_lock(uint256, uint256) external ;
function increase_amount(uint256) external;
function increase_unlock_time(uint256) external;
function withdraw() external;
function balanceOf(address) external view returns (uint256);
function balanceOfAt(address, uint256) external view returns (uint256);
function totalSupply() external view returns (uint256);
function totalSupplyAt(uint256) external view returns (uint256);
function locked(address) external view returns(int128, uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
pragma experimental ABIEncoderV2;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "../interface/IVotingEscrow.sol";
import "../interface/IMigratorChef.sol";
contract MasterChefScomp is Ownable, ReentrancyGuard {
using SafeMath for uint256;
using SafeERC20 for IERC20;
/// @notice Info of each MCV2 user.
/// `amount` LP token amount the user has provided.
/// `rewardDebt` Used to calculate the correct amount of rewards. See explanation below.
///
/// We do some fancy math here. Basically, any point in time, the amount of TOKENs
/// entitled to a user but is pending to be distributed is:
///
/// pending reward = (user share * pool.accTokenPerShare) - user.rewardDebt
///
/// Whenever a user deposits or withdraws LP tokens to a pool. Here's what happens:
/// 1. The pool's `accTokenPerShare` (and `lastRewardBlock`) gets updated.
/// 2. User receives the pending reward sent to his/her address.
/// 3. User's `amount` gets updated. Pool's `totalBoostedShare` gets updated.
/// 4. User's `rewardDebt` gets updated.
struct UserInfo {
uint256 amount;
uint256 rewardDebt;
uint256 boostMultiplier;
}
/// @notice Info of each MCV2 pool.
/// `allocPoint` The amount of allocation points assigned to the pool.
/// Also known as the amount of "multipliers". Combined with `totalXAllocPoint`, it defines the % of
/// TOKEN rewards each pool gets.
/// `accTokenPerShare` Accumulated TOKENs per share, times 1e12.
/// `lastRewardBlock` Last block number that pool update action is executed.
/// In MasterChef V2 farms are "regular pools". "special pools", which use a different sets of
/// `allocPoint` and their own `totalSpecialAllocPoint` are designed to handle the distribution of
/// the TOKEN rewards to all the PancakeSwap products.
/// `totalBoostedShare` The total amount of user shares in each pool. After considering the share boosts.
struct PoolInfo {
uint256 accTokenPerShare;
uint256 lastRewardBlock;
uint256 allocPoint;
uint256 totalBoostedShare;
}
/// @notice Address of TOKEN contract.
IERC20 public immutable TOKEN;
/// @notice Info of each MCV2 pool.
PoolInfo[] public poolInfo;
/// @notice Address of the LP token for each MCV2 pool.
IERC20[] public lpToken;
/// @notice Info of each pool user.
mapping(uint256 => mapping(address => UserInfo)) public userInfo;
/// @notice The whitelist of addresses allowed to deposit in special pools.
mapping(address => bool) public whiteList;
/// @notice Total regular allocation points. Must be the sum of all regular pools' allocation points.
uint256 public totalAllocPoint;
/// @notice Amount tokens per block
uint256 public tokenPerBlock;
uint256 public constant ACC_TOKEN_PRECISION = 1e18;
/// @notice Basic boost factor, none boosted user's boost factor
uint256 public constant BOOST_PRECISION = 100 * 1e10;
/// @notice Hard limit for maxmium boost factor, it must greater than BOOST_PRECISION
uint256 public constant MAX_BOOST_PRECISION = 200 * 1e10;
uint public maxMultiplier = 8;
IVotingEscrow public veContract;
IMigratorChef public migrator;
// The block number when farming starts.
uint256 public startBlock;
// The block number when farming ends.
uint256 public endBlock;
event Init();
event AddPool(uint256 indexed pid, uint256 allocPoint, IERC20 indexed lpToken);
event SetPool(uint256 indexed pid, uint256 allocPoint);
event UpdatePool(uint256 indexed pid, uint256 lastRewardBlock, uint256 lpSupply, uint256 accTokenPerShare);
event Deposit(address indexed user, uint256 indexed pid, uint256 amount);
event Withdraw(address indexed user, uint256 indexed pid, uint256 amount);
event EmergencyWithdraw(address indexed user, uint256 indexed pid, uint256 amount);
event UpdateBoostMultiplier(address indexed user, uint256 pid, uint256 oldMultiplier, uint256 newMultiplier);
/// @param _TOKEN The TOKEN token contract address.
