// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
/**
* @title WormholeRelayer
* @author
* @notice This project allows developers to build cross-chain applications powered by Wormhole without needing to
* write and run their own relaying infrastructure
*
* We implement the IWormholeRelayer interface that allows users to request a delivery provider to relay a payload (and/or additional VAAs)
* to a chain and address of their choice.
*/
/**
* @notice VaaKey identifies a wormhole message
*
* @custom:member chainId Wormhole chain ID of the chain where this VAA was emitted from
* @custom:member emitterAddress Address of the emitter of the VAA, in Wormhole bytes32 format
* @custom:member sequence Sequence number of the VAA
*/
struct VaaKey {
uint16 chainId;
bytes32 emitterAddress;
uint64 sequence;
}
interface IWormholeRelayerBase {
event SendEvent(uint64 indexed sequence, uint256 deliveryQuote, uint256 paymentForExtraReceiverValue);
function getRegisteredWormholeRelayerContract(uint16 chainId) external view returns (bytes32);
}
/**
* @title IWormholeRelayerSend
* @notice The interface to request deliveries
*/
interface IWormholeRelayerSend is IWormholeRelayerBase {
/**
* @notice Publishes an instruction for the default delivery provider
* to relay a payload to the address `targetAddress` on chain `targetChain`
* with gas limit `gasLimit` and `msg.value` equal to `receiverValue`
*
* `targetAddress` must implement the IWormholeReceiver interface
*
* This function must be called with `msg.value` equal to `quoteEVMDeliveryPrice(targetChain, receiverValue, gasLimit)`
*
* Any refunds (from leftover gas) will be paid to the delivery provider. In order to receive the refunds, use the `sendPayloadToEvm` function
* with `refundChain` and `refundAddress` as parameters
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver)
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param gasLimit gas limit with which to call `targetAddress`.
* @return sequence sequence number of published VAA containing delivery instructions
*/
function sendPayloadToEvm(
uint16 targetChain,
address targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 gasLimit
) external payable returns (uint64 sequence);
/**
* @notice Publishes an instruction for the default delivery provider
* to relay a payload to the address `targetAddress` on chain `targetChain`
* with gas limit `gasLimit` and `msg.value` equal to `receiverValue`
*
* Any refunds (from leftover gas) will be sent to `refundAddress` on chain `refundChain`
* `targetAddress` must implement the IWormholeReceiver interface
*
* This function must be called with `msg.value` equal to `quoteEVMDeliveryPrice(targetChain, receiverValue, gasLimit)`
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver)
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param gasLimit gas limit with which to call `targetAddress`. Any units of gas unused will be refunded according to the
* `targetChainRefundPerGasUnused` rate quoted by the delivery provider
* @param refundChain The chain to deliver any refund to, in Wormhole Chain ID format
* @param refundAddress The address on `refundChain` to deliver any refund to
* @return sequence sequence number of published VAA containing delivery instructions
*/
function sendPayloadToEvm(
uint16 targetChain,
address targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 gasLimit,
uint16 refundChain,
address refundAddress
) external payable returns (uint64 sequence);
/**
* @notice Publishes an instruction for the default delivery provider
* to relay a payload and VAAs specified by `vaaKeys` to the address `targetAddress` on chain `targetChain`
* with gas limit `gasLimit` and `msg.value` equal to `receiverValue`
*
* `targetAddress` must implement the IWormholeReceiver interface
*
* This function must be called with `msg.value` equal to `quoteEVMDeliveryPrice(targetChain, receiverValue, gasLimit)`
*
* Any refunds (from leftover gas) will be paid to the delivery provider. In order to receive the refunds, use the `sendVaasToEvm` function
* with `refundChain` and `refundAddress` as parameters
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver)
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param gasLimit gas limit with which to call `targetAddress`.
* @param vaaKeys Additional VAAs to pass in as parameter in call to `targetAddress`
* @return sequence sequence number of published VAA containing delivery instructions
*/
function sendVaasToEvm(
uint16 targetChain,
address targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 gasLimit,
VaaKey[] memory vaaKeys
) external payable returns (uint64 sequence);
/**
* @notice Publishes an instruction for the default delivery provider
* to relay a payload and VAAs specified by `vaaKeys` to the address `targetAddress` on chain `targetChain`
* with gas limit `gasLimit` and `msg.value` equal to `receiverValue`
*
* Any refunds (from leftover gas) will be sent to `refundAddress` on chain `refundChain`
* `targetAddress` must implement the IWormholeReceiver interface
*
* This function must be called with `msg.value` equal to `quoteEVMDeliveryPrice(targetChain, receiverValue, gasLimit)`
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver)
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param gasLimit gas limit with which to call `targetAddress`. Any units of gas unused will be refunded according to the
* `targetChainRefundPerGasUnused` rate quoted by the delivery provider
* @param vaaKeys Additional VAAs to pass in as parameter in call to `targetAddress`
* @param refundChain The chain to deliver any refund to, in Wormhole Chain ID format
* @param refundAddress The address on `refundChain` to deliver any refund to
* @return sequence sequence number of published VAA containing delivery instructions
*/
function sendVaasToEvm(
uint16 targetChain,
address targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 gasLimit,
VaaKey[] memory vaaKeys,
uint16 refundChain,
address refundAddress
) external payable returns (uint64 sequence);
/**
* @notice Publishes an instruction for the delivery provider at `deliveryProviderAddress`
* to relay a payload and VAAs specified by `vaaKeys` to the address `targetAddress` on chain `targetChain`
* with gas limit `gasLimit` and `msg.value` equal to
* receiverValue + (arbitrary amount that is paid for by paymentForExtraReceiverValue of this chain's wei) in targetChain wei.
*
* Any refunds (from leftover gas) will be sent to `refundAddress` on chain `refundChain`
* `targetAddress` must implement the IWormholeReceiver interface
*
* This function must be called with `msg.value` equal to
* quoteEVMDeliveryPrice(targetChain, receiverValue, gasLimit, deliveryProviderAddress) + paymentForExtraReceiverValue
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver)
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param paymentForExtraReceiverValue amount (in current chain currency units) to spend on extra receiverValue
* (in addition to the `receiverValue` specified)
* @param gasLimit gas limit with which to call `targetAddress`. Any units of gas unused will be refunded according to the
* `targetChainRefundPerGasUnused` rate quoted by the delivery provider
* @param refundChain The chain to deliver any refund to, in Wormhole Chain ID format
* @param refundAddress The address on `refundChain` to deliver any refund to
* @param deliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @param vaaKeys Additional VAAs to pass in as parameter in call to `targetAddress`
* @param consistencyLevel Consistency level with which to publish the delivery instructions - see
* https://book.wormhole.com/wormhole/3_coreLayerContracts.html?highlight=consistency#consistency-levels
* @return sequence sequence number of published VAA containing delivery instructions
*/
function sendToEvm(
uint16 targetChain,
address targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 paymentForExtraReceiverValue,
uint256 gasLimit,
uint16 refundChain,
address refundAddress,
address deliveryProviderAddress,
VaaKey[] memory vaaKeys,
uint8 consistencyLevel
) external payable returns (uint64 sequence);
/**
* @notice Publishes an instruction for the delivery provider at `deliveryProviderAddress`
* to relay a payload and VAAs specified by `vaaKeys` to the address `targetAddress` on chain `targetChain`
* with `msg.value` equal to
* receiverValue + (arbitrary amount that is paid for by paymentForExtraReceiverValue of this chain's wei) in targetChain wei.
*
* Any refunds (from leftover gas) will be sent to `refundAddress` on chain `refundChain`
* `targetAddress` must implement the IWormholeReceiver interface
*
* This function must be called with `msg.value` equal to
* quoteDeliveryPrice(targetChain, receiverValue, encodedExecutionParameters, deliveryProviderAddress) + paymentForExtraReceiverValue
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver), in Wormhole bytes32 format
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param paymentForExtraReceiverValue amount (in current chain currency units) to spend on extra receiverValue
* (in addition to the `receiverValue` specified)
* @param encodedExecutionParameters encoded information on how to execute delivery that may impact pricing
* e.g. for version EVM_V1, this is a struct that encodes the `gasLimit` with which to call `targetAddress`
* @param refundChain The chain to deliver any refund to, in Wormhole Chain ID format
* @param refundAddress The address on `refundChain` to deliver any refund to, in Wormhole bytes32 format
* @param deliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @param vaaKeys Additional VAAs to pass in as parameter in call to `targetAddress`
* @param consistencyLevel Consistency level with which to publish the delivery instructions - see
* https://book.wormhole.com/wormhole/3_coreLayerContracts.html?highlight=consistency#consistency-levels
* @return sequence sequence number of published VAA containing delivery instructions
*/
function send(
uint16 targetChain,
bytes32 targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 paymentForExtraReceiverValue,
bytes memory encodedExecutionParameters,
uint16 refundChain,
bytes32 refundAddress,
address deliveryProviderAddress,
VaaKey[] memory vaaKeys,
uint8 consistencyLevel
) external payable returns (uint64 sequence);
/**
* @notice Performs the same function as a `send`, except:
* 1) Can only be used during a delivery (i.e. in execution of `receiveWormholeMessages`)
* 2) Is paid for (along with any other calls to forward) by (any msg.value passed in) + (refund leftover from current delivery)
* 3) Only executes after `receiveWormholeMessages` is completed (and thus does not return a sequence number)
*
* The refund from the delivery currently in progress will not be sent to the user; it will instead
* be paid to the delivery provider to perform the instruction specified here
*
* Publishes an instruction for the same delivery provider (or default, if the same one doesn't support the new target chain)
* to relay a payload to the address `targetAddress` on chain `targetChain`
* with gas limit `gasLimit` and with `msg.value` equal to `receiverValue`
*
* The following equation must be satisfied (sum_f indicates summing over all forwards requested in `receiveWormholeMessages`):
* (refund amount from current execution of receiveWormholeMessages) + sum_f [msg.value_f]
* >= sum_f [quoteEVMDeliveryPrice(targetChain_f, receiverValue_f, gasLimit_f)]
*
* The difference between the two sides of the above inequality will be added to `paymentForExtraReceiverValue` of the first forward requested
*
* Any refunds (from leftover gas) from this forward will be paid to the same refundChain and refundAddress specified for the current delivery.
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver), in Wormhole bytes32 format
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param gasLimit gas limit with which to call `targetAddress`.
*/
function forwardPayloadToEvm(
uint16 targetChain,
address targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 gasLimit
) external payable;
/**
* @notice Performs the same function as a `send`, except:
* 1) Can only be used during a delivery (i.e. in execution of `receiveWormholeMessages`)
* 2) Is paid for (along with any other calls to forward) by (any msg.value passed in) + (refund leftover from current delivery)
* 3) Only executes after `receiveWormholeMessages` is completed (and thus does not return a sequence number)
*
* The refund from the delivery currently in progress will not be sent to the user; it will instead
* be paid to the delivery provider to perform the instruction specified here
*
* Publishes an instruction for the same delivery provider (or default, if the same one doesn't support the new target chain)
* to relay a payload and VAAs specified by `vaaKeys` to the address `targetAddress` on chain `targetChain`
* with gas limit `gasLimit` and with `msg.value` equal to `receiverValue`
*
* The following equation must be satisfied (sum_f indicates summing over all forwards requested in `receiveWormholeMessages`):
* (refund amount from current execution of receiveWormholeMessages) + sum_f [msg.value_f]
* >= sum_f [quoteEVMDeliveryPrice(targetChain_f, receiverValue_f, gasLimit_f)]
*
* The difference between the two sides of the above inequality will be added to `paymentForExtraReceiverValue` of the first forward requested
*
* Any refunds (from leftover gas) from this forward will be paid to the same refundChain and refundAddress specified for the current delivery.
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver), in Wormhole bytes32 format
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param gasLimit gas limit with which to call `targetAddress`.
* @param vaaKeys Additional VAAs to pass in as parameter in call to `targetAddress`
*/
function forwardVaasToEvm(
uint16 targetChain,
address targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 gasLimit,
VaaKey[] memory vaaKeys
) external payable;
/**
* @notice Performs the same function as a `send`, except:
* 1) Can only be used during a delivery (i.e. in execution of `receiveWormholeMessages`)
* 2) Is paid for (along with any other calls to forward) by (any msg.value passed in) + (refund leftover from current delivery)
* 3) Only executes after `receiveWormholeMessages` is completed (and thus does not return a sequence number)
*
* The refund from the delivery currently in progress will not be sent to the user; it will instead
* be paid to the delivery provider to perform the instruction specified here
*
* Publishes an instruction for the delivery provider at `deliveryProviderAddress`
* to relay a payload and VAAs specified by `vaaKeys` to the address `targetAddress` on chain `targetChain`
* with gas limit `gasLimit` and with `msg.value` equal to
* receiverValue + (arbitrary amount that is paid for by paymentForExtraReceiverValue of this chain's wei) in targetChain wei.
*
* Any refunds (from leftover gas) will be sent to `refundAddress` on chain `refundChain`
* `targetAddress` must implement the IWormholeReceiver interface
*
* The following equation must be satisfied (sum_f indicates summing over all forwards requested in `receiveWormholeMessages`):
* (refund amount from current execution of receiveWormholeMessages) + sum_f [msg.value_f]
* >= sum_f [quoteEVMDeliveryPrice(targetChain_f, receiverValue_f, gasLimit_f, deliveryProviderAddress_f) + paymentForExtraReceiverValue_f]
*
* The difference between the two sides of the above inequality will be added to `paymentForExtraReceiverValue` of the first forward requested
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver), in Wormhole bytes32 format
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param paymentForExtraReceiverValue amount (in current chain currency units) to spend on extra receiverValue
* (in addition to the `receiverValue` specified)
* @param gasLimit gas limit with which to call `targetAddress`. Any units of gas unused will be refunded according to the
* `targetChainRefundPerGasUnused` rate quoted by the delivery provider
* @param refundChain The chain to deliver any refund to, in Wormhole Chain ID format
* @param refundAddress The address on `refundChain` to deliver any refund to, in Wormhole bytes32 format
* @param deliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @param vaaKeys Additional VAAs to pass in as parameter in call to `targetAddress`
* @param consistencyLevel Consistency level with which to publish the delivery instructions - see
* https://book.wormhole.com/wormhole/3_coreLayerContracts.html?highlight=consistency#consistency-levels
*/
function forwardToEvm(
uint16 targetChain,
address targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 paymentForExtraReceiverValue,
uint256 gasLimit,
uint16 refundChain,
address refundAddress,
address deliveryProviderAddress,
VaaKey[] memory vaaKeys,
uint8 consistencyLevel
) external payable;
/**
* @notice Performs the same function as a `send`, except:
* 1) Can only be used during a delivery (i.e. in execution of `receiveWormholeMessages`)
* 2) Is paid for (along with any other calls to forward) by (any msg.value passed in) + (refund leftover from current delivery)
* 3) Only executes after `receiveWormholeMessages` is completed (and thus does not return a sequence number)
*
* The refund from the delivery currently in progress will not be sent to the user; it will instead
* be paid to the delivery provider to perform the instruction specified here
*
* Publishes an instruction for the delivery provider at `deliveryProviderAddress`
* to relay a payload and VAAs specified by `vaaKeys` to the address `targetAddress` on chain `targetChain`
* with `msg.value` equal to
* receiverValue + (arbitrary amount that is paid for by paymentForExtraReceiverValue of this chain's wei) in targetChain wei.
*
* Any refunds (from leftover gas) will be sent to `refundAddress` on chain `refundChain`
* `targetAddress` must implement the IWormholeReceiver interface
*
* The following equation must be satisfied (sum_f indicates summing over all forwards requested in `receiveWormholeMessages`):
* (refund amount from current execution of receiveWormholeMessages) + sum_f [msg.value_f]
* >= sum_f [quoteDeliveryPrice(targetChain_f, receiverValue_f, encodedExecutionParameters_f, deliveryProviderAddress_f) + paymentForExtraReceiverValue_f]
*
* The difference between the two sides of the above inequality will be added to `paymentForExtraReceiverValue` of the first forward requested
*
* @param targetChain in Wormhole Chain ID format
* @param targetAddress address to call on targetChain (that implements IWormholeReceiver), in Wormhole bytes32 format
* @param payload arbitrary bytes to pass in as parameter in call to `targetAddress`
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param paymentForExtraReceiverValue amount (in current chain currency units) to spend on extra receiverValue
* (in addition to the `receiverValue` specified)
* @param encodedExecutionParameters encoded information on how to execute delivery that may impact pricing
* e.g. for version EVM_V1, this is a struct that encodes the `gasLimit` with which to call `targetAddress`
* @param refundChain The chain to deliver any refund to, in Wormhole Chain ID format
* @param refundAddress The address on `refundChain` to deliver any refund to, in Wormhole bytes32 format
* @param deliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @param vaaKeys Additional VAAs to pass in as parameter in call to `targetAddress`
* @param consistencyLevel Consistency level with which to publish the delivery instructions - see
* https://book.wormhole.com/wormhole/3_coreLayerContracts.html?highlight=consistency#consistency-levels
*/
function forward(
uint16 targetChain,
bytes32 targetAddress,
bytes memory payload,
uint256 receiverValue,
uint256 paymentForExtraReceiverValue,
bytes memory encodedExecutionParameters,
uint16 refundChain,
bytes32 refundAddress,
address deliveryProviderAddress,
VaaKey[] memory vaaKeys,
uint8 consistencyLevel
) external payable;
/**
* @notice Requests a previously published delivery instruction to be redelivered
* (e.g. with a different delivery provider)
*
* This function must be called with `msg.value` equal to
* quoteEVMDeliveryPrice(targetChain, newReceiverValue, newGasLimit, newDeliveryProviderAddress)
*
* @notice *** This will only be able to succeed if the following is true **
* - newGasLimit >= gas limit of the old instruction
* - newReceiverValue >= receiver value of the old instruction
* - newDeliveryProvider's `targetChainRefundPerGasUnused` >= old relay provider's `targetChainRefundPerGasUnused`
*
* @param deliveryVaaKey VaaKey identifying the wormhole message containing the
* previously published delivery instructions
* @param targetChain The target chain that the original delivery targeted. Must match targetChain from original delivery instructions
* @param newReceiverValue new msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param newGasLimit gas limit with which to call `targetAddress`. Any units of gas unused will be refunded according to the
* `targetChainRefundPerGasUnused` rate quoted by the delivery provider, to the refund chain and address specified in the original request
* @param newDeliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @return sequence sequence number of published VAA containing redelivery instructions
*
* @notice *** This will only be able to succeed if the following is true **
* - newGasLimit >= gas limit of the old instruction
* - newReceiverValue >= receiver value of the old instruction
* - newDeliveryProvider's `targetChainRefundPerGasUnused` >= old relay provider's `targetChainRefundPerGasUnused`
*/
function resendToEvm(
VaaKey memory deliveryVaaKey,
uint16 targetChain,
uint256 newReceiverValue,
uint256 newGasLimit,
address newDeliveryProviderAddress
) external payable returns (uint64 sequence);
/**
* @notice Requests a previously published delivery instruction to be redelivered
*
*
* This function must be called with `msg.value` equal to
* quoteDeliveryPrice(targetChain, newReceiverValue, newEncodedExecutionParameters, newDeliveryProviderAddress)
*
* @param deliveryVaaKey VaaKey identifying the wormhole message containing the
* previously published delivery instructions
* @param targetChain The target chain that the original delivery targeted. Must match targetChain from original delivery instructions
* @param newReceiverValue new msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param newEncodedExecutionParameters new encoded information on how to execute delivery that may impact pricing
* e.g. for version EVM_V1, this is a struct that encodes the `gasLimit` with which to call `targetAddress`
* @param newDeliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @return sequence sequence number of published VAA containing redelivery instructions
*
* @notice *** This will only be able to succeed if the following is true **
* - (For EVM_V1) newGasLimit >= gas limit of the old instruction
* - newReceiverValue >= receiver value of the old instruction
* - (For EVM_V1) newDeliveryProvider's `targetChainRefundPerGasUnused` >= old relay provider's `targetChainRefundPerGasUnused`
*/
function resend(
VaaKey memory deliveryVaaKey,
uint16 targetChain,
uint256 newReceiverValue,
bytes memory newEncodedExecutionParameters,
address newDeliveryProviderAddress
) external payable returns (uint64 sequence);
/**
* @notice Returns the price to request a relay to chain `targetChain`, using the default delivery provider
*
* @param targetChain in Wormhole Chain ID format
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param gasLimit gas limit with which to call `targetAddress`.
* @return nativePriceQuote Price, in units of current chain currency, that the delivery provider charges to perform the relay
* @return targetChainRefundPerGasUnused amount of target chain currency that will be refunded per unit of gas unused,
* if a refundAddress is specified
*/
function quoteEVMDeliveryPrice(uint16 targetChain, uint256 receiverValue, uint256 gasLimit)
external
view
returns (uint256 nativePriceQuote, uint256 targetChainRefundPerGasUnused);
/**
* @notice Returns the price to request a relay to chain `targetChain`, using delivery provider `deliveryProviderAddress`
*
* @param targetChain in Wormhole Chain ID format
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param gasLimit gas limit with which to call `targetAddress`.
* @param deliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @return nativePriceQuote Price, in units of current chain currency, that the delivery provider charges to perform the relay
* @return targetChainRefundPerGasUnused amount of target chain currency that will be refunded per unit of gas unused,
* if a refundAddress is specified
*/
function quoteEVMDeliveryPrice(
uint16 targetChain,
uint256 receiverValue,
uint256 gasLimit,
address deliveryProviderAddress
) external view returns (uint256 nativePriceQuote, uint256 targetChainRefundPerGasUnused);
/**
* @notice Returns the price to request a relay to chain `targetChain`, using delivery provider `deliveryProviderAddress`
*
* @param targetChain in Wormhole Chain ID format
* @param receiverValue msg.value that delivery provider should pass in for call to `targetAddress` (in targetChain currency units)
* @param encodedExecutionParameters encoded information on how to execute delivery that may impact pricing
* e.g. for version EVM_V1, this is a struct that encodes the `gasLimit` with which to call `targetAddress`
* @param deliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @return nativePriceQuote Price, