// SPDX-License-Identifier: NONE
pragma solidity 0.6.12;
//
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
//
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
//
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
//
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
//
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256`
* (`UintSet`) are supported.
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping (bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) { // Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
// When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs
// so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.
bytes32 lastvalue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastvalue;
// Update the index for the moved value
set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
require(set._values.length > index, "EnumerableSet: index out of bounds");
return set._values[index];
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(value)));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(value)));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(value)));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint256(_at(set._inner, index)));
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
}
//
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
//
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
//
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
using Address for address;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name, string memory symbol) public {
_name = name;
_symbol = symbol;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
*
* This is internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}
// YieldXToken with Governance.
contract YieldXToken is ERC20("YieldXToken", "YieldX"), Ownable {
/// @notice Creates `_amount` token to `_to`. Must only be called by the owner (HeadFarmer).
function mint(address _to, uint256 _amount) public onlyOwner {
_mint(_to, _amount);
_moveDelegates(address(0), _delegates[_to], _amount);
}
// Copied and modified from YAM code:
// https://github.com/yam-finance/yam-protocol/blob/master/contracts/token/YAMGovernanceStorage.sol
// https://github.com/yam-finance/yam-protocol/blob/master/contracts/token/YAMGovernance.sol
// Which is copied and modified from COMPOUND:
// https://github.com/compound-finance/compound-protocol/blob/master/contracts/Governance/Comp.sol
/// @notice A record of each accounts delegate
mapping (address => address) internal _delegates;
/// @notice A checkpoint for marking number of votes from a given block
struct Checkpoint {
uint32 fromBlock;
uint256 votes;
}
/// @notice A record of votes checkpoints for each account, by index
mapping (address => mapping (uint32 => Checkpoint)) public checkpoints;
/// @notice The number of checkpoints for each account
mapping (address => uint32) public numCheckpoints;
/// @notice The EIP-712 typehash for the contract's domain
bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)");
/// @notice The EIP-712 typehash for the delegation struct used by the contract
bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
/// @notice A record of states for signing / validating signatures
mapping (address => uint) public nonces;
/// @notice An event thats emitted when an account changes its delegate
event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
/// @notice An event thats emitted when a delegate account's vote balance changes
event DelegateVotesChanged(address indexed delegate, uint previousBalance, uint newBalance);
/**
* @notice Delegate votes from `msg.sender` to `delegatee`
* @param delegator The address to get delegatee for
*/
function delegates(address delegator)
external
view
returns (address)
{
return _delegates[delegator];
}
/**
* @notice Delegate votes from `msg.sender` to `delegatee`
* @param delegatee The address to delegate votes to
*/
function delegate(address delegatee) external {
return _delegate(msg.sender, delegatee);
}
/**
* @notice Delegates votes from signatory to `delegatee`
* @param delegatee The address to delegate votes to
* @param nonce The contract state required to match the signature
* @param expiry The time at which to expire the signature
* @param v The recovery byte of the signature
* @param r Half of the ECDSA signature pair
* @param s Half of the ECDSA signature pair
*/
function delegateBySig(
address delegatee,
uint nonce,
uint expiry,
uint8 v,
bytes32 r,
bytes32 s
)
external
{
bytes32 domainSeparator = keccak256(
abi.encode(
DOMAIN_TYPEHASH,
keccak256(bytes(name())),
getChainId(),
address(this)
)
);
bytes32 structHash = keccak256(
abi.encode(
DELEGATION_TYPEHASH,
delegatee,
nonce,
expiry
)
);
bytes32 digest = keccak256(
abi.encodePacked(
"\x19\x01",
domainSeparator,
structHash
)
);
address signatory = ecrecover(digest, v, r, s);
require(signatory != address(0), "YieldX::delegateBySig: invalid signature");
require(nonce == nonces[signatory]++, "YieldX::delegateBySig: invalid nonce");
require(now <= expiry, "YieldX::delegateBySig: signature expired");
return _delegate(signatory, delegatee);
}
/**
* @notice Gets the current votes balance for `account`
* @param account The address to get votes balance
* @return The number of current votes for `account`
*/
function getCurrentVotes(address account)
external
view
returns (uint256)
{
uint32 nCheckpoints = numCheckpoints[account];
return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;
}
/**
* @notice Determine the prior number of votes for an account as of a block number
* @dev Block number must be a finalized block or else this function will revert to prevent misinformation.
* @param account The address of the account to check
* @param blockNumber The block number to get the vote balance at
* @return The number of votes the account had as of the given block
*/
function getPriorVotes(address account, uint blockNumber)
external
view
returns (uint256)
{
require(blockNumber < block.number, "YieldX::getPriorVotes: not yet determined");
uint32 nCheckpoints = numCheckpoints[account];
if (nCheckpoints == 0) {
return 0;
}
// First check most recent balance
if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {
return checkpoints[account][nCheckpoints - 1].votes;
}
// Next check implicit zero balance
if (checkpoints[account][0].fromBlock > blockNumber) {
return 0;
}
uint32 lower = 0;
uint32 upper = nCheckpoints - 1;
while (upper > lower) {
uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow
Checkpoint memory cp = checkpoints[account][center];
if (cp.fromBlock == blockNumber) {
return cp.votes;
} else if (cp.fromBlock < blockNumber) {
lower = center;
} else {
upper = center - 1;
}
}
return checkpoints[account][lower].votes;
}
function _delegate(address delegator, address delegatee)
internal
{
address currentDelegate = _delegates[delegator];
uint256 delegatorBalance = balanceOf(delegator); // balance of underlying YieldXs (not scaled);
_delegates[delegator] = delegatee;
emit DelegateChanged(delegator, currentDelegate, delegatee);
_moveDelegates(currentDelegate, delegatee, delegatorBalance);
}
function _moveDelegates(address srcRep, address dstRep, uint256 amount) internal {
if (srcRep != dstRep && amount > 0) {
if (srcRep != address(0)) {
// decrease old representative
uint32 srcRepNum = numCheckpoints[srcRep];
uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;
uint256 srcRepNew = srcRepOld.sub(amount);
_writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);
}
if (dstRep != address(0)) {
// increase new representative
uint32 dstRepNum = numCheckpoints[dstRep];
uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;
uint256 dstRepNew = dstRepOld.add(amount);
_writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);
}
}
}
function _writeCheckpoint(
address delegatee,
uint32 nCheckpoints,
uint256 oldVotes,
uint256 newVotes
)
internal
{
uint32 blockNumber = safe32(block.number, "YieldX::_writeCheckpoint: block number exceeds 32 bits");
if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) {
checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;
} else {
checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);
numCheckpoints[delegatee] = nCheckpoints + 1;
}
emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
}
function safe32(uint n, string memory errorMessage) internal pure returns (uint32) {
require(n < 2**32, errorMessage);
return uint32(n);
}
function getChainId() internal pure returns (uint) {
uint256 chainId;
assembly { chainId := chainid() }
return chainId;
}
}
interface IUniswapV2ERC20 {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
}
// a library for performing various math operations
library Math {
function min(uint x, uint y) internal pure returns (uint z) {
z = x < y ? x : y;
}
// babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
function sqrt(uint y) internal pure returns (uint z) {
if (y > 3) {
z = y;
uint x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
}
}
abstract contract RewardsDistributionRecipient {
address public rewardsDistribution;
function notifyRewardAmount(uint256 reward) external virtual;
modifier onlyRewardsDistribution() {
require(msg.sender == rewardsDistribution, "Caller is not RewardsDistribution contract");
_;
}
}
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the `nonReentrant` modifier
* available, which can be aplied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*/
contract ReentrancyGuard {
/// @dev counter to allow mutex lock with only one SSTORE operation
uint256 private _guardCounter;
constructor () internal {
// The counter starts at one to prevent changing it from zero to a non-zero
// value, which is a more expensive operation.
_guardCounter = 1;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_guardCounter += 1;
uint256 localCounter = _guardCounter;
_;
require(localCounter == _guardCounter, "ReentrancyGuard: reentrant call");
}
}
// a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
library SafeMathUniswap {
function add(uint x, uint y) internal pure returns (uint z) {
require((z = x + y) >= x, 'ds-math-add-overflow');
}
function sub(uint x, uint y) internal pure returns (uint z) {
require((z = x - y) <= x, 'ds-math-sub-underflow');
}
function mul(uint x, uint y) internal pure returns (uint z) {
require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
}
}
contract StakingRewards is RewardsDistributionRecipient, ReentrancyGuard {
using SafeMath for uint256;
using SafeERC20 for IERC20;
/* ========== STATE VARIABLES ========== */
IERC20 public rewardsToken;
IERC20 public stakingToken;
uint256 public periodFinish = 0;
uint256 public rewardRate = 0;
uint256 public rewardsDuration = 60 days;
uint256 public lastUpdateTime;
uint256 public rewardPerTokenStored;
mapping(address => uint256) public userRewardPerTokenPaid;
mapping(address => uint256) public rewards;
uint256 private _totalSupply;
mapping(address => uint256) private _balances;
/* ========== CONSTRUCTOR ========== */
constructor(
address _rewardsDistribution,
address _rewardsToken,
address _stakingToken
) public {
rewardsToken = IERC20(_rewardsToken);
stakingToken = IERC20(_stakingToken);
rewardsDistribution = _rewardsDistribution;
}
/* ========== VIEWS ========== */
function totalSupply() external view returns (uint256) {
return _totalSupply;
}
function balanceOf(address account) external view returns (uint256) {
return _balances[account];
}
function lastTimeRewardApplicable() public view returns (uint256) {
return Math.min(block.timestamp, periodFinish);
}
function rewardPerToken() public view returns (uint256) {
if (_totalSupply == 0) {
return rewardPerTokenStored;
}
return
rewardPerTokenStored.add(
lastTimeRewardApplicable().sub(lastUpdateTime).mul(rewardRate).mul(1e18).div(_totalSupply)
);
}
function earned(address account) public view returns (uint256) {
return _balances[account].mul(rewardPerToken().sub(userRewardPerTokenPaid[account])).div(1e18).add(rewards[account]);
}
function getRewardForDuration() external view returns (uint256) {
return rewardRate.mul(rewardsDuration);
}
/* ========== MUTATIVE FUNCTIONS ========== */
function stakeWithPermit(uint256 amount, uint deadline, uint8 v, bytes32 r, bytes32 s) external nonReentrant updateReward(msg.sender) {
require(amount > 0, "Cannot stake 0");
_totalSupply = _totalSupply.add(amount);
_balances[msg.sender] = _balances[msg.sender].add(amount);
// permit
IUniswapV2ERC20(address(stakingToken)).permit(msg.sender, address(this), amount, deadline, v, r, s);
stakingToken.safeTransferFrom(msg.sender, address(this), amount);
emit Staked(msg.sender, amount);
}
function stake(uint256 amount) external nonReentrant updateReward(msg.sender) {
require(amount > 0, "Cannot stake 0");
_totalSupply = _totalSupply.add(amount);
_balances[msg.sender] = _balances[msg.sender].add(amount);
stakingToken.safeTransferFrom(msg.sender, address(this), amount);
emit Staked(msg.sender, amount);
}
function withdraw(uint256 amount) public nonReentrant updateReward(msg.sender) {
require(amount > 0, "Cannot withdraw 0");
_totalSupply = _totalSupply.sub(amount);
_balances[msg.sender] = _balances[msg.sender].sub(amount);
stakingToken.safeTransfer(msg.sender, amount);
emit Withdrawn(msg.sender, amount);
}
function getReward() public nonReentrant updateReward(msg.sender) {
uint256 reward = rewards[msg.sender];
if (reward > 0) {
rewards[msg.sender] = 0;
rewardsToken.safeTransfer(msg.sender, reward);
emit RewardPaid(msg.sender, reward);
}
}
function exit() external {
withdraw(_balances[msg.sender]);
getReward();
}
/* ========== RESTRICTED FUNCTIONS ========== */
function notifyRewardAmount(uint256 reward) external override onlyRewardsDistribution updateReward(address(0)) {
if (block.timestamp >= periodFinish) {
rewardRate = reward.div(rewardsDuration);
} else {
uint256 remaining = periodFinish.sub(block.timestamp);
uint256 leftover = remaining.mul(rewardRate);
rewardRate = reward.add(leftover).div(rewardsDuration);
}
// Ensure the provided reward amount is not more than the balance in the contract.
// This keeps the reward rate in the right range, preventing overflows due to
// very high values of rewardRate in the earned and rewardsPerToken functions;
// Reward + leftover must be less than 2^256 / 10^18 to avoid overflow.
uint balance = rewardsToken.balanceOf(address(this));
require(rewardRate <= balance.div(rewardsDuration), "Provided reward too high");
lastUpdateTime = block.timestamp;
periodFinish = block.timestamp.add(rewardsDuration);
emit RewardAdded(reward);
}
/* ========== MODIFIERS ========== */
modifier updateReward(address account) {
rewardPerTokenStored = rewardPerToken();
lastUpdateTime = lastTimeRewardApplicable();
if (account != address(0)) {
rewards[account] = earned(account);
userRewardPerTokenPaid[account] = rewardPerTokenStored;
}
_;
}
/* ========== EVENTS ========== */
event RewardAdded(uint256 reward);
event Staked(address indexed user, uint256 amount);
event Withdrawn(address indexed user, uint256 amount);
event RewardPaid(address indexed user, uint256 reward);
}
contract StakingRewardsFactory is Ownable {
// immutables
address public rewardsToken;
uint public stakingRewardsGenesis;
// the staking tokens for which the rewards contract has been deployed
address[] public stakingTokens;
// info about rewards for a particular staking token
struct StakingRewardsInfo {
address stakingRewards;
uint rewardAmount;
}
// rewards info by staking token
mapping(address => StakingRewardsInfo) public stakingRewardsInfoByStakingToken;
constructor(
address _rewardsToken,
uint _stakingRewardsGenesis
) Ownable() public {
require(_stakingRewardsGenesis >= block.timestamp, 'StakingRewardsFactory::constructor: genesis too soon');
rewardsToken = _rewardsToken;
stakingRewardsGenesis = _stakingRewardsGenesis;
}
///// permissioned functions
// deploy a staking reward contract for the staking token, and store the reward amount
// the reward will be distributed to the staking reward contract no sooner than the genesis
function deploy(address stakingToken, uint rewardAmount) public onlyOwner {
StakingRewardsInfo storage info = stakingRewardsInfoByStakingToken[stakingToken];
require(info.stakingRewards == address(0), 'StakingRewardsFactory::deploy: already deployed');
info.stakingRewards = address(new StakingRewards(/*_rewardsDistribution=*/ address(this), rewardsToken, stakingToken));
info.rewardAmount = rewardAmount;
stakingTokens.push(stakingToken);
}
///// permissionless functions
// call notifyRewardAmount for all staking tokens.
function notifyRewardAmounts() public {
require(stakingTokens.length > 0, 'StakingRewardsFactory::notifyRewardAmounts: called before any deploys');
for (uint i = 0; i < stakingTokens.length; i++) {
notifyRewardAmount(stakingTokens[i]);
}
}
// notify reward amount for an individual staking token.
// this is a fallback in case the notifyRewardAmounts costs too much gas to call for all contracts
function notifyRewardAmount(address stakingToken) public {
require(block.timestamp >= stakingRewardsGenesis, 'StakingRewardsFactory::notifyRewardAmount: not ready');
StakingRewardsInfo storage info = stakingRewardsInfoByStakingToken[stakingToken];
require(info.stakingRewards != address(0), 'StakingRewardsFactory::notifyRewardAmount: not deployed');
if (info.rewardAmount > 0) {
uint rewardAmount = info.rewardAmount;
info.rewardAmount = 0;
require(
IERC20(rewardsToken).transfer(info.stakingRewards, rewardAmount),
'StakingRewardsFactory::notifyRewardAmount: transfer failed'
);
StakingRewards(info.stakingRewards).notifyRewardAmount(rewardAmount);
}
}
}
interface IMigratorHead {
// Perform LP token migration from legacy UniswapV2 to HubrisOne X.
// Take the current LP token address and return the new LP token address.
// Migrator should have full access to the caller's LP token.
// Return the new LP token address.
//
// XXX Migrator must have allowance access to UniswapV2 LP tokens.
// HubrisOne X must mint EXACTLY the same amount of HubrisOne X LP tokens or
// else something bad will happen. Traditional UniswapV2 does not
// do that so be careful!
function migrate(IERC20 token) external returns (IERC20);
}
// HeadFarmer is the head of YieldX. He can make YieldX and he is a fair guy.
//
// Note that it's ownable and the owner wields tremendous power. The ownership
// will be transferred to a governance smart contract once YieldX is sufficiently
// distributed and the community can show to govern itself.
//
// Have fun reading it. Hopefully it's bug-free. God bless.
contract HeadFarmer is Ownable {
using SafeMath for uint256;
using SafeERC20 for IERC20;
// Info of each user.
struct UserInfo {
uint256 amount; // How many LP tokens the user has provided.
uint256 rewardDebt; // Reward debt. See explanation below.
//
// We do some fancy math here. Basically, any point in time, the amount of YieldXs
// entitled to a user but is pending to be distributed is:
//
// pending reward = (user.amount * pool.accYieldXPerShare) - user.rewardDebt
//
// Whenever a user deposits or withdraws LP tokens to a pool. Here's what happens:
// 1. The pool's `accYieldXPerShare` (and `lastRewardBlock`) gets updated.
// 2. User receives the pending reward sent to his/her address.
// 3. User's `amount` gets updated.
// 4. User's `rewardDebt` gets updated.
uint256 userRewardPerTokenPaid;
}
// Info of each pool.
struct PoolInfo {
IERC20 lpToken; // Address of LP token contract.
uint256 allocPoint; // How many allocation points assigned to this pool. YieldXs to distribute per block.
uint256 lastRewardBlock; // Last block number that YieldXs distribution occurs.
uint256 accYieldXPerShare; // Accumulated YieldXs per share, times 1e12. See below.
uint256 lastUpdateTime;
uint256 rewardPerTokenStored;
}
// The YieldX TOKEN!
YieldXToken public yieldx;
// Dev address.
address public devaddr;
// Bar address.
address public baraddr;
// YieldX tokens created per block.
uint256 public constant YIELDX_PER_BLOCK = 1e18;
// The migrator contract. It has a lot of power. Can only be set through governance (owner).
IMigratorHead public migrator;
StakingRewardsFactory public stakingRewardsFactory;
// Referral
mapping (address => string) public addressToReferralCode;
mapping (string => address) public referralCodeToAddress;
mapping (address => address) public addressToRefereeAddress;
mapping (address => uint256) public addressToNumReferrals;
mapping (address => uint256) public addressToNumYieldXViaReferral;
// Info of each pool.
PoolInfo[] public poolInfo;
// Info of each user that stakes LP tokens.
mapping (uint256 => mapping (address => UserInfo)) public userInfo;
// Total allocation poitns. Must be the sum of all allocation points in all pools.
uint256 public totalAllocPoint = 0;
// The block number when YieldX mining starts.
//The block range for calculating YieldX Bonus
uint256[7] public BLOCK_BOUNDRY = [uint256(11050000), 11320000, 13660000, 16000000, 18340000, 20680000, 23020000];
// Bonus muliplier for each block range.
uint256[6] public BONUS_MULTIPLIERS = [uint256(150),13,7,4,2,1];
// Initial Dev Fund
uint256 public initialDevFund;
uint256 public constant INITIAL_DEV_VESTING_NUM_INSTALMENTS = 36;
uint256 public constant INITIAL_DEV_VESTING_START_BLOCK = 11905000;
uint256 public constant INITIAL_DEV_VESTING_PERIOD_LENGTH = 195000;
mapping (uint256 => uint256) public claimedDevFund;
event Deposit(address indexed user, uint256 indexed pid, uint256 amount);
event Withdraw(address indexed user, uint256 indexed pid, uint256 amount);
event EmergencyWithdraw(address indexed user, uint256 indexed pid, uint256 amount);
constructor(
YieldXToken _yieldx,
address _devaddr,
address _baraddr,
StakingRewardsFactory _stakingRewardsFactory
) public {
yieldx = _yieldx;
devaddr = _devaddr;
baraddr = _baraddr;
stakingRewardsFactory = _stakingRewardsFactory;
}
function min(uint256 x, uint256 y) internal pure returns (uint256) {
return x < y ? x : y;
}
function max(uint256 x, uint256 y) internal pure returns (uint256) {
return x > y ? x : y;
}
function sub(uint256 x, uint256 y) internal pure returns (uint256) {
return x > y ? x - y : 0;
}
function poolLength() external view returns (uint256) {
return poolInfo.length;
}
// Set the migrator contract. Can only be called by the owner.
function setYear5BlockBoundary(uint256 _year5BlockBoundary) public onlyOwner {
BLOCK_BOUNDRY[6] = _year5BlockBoundary;
}
// Add a new lp to the pool. Can only be called by the owner.
// XXX DO NOT add the same LP token more than once. Rewards will be messed up if you do.
function add(uint256 _allocPoint, IERC20 _lpToken, bool _withUpdate) public onlyOwner {
if (_withUpdate) {
massUpdatePools();
}
uint256 lastRewardBlock = max(block.number, BLOCK_BOUNDRY[0]);
totalAllocPoint = totalAllocPoint.add(_allocPoint);
poolInfo.push(PoolInfo({
lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accYieldXPerShare: 0,
lastUpdateTime: 0,
rewardPerTokenStored: 0
}));
}
// Update the given pool's YieldX allocation point. Can only be called by the owner.
function set(uint256 _pid, uint256 _allocPoint, bool _withUpdate) public onlyOwner {
if (_withUpdate) {
massUpdatePools();
}
totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
poolInfo[_pid].allocPoint = _allocPoint;
}
// Set the migrator contract. Can only be called by the owner.
function setMigrator(IMigratorHead _migrator) public onlyOwner {
migrator = _migrator;
}
// Migrate lp token to another lp contract. Can be called by anyone. We trust that migrator contract is good.
function migrate(uint256 _pid) public {
require(address(migrator) != address(0), "migrate: no migrator");
PoolInfo storage pool = poolInfo[_pid];
(address stakingRewardsAddress, ) = stakingRewardsFactory.stakingRewardsInfoByStakingToken(address(pool.lpToken));
updatePool(_pid);
if (stakingRewardsAddress != address(0)) {
StakingRewards stakingRewards = StakingRewards(stakingRewardsAddress);
uint256 tokensStaked = stakingRewards.balanceOf(address(this));
if (tokensStaked > 0) {
stakingRewards.withdraw(tokensStaked);
}
}
IERC20 lpToken = pool.lpToken;
uint256 bal = lpToken.balanceOf(address(this));
lpToken.safeApprove(address(migrator), bal);
IERC20 newLpToken = migrator.migrate(lpToken);
require(bal == newLpToken.balanceOf(address(this)), "migrate: bad");
pool.lpToken = newLpToken;
}
// Return reward multiplier over the given _from to _to block after initial period.
function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) {
uint256 multiplier = 0;
for (uint256 x = 2; x < BLOCK_BOUNDRY.length; ++x) {
multiplier = multiplier.add(sub(min(_to, BLOCK_BOUNDRY[x]), max(_from, BLOCK_BOUNDRY[x-1])).mul(BONUS_MULTIPLIERS[x-1]));
}
return multiplier;
}
// Return reward multiplier over the given _from to _to block in the initial period.
function getMultiplierForInitialPeriod(uint256 _from, uint256 _to) public view returns (uint256) {
return sub(min(_to, BLOCK_BOUNDRY[1]), max(_from, BLOCK_BOUNDRY[0])).mul(BONUS_MULTIPLIERS[0]);
}
// View function to see pending YieldXs on frontend.
function pendingYieldX(uint256 _pid, address _user) external view returns (uint256) {
PoolInfo storage pool = poolInfo[_pid];
(address stakingRewardsAddress, ) = stakingRewardsFactory.stakingRewardsInfoByStakingToken(address(pool.lpToken));
UserInfo storage user = userInfo[_pid][_user];
uint256 accYieldXPerShare = pool.accYieldXPerShare;
uint256 lpSupply = pool.lpToken.balanceOf(address(this));
if (stakingRewardsAddress != address(0)) {
StakingRewards stakingRewards = StakingRewards(stakingRewardsAddress);
lpSupply = lpSupply.add(stakingRewards.balanceOf(address(this)));
}
if (block.number > pool.lastRewardBlock && lpSupply != 0) {
uint256 multiplierForInitialPeriod = getMultiplierForInitialPeriod(pool.lastRewardBlock, block.number);
uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
multiplier = multiplier.add(multiplierForInitialPeriod);
uint256 yieldxReward = multiplier.mul(YIELDX_PER_BLOCK).mul(pool.allocPoint).div(totalAllocPoint);
accYieldXPerShare = accYieldXPerShare.add(yieldxReward.mul(1e12).div(lpSupply));
}
return user.amount.mul(accYieldXPerShare).div(1e12).sub(user.rewardDebt);
}
// View function to see if extra reward is there for this pool.
function hasExtraReward(uint256 _pid) external view returns (uint256) {
PoolInfo storage pool = poolInfo[_pid];
(address stakingRewardsAddress, ) = stakingRewardsFactory.stakingRewardsInfoByStakingToken(address(pool.lpToken));
if (stakingRewardsAddress != address(0)) {
return 1;
}
return 0;
}
// View function to see pending reward on frontend.
function pendingReward(uint256 _pid, address _user) external view returns (uint256) {
PoolInfo storage pool = poolInfo[_pid];
(address stakingRewardsAddress, ) = stakingRewardsFactory.stakingRewardsInfoByStakingToken(address(pool.lpToken));
UserInfo storage user = userInfo[_pid][_user];
if (stakingRewardsAddress != address(0)) {
StakingRewards stakingRewards = StakingRewards(stakingRewardsAddress);
uint256 rewardPerTokenStored = pool.rewardPerTokenStored;
uint256 tokensStaked = stakingRewards.balanceOf(address(this));
if (tokensStaked > 0) {
uint256 reward = stakingRewards.earned(address(this));
uint256 rewardPerToken = reward.mul(1e12).div(tokensStaked);
rewardPerTokenStored = rewardPerTokenStored.add(rewardPerToken);
}
uint256 userRewardPerToken = rewardPerTokenStored.sub(user.userRewardPerTokenPaid);
uint256 userReward = userRewardPerToken.mul(user.amount).div(1e12);
return userReward;
}
return 0;
}
// Update reward variables for all pools. Be careful of gas spending!
function massUpdatePools() public {
uint256 length = poolInfo.length;
for (uint256 pid = 0; pid < length; ++pid) {
updatePool(pid);
}
}
// Update reward variables of the given pool to be up-to-date.
function updatePool(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
(address stakingRewardsAddress, ) = stakingRewardsFactory.stakingRewardsInfoByStakingToken(address(pool.lpToken));
UserInfo storage user = userInfo[_pid][msg.sender];
uint256 lpSupply = pool.lpToken.balanceOf(address(this));
if (stakingRewardsAddress != address(0)) {
StakingRewards stakingRewards = StakingRewards(stakingRewardsAddress);
lpSupply = lpSupply.add(stakingRewards.balanceOf(address(this)));
}
if (lpSupply > 0) {
uint256 multiplierForInitialPeriod = getMultiplierForInitialPeriod(pool.lastRewardBlock, block.number);
uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
if (multiplierForInitialPeriod > 0) {
uint256 yieldxReward;
yieldxReward = multiplierForInitialPeriod.mul(YIELDX_PER_BLOCK).mul(pool.allocPoint).div(totalAllocPoint);
yieldx.mint(address(this), yieldxReward);
yieldx.mint(baraddr, yieldxReward.div(10));
initialDevFund += yieldxReward.div(10);
pool.accYieldXPerShare = pool.accYieldXPerShare.add(yieldxReward.mul(1e12).div(lpSupply));
}
if (multiplier > 0) {
uint256 yieldxReward;
yieldxReward = multiplier.mul(YIELDX_PER_BLOCK).mul(pool.allocPoint).div(totalAllocPoint);
yieldx.mint(address(this), yieldxReward);
yieldx.mint(baraddr, yieldxReward.div(10));
yieldx.mint(devaddr, yieldxReward.div(10));
pool.accYieldXPerShare = pool.accYieldXPerShare.add(yieldxReward.mul(1e12).div(lpSupply));
}
}
if (stakingRewardsAddress != address(0)) {
StakingRewards stakingRewards = StakingRewards(stakingRewardsAddress);
uint256 tokensStaked = stakingRewards.balanceOf(address(this));
if (tokensStaked > 0) {
uint256 rewardsTokenBalanceBefore = stakingRewards.rewardsToken().balanceOf(address(this));
stakingRewards.getReward();
uint256 rewardsTokenBalanceAfter = stakingRewards.rewardsToken().balanceOf(address(this));
uint256 reward = rewardsTokenBalanceAfter.sub(rewardsTokenBalanceBefore);
uint256 rewardPerToken = reward.mul(1e12).div(tokensStaked);
pool.rewardPerTokenStored = pool.rewardPerTokenStored.add(rewardPerToken);
}
uint256 userRewardPerToken = pool.rewardPerTokenStored.sub(user.userRewardPerTokenPaid);
uint256 userReward = userRewardPerToken.mul(user.amount).div(1e12);
if (userReward > 0) {
stakingRewards.rewardsToken().safeTransfer(msg.sender, userReward);
}
user.userRewardPerTokenPaid = pool.rewardPerTokenStored;
}
pool.lastRewardBlock = block.number;
}
function claimDevFund(uint256 period) public {
require(period < INITIAL_DEV_VESTING_NUM_INSTALMENTS, "period out of range");
uint256 periodEndBlock = INITIAL_DEV_VESTING_START_BLOCK + INITIAL_DEV_VESTING_PERIOD_LENGTH * (period + 1);
require(periodEndBlock <= block.number, "cannot claim for this period right now");
uint256 initialDevFundPerPeriod = initialDevFund.div(INITIAL_DEV_VESTING_NUM_INSTALMENTS);
require(claimedDevFund[period] < initialDevFundPerPeriod, "already claimed for this period");
uint256 claimableDevFund = initialDevFundPerPeriod.sub(claimedDevFund[period]);
claimedDevFund[period] = initialDevFundPerPeriod;
yieldx.mint(devaddr, claimableDevFund);
}
// Deposit with referral code.
function depositWithReferralCode(uint256 _pid, uint256 _amount, string calldata _referralCode, string calldata _refereeCode) external {
if (bytes(_refereeCode).length != 0) {
address refereeAddress = referralCodeToAddress[_refereeCode];
require (refereeAddress != address(0), "invalid referral code");
addressToRefereeAddress[msg.sender] = refereeAddress;
addressToNumReferrals[refereeAddress] = addressToNumReferrals[refereeAddress].add(1);
}
require (bytes(_referralCode).length != 0, "referral code cannot be blank");
require (bytes(addressToReferralCode[msg.sender]).length == 0, "referral code already generated");
require (referralCodeToAddress[_referralCode] == address(0), "referral code already used");
referralCodeToAddress[_referralCode] = msg.sender;
addressToReferralCode[msg.sender] = _referralCode;
deposit(_pid, _amount);
}
// Deposit LP tokens to HeadFarmer for YieldX allocation.
function deposit(uint256 _pid, uint256 _amount) public {
PoolInfo storage pool = poolInfo[_pid];
(address stakingRewardsAddress, ) = stakingRewardsFactory.stakingRewardsInfoByStakingToken(address(pool.lpToken));
UserInfo storage user = userInfo[_pid][msg.sender];
updatePool(_pid);
if (user.amount > 0) {
uint256 pending = user.amount.mul(pool.accYieldXPerShare).div(1e12).sub(user.rewardDebt);
if(pending > 0) {
safeYieldXTransfer(msg.sender, pending);
}
}
if(_amount > 0) {
pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount);
user.amount = user.amount.add(_amount);
if (stakingRewardsAddress != address(0)) {
StakingRewards stakingRewards = StakingRewards(stakingRewardsAddress);
pool.lpToken.safeApprove(stakingRewardsAddress, _amount);
stakingRewards.stake(_amount);
}
}
user.rewardDebt = user.amount.mul(pool.accYieldXPerShare).div(1e12);
emit Deposit(msg.sender, _pid, _amount);
}
// Withdraw LP tokens from HeadFarmer.
function withdraw(uint256 _pid, uint256 _amount) public {
PoolInfo storage pool = poolInfo[_pid];
(address stakingRewardsAddress, ) = stakingRewardsFactory.stakingRewardsInfoByStakingToken(address(pool.lpToken));
UserInfo storage user = userInfo[_pid][msg.sender];
require(user.amount >= _amount, "withdraw: not good");
updatePool(_pid);
uint256 pending = user.amount.mul(pool.accYieldXPerShare).div(1e12).sub(user.rewardDebt);
if(pending > 0) {
safeYieldXTransfer(msg.sender, pending);
}
if(_amount > 0) {
user.amount = user.amount.sub(_amount);
if (stakingRewardsAddress != address(0)) {
StakingRewards stakingRewards = StakingRewards(stakingRewardsAddress);
stakingRewards.withdraw(_amount);
}
pool.lpToken.safeTransfer(address(msg.sender), _amount);
}
user.rewardDebt = user.amount.mul(pool.accYieldXPerShare).div(1e12);
emit Withdraw(msg.sender, _pid, _amount);
}
// Withdraw without caring about rewards. EMERGENCY ONLY.
function emergencyWithdraw(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
pool.lpToken.safeTransfer(address(msg.sender), user.amount);
emit EmergencyWithdraw(msg.sender, _pid, user.amount);
user.amount = 0;
user.rewardDebt = 0;
}
// Safe yieldx transfer function, just in case if rounding error causes pool to not have enough YieldXs.
function safeYieldXTransfer(address _to, uint256 _amount) internal {
_amount = min(_amount, yieldx.balanceOf(address(this)));
yieldx.transfer(_to, _amount);
address refereeAddress = addressToRefereeAddress[_to];
if (refereeAddress != address(0)) {
uint256 refereeReward = _amount.div(10);
yieldx.mint(refereeAddress, refereeReward);
addressToNumYieldXViaReferral[refereeAddress] = addressToNumYieldXViaReferral[refereeAddress].add(refereeReward);
}
}
// Update dev address by the previous dev.
function dev(address _devaddr) public {
require(msg.sender == devaddr, "dev: wut?");
devaddr = _devaddr;
}
}
{
"compilationTarget": {
"HeadFarmer.sol": "HeadFarmer"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"contract YieldXToken","name":"_yieldx","type":"address"},{"internalType":"address","name":"_devaddr","type":"address"},{"internalType":"address","name":"_baraddr","type":"address"},{"internalType":"contract StakingRewardsFactory","name":"_stakingRewardsFactory","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EmergencyWithdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"BLOCK_BOUNDRY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"BONUS_MULTIPLIERS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"INITIAL_DEV_VESTING_NUM_INSTALMENTS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"INITIAL_DEV_VESTING_PERIOD_LENGTH","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"INITIAL_DEV_VESTING_START_BLOCK","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"YIELDX_PER_BLOCK","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_allocPoint","type":"uint256"},{"internalType":"contract IERC20","name":"_lpToken","type":"address"},{"internalType":"bool","name":"_withUpdate","type":"bool"}],"name":"add","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"addressToNumReferrals","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"addressToNumYieldXViaReferral","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"addressToRefereeAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"addressToReferralCode","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baraddr","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"period","type":"uint256"}],"name":"claimDevFund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"claimedDevFund","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"string","name":"_referralCode","type":"string"},{"internalType":"string","name":"_refereeCode","type":"string"}],"name":"depositWithReferralCode","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_devaddr","type":"address"}],"name":"dev","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"devaddr","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"emergencyWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_from","type":"uint256"},{"internalType":"uint256","name":"_to","type":"uint256"}],"name":"getMultiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_from","type":"uint256"},{"internalType":"uint256","name":"_to","type":"uint256"}],"name":"getMultiplierForInitialPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"hasExtraReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initialDevFund","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"massUpdatePools","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"migrate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"migrator","outputs":[{"internalType":"contract IMigratorHead","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"address","name":"_user","type":"address"}],"name":"pendingReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"address","name":"_user","type":"address"}],"name":"pendingYieldX","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"poolInfo","outputs":[{"internalType":"contract IERC20","name":"lpToken","type":"address"},{"internalType":"uint256","name":"allocPoint","type":"uint256"},{"internalType":"uint256","name":"lastRewardBlock","type":"uint256"},{"internalType":"uint256","name":"accYieldXPerShare","type":"uint256"},{"internalType":"uint256","name":"lastUpdateTime","type":"uint256"},{"internalType":"uint256","name":"rewardPerTokenStored","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"","type":"string"}],"name":"referralCodeToAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_allocPoint","type":"uint256"},{"internalType":"bool","name":"_withUpdate","type":"bool"}],"name":"set","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IMigratorHead","name":"_migrator","type":"address"}],"name":"setMigrator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_year5BlockBoundary","type":"uint256"}],"name":"setYear5BlockBoundary","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stakingRewardsFactory","outputs":[{"internalType":"contract StakingRewardsFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAllocPoint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"updatePool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"userInfo","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"rewardDebt","type":"uint256"},{"internalType":"uint256","name":"userRewardPerTokenPaid","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"yieldx","outputs":[{"internalType":"contract YieldXToken","name":"","type":"address"}],"stateMutability":"view","type":"function"}]