/// @param _veContract The address of voting power contract.
constructor(
IERC20 _TOKEN,
address _veContract,
uint _tokenPerBlock,
uint _startBlock
) {
TOKEN = _TOKEN;
veContract = IVotingEscrow(_veContract);
tokenPerBlock = _tokenPerBlock;
startBlock = _startBlock;
endBlock = _startBlock;
}
// Migrate lp token to another lp contract. Can be called by anyone. We trust that migrator contract is good.
function migrateNext(
uint _pid
) external {
require(address(migrator) != address(0), "migrate: no migrator");
uint bal = lpToken[_pid].balanceOf(address(this));
lpToken[_pid].safeApprove(address(migrator), bal);
IERC20 newLpToken = migrator.migrate(lpToken[_pid]);
require(bal == newLpToken.balanceOf(address(this)), "migrate: bad");
lpToken[_pid] = newLpToken;
}
/// @notice Returns the number of MCV2 pools.
function poolLength() public view returns (uint256 pools) {
pools = poolInfo.length;
}
// Fund the farm, increase the end block
function fund(uint256 _amount) public {
require(block.number < endBlock, "fund: too late, the farm is closed");
TOKEN.safeTransferFrom(address(msg.sender), address(this), _amount);
endBlock += _amount.div(tokenPerBlock);
}
/// @notice Add a new pool. Can only be called by the owner.
/// DO NOT add the same LP token more than once. Rewards will be messed up if you do.
/// @param _allocPoint Number of allocation points for the new pool.
/// @param _lpToken Address of the LP BEP-20 token.
/// @param _withUpdate Whether call "massUpdatePools" operation.
/// only for TOKEN distributions within PancakeSwap products.
function add(
uint256 _allocPoint,
IERC20 _lpToken,
bool _withUpdate
) external onlyOwner {
// stake TOKEN token will cause staked token and reward token mixed up,
// may cause staked tokens withdraw as reward token,never do it.
require(_lpToken != TOKEN, "token can't be added to farm pools");
if (_withUpdate) {
massUpdatePools();
}
totalAllocPoint = totalAllocPoint.add(_allocPoint);
lpToken.push(_lpToken);
uint256 lastRewardBlock = block.number > startBlock
? block.number
: startBlock;
poolInfo.push(
PoolInfo({
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accTokenPerShare: 0,
totalBoostedShare: 0
})
);
emit AddPool(lpToken.length.sub(1), _allocPoint, _lpToken);
}
/// @notice Update the given pool's TOKEN allocation point. Can only be called by the owner.
/// @param _pid The id of the pool. See `poolInfo`.
/// @param _allocPoint New number of allocation points for the pool.
/// @param _withUpdate Whether call "massUpdatePools" operation.
function set(
uint256 _pid,
uint256 _allocPoint,
bool _withUpdate
) external onlyOwner {
// No matter _withUpdate is true or false, we need to execute updatePool once before set the pool parameters.
updatePool(_pid);
if (_withUpdate) {
massUpdatePools();
}
totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
poolInfo[_pid].allocPoint = _allocPoint;
emit SetPool(_pid, _allocPoint);
}
/// @notice View function for checking pending TOKEN rewards.
/// @param _pid The id of the pool. See `poolInfo`.
/// @param _user Address of the user.
function pendingToken(uint256 _pid, address _user) external view returns (uint256) {
PoolInfo memory pool = poolInfo[_pid];
UserInfo memory user = userInfo[_pid][_user];
uint256 accTokenPerShare = pool.accTokenPerShare;
uint256 lpSupply = pool.totalBoostedShare;
uint256 lastBlock = block.number < endBlock ? block.number : endBlock;
if (lastBlock > pool.lastRewardBlock && lpSupply != 0) {
uint256 multiplier = lastBlock.sub(pool.lastRewardBlock);
uint256 tokenReward = multiplier.mul(tokenPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
accTokenPerShare = accTokenPerShare.add(tokenReward.mul(ACC_TOKEN_PRECISION).div(lpSupply));
}
uint256 boostedAmount = user.amount.mul(getBoostMultiplier(_user, _pid)).div(BOOST_PRECISION);
return boostedAmount.mul(accTokenPerShare).div(ACC_TOKEN_PRECISION).sub(user.rewardDebt);
}
/// @notice Update token reward for all the active pools. Be careful of gas spending!
function massUpdatePools() public {
uint256 length = poolInfo.length;
for (uint256 pid = 0; pid < length; ++pid) {
PoolInfo memory pool = poolInfo[pid];
if (pool.allocPoint != 0) {
updatePool(pid);
}
}
}
/// @notice Update reward variables for the given pool.
/// @param _pid The id of the pool. See `poolInfo`.
/// @return pool Returns the pool that was updated.
function updatePool(uint256 _pid) public returns (PoolInfo memory pool) {
pool = poolInfo[_pid];
uint256 lastBlock = block.number < endBlock ? block.number : endBlock;
if (lastBlock > pool.lastRewardBlock) {
uint256 lpSupply = pool.totalBoostedShare;
if (lpSupply > 0 && totalAllocPoint > 0) {
uint256 multiplier = lastBlock.sub(pool.lastRewardBlock);
uint256 tokenReward = multiplier.mul(tokenPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
pool.accTokenPerShare = pool.accTokenPerShare.add((tokenReward.mul(ACC_TOKEN_PRECISION).div(lpSupply)));
}
pool.lastRewardBlock = block.number;
poolInfo[_pid] = pool;
emit UpdatePool(_pid, pool.lastRewardBlock, lpSupply, pool.accTokenPerShare);
}
}
/// @notice Deposit LP tokens to pool.
/// @param _pid The id of the pool. See `poolInfo`.
/// @param _amount Amount of LP tokens to deposit.
function deposit(uint256 _pid, uint256 _amount) external nonReentrant {
PoolInfo memory pool = updatePool(_pid);
UserInfo storage user = userInfo[_pid][msg.sender];
uint256 multiplier = getBoostMultiplier(msg.sender, _pid);
if (user.amount > 0) {
settlePendingToken(msg.sender, _pid, multiplier);
}
if (_amount > 0) {
uint256 before = lpToken[_pid].balanceOf(address(this));
lpToken[_pid].safeTransferFrom(msg.sender, address(this), _amount);
_amount = lpToken[_pid].balanceOf(address(this)).sub(before);
user.amount = user.amount.add(_amount);
// Update total boosted share.
pool.totalBoostedShare = pool.totalBoostedShare.add(_amount.mul(multiplier).div(BOOST_PRECISION));
}
user.rewardDebt = user.amount.mul(multiplier).div(BOOST_PRECISION).mul(pool.accTokenPerShare).div(
ACC_TOKEN_PRECISION
);
poolInfo[_pid] = pool;
_updateBoostMultiplier(msg.sender, _pid);
emit Deposit(msg.sender, _pid, _amount);
}
/// @notice Withdraw LP tokens from pool.
/// @param _pid The id of the pool. See `poolInfo`.
/// @param _amount Amount of LP tokens to withdraw.
function withdraw(uint256 _pid, uint256 _amount) external nonReentrant {
PoolInfo memory pool = updatePool(_pid);
UserInfo storage user = userInfo[_pid][msg.sender];
require(user.amount >= _amount, "withdraw: Insufficient");
_updateBoostMultiplier(msg.sender, _pid);
uint256 multiplier = getBoostMultiplier(msg.sender, _pid);
if (_amount > 0) {
user.amount = user.amount.sub(_amount);
lpToken[_pid].safeTransfer(msg.sender, _amount);
}
user.rewardDebt = user.amount.mul(multiplier).div(BOOST_PRECISION).mul(pool.accTokenPerShare).div(
ACC_TOKEN_PRECISION
);
poolInfo[_pid].totalBoostedShare = poolInfo[_pid].totalBoostedShare.sub(
_amount.mul(multiplier).div(BOOST_PRECISION)
);
emit Withdraw(msg.sender, _pid, _amount);
}
/// @notice Withdraw without caring about the rewards. EMERGENCY ONLY.
/// @param _pid The id of the pool. See `poolInfo`.
function emergencyWithdraw(uint256 _pid) external nonReentrant {
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
_updateBoostMultiplier(msg.sender, _pid);
uint256 amount = user.amount;
user.amount = 0;
user.rewardDebt = 0;
uint256 boostedAmount = amount.mul(getBoostMultiplier(msg.sender, _pid)).div(BOOST_PRECISION);
pool.totalBoostedShare = pool.totalBoostedShare > boostedAmount ? pool.totalBoostedShare.sub(boostedAmount) : 0;
// Note: transfer can fail or succeed if `amount` is zero.
lpToken[_pid].safeTransfer(msg.sender, amount);
emit EmergencyWithdraw(msg.sender, _pid, amount);
}
function calcMultiplier(address _user, uint _pid) external view returns(uint) {
uint newMultiplier = _calcMultiplier(_user, _pid);
return newMultiplier > BOOST_PRECISION ? newMultiplier : BOOST_PRECISION;
}
function _calcMultiplier(address _user, uint _pid) internal view returns(uint) {
// maxMultiplier = 8
// temp = (100/maxMultiplier)
// votingPower = lpAmount[user] * ( temp / 100 ) + ((( (totalLpAmount[pid] * votingBalance[user]) / votingTotal )) * (100- temp)) / 100
// votingPower = min tra lpAmount e votingPower
// multiplier = votingPower / lpAmount * maxMultiplier;
uint PRECISION = 1e18;
UserInfo memory _userInfo = userInfo[_pid][_user];
IERC20 _lpToken = lpToken[_pid];
uint lpAmount = _userInfo.amount;
if ( lpAmount == 0) {
return 1;
}
uint totalLpAmount = _lpToken.balanceOf(address(this));
uint votingBalance = veContract.balanceOf(_user);
uint votingTotal = veContract.totalSupply();
uint firstTerm = (lpAmount * ((100 * PRECISION / maxMultiplier) / 100)) / PRECISION;
uint secondTerm = votingTotal > 0 ? ((totalLpAmount * votingBalance) / votingTotal) : 0;
uint thirdTerm = (100 - ( 100 / maxMultiplier));
uint votingPower = firstTerm + secondTerm * thirdTerm / 100;
if (lpAmount < votingPower) {
votingPower = lpAmount;
}
uint multiplier = (votingPower * PRECISION / lpAmount * maxMultiplier);
return multiplier;
}
/// @notice Update user boost factor.
/// @param _user The user address for boost factor updates.
/// @param _pid The pool id for the boost factor updates.
function updateBoostMultiplier(
address _user,
uint256 _pid
) external nonReentrant {
_updateBoostMultiplier(_user, _pid);
}
function _updateBoostMultiplier(address _user, uint _pid) internal {
require(_user != address(0), "user address must be valid");
PoolInfo memory pool = updatePool(_pid);
UserInfo storage user = userInfo[_pid][_user];
uint256 prevMultiplier = getBoostMultiplier(_user, _pid);
settlePendingToken(_user, _pid, prevMultiplier);
uint newMultiplier = _calcMultiplier(_user, _pid);
user.rewardDebt = user.amount.mul(newMultiplier).div(BOOST_PRECISION).mul(pool.accTokenPerShare).div(
ACC_TOKEN_PRECISION
);
if(pool.totalBoostedShare > 0 ) {
pool.totalBoostedShare = pool.totalBoostedShare.sub(user.amount.mul(prevMultiplier).div(BOOST_PRECISION)).add(
user.amount.mul(newMultiplier).div(BOOST_PRECISION)
);
} else {
pool.totalBoostedShare = pool.totalBoostedShare
.add(
user.amount.mul(newMultiplier).div(BOOST_PRECISION)
);
}
poolInfo[_pid] = pool;
userInfo[_pid][_user].boostMultiplier = newMultiplier;
emit UpdateBoostMultiplier(_user, _pid, prevMultiplier, newMultiplier);
}
/// @notice Get user boost multiplier for specific pool id.
/// @param _user The user address.
/// @param _pid The pool id.
function getBoostMultiplier(address _user, uint256 _pid) public view returns (uint256) {
uint256 multiplier = userInfo[_pid][_user].boostMultiplier;
return multiplier > BOOST_PRECISION ? multiplier : BOOST_PRECISION;
}
/// @notice Settles, distribute the pending TOKEN rewards for given user.
/// @param _user The user address for settling rewards.
/// @param _pid The pool id.
/// @param _boostMultiplier The user boost multiplier in specific pool id.
function settlePendingToken(
address _user,
uint256 _pid,
uint256 _boostMultiplier
) internal {
UserInfo memory user = userInfo[_pid][_user];
uint256 boostedAmount = user.amount.mul(_boostMultiplier).div(BOOST_PRECISION);
uint256 accToken = boostedAmount.mul(poolInfo[_pid].accTokenPerShare).div(ACC_TOKEN_PRECISION);
uint256 pending = accToken.sub(user.rewardDebt);
// SafeTransfer TOKEN
_safeTransfer(_user, pending);
}
/// @notice Safe Transfer TOKEN.
/// @param _to The TOKEN receiver address.
/// @param _amount transfer TOKEN amounts.
function _safeTransfer(address _to, uint256 _amount) internal {
if (_amount > 0) {
uint256 balance = TOKEN.balanceOf(address(this));
require(balance >= _amount, "insufficient balance in contract");
TOKEN.safeTransfer(_to, _amount);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)
pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
* now has built in overflow checking.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
{
"compilationTarget": {
"contracts/farmBooster/MasterchefScomp.sol": "MasterChefScomp"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"details": {
"constantOptimizer": true,
"cse": true,
"deduplicate": true,
"inliner": true,
"jumpdestRemover": true,
"orderLiterals": true,
"peephole": true,
"yul": false
},
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"contract IERC20","name":"_TOKEN","type":"address"},{"internalType":"address","name":"_veContract","type":"address"},{"internalType":"uint256","name":"_tokenPerBlock","type":"uint256"},{"internalType":"uint256","name":"_startBlock","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"allocPoint","type":"uint256"},{"indexed":true,"internalType":"contract IERC20","name":"lpToken","type":"address"}],"name":"AddPool","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EmergencyWithdraw","type":"event"},{"anonymous":false,"inputs":[],"name":"Init","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"allocPoint","type":"uint256"}],"name":"SetPool","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"oldMultiplier","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newMultiplier","type":"uint256"}],"name":"UpdateBoostMultiplier","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"lastRewardBlock","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"lpSupply","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"accTokenPerShare","type":"uint256"}],"name":"UpdatePool","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"ACC_TOKEN_PRECISION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BOOST_PRECISION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_BOOST_PRECISION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TOKEN","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_allocPoint","type":"uint256"},{"internalType":"contract IERC20","name":"_lpToken","type":"address"},{"internalType":"bool","name":"_withUpdate","type":"bool"}],"name":"add","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"calcMultiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"emergencyWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"endBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"fund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"getBoostMultiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"lpToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"massUpdatePools","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"maxMultiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"migrateNext","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"migrator","outputs":[{"internalType":"contract IMigratorChef","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"address","name":"_user","type":"address"}],"name":"pendingToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"poolInfo","outputs":[{"internalType":"uint256","name":"accTokenPerShare","type":"uint256"},{"internalType":"uint256","name":"lastRewardBlock","type":"uint256"},{"internalType":"uint256","name":"allocPoint","type":"uint256"},{"internalType":"uint256","name":"totalBoostedShare","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolLength","outputs":[{"internalType":"uint256","name":"pools","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_allocPoint","type":"uint256"},{"internalType":"bool","name":"_withUpdate","type":"bool"}],"name":"set","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenPerBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAllocPoint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"updateBoostMultiplier","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"updatePool","outputs":[{"components":[{"internalType":"uint256","name":"accTokenPerShare","type":"uint256"},{"internalType":"uint256","name":"lastRewardBlock","type":"uint256"},{"internalType":"uint256","name":"allocPoint","type":"uint256"},{"internalType":"uint256","name":"totalBoostedShare","type":"uint256"}],"internalType":"struct MasterChefScomp.PoolInfo","name":"pool","type":"tuple"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"userInfo","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"rewardDebt","type":"uint256"},{"internalType":"uint256","name":"boostMultiplier","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"veContract","outputs":[{"internalType":"contract IVotingEscrow","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"whiteList","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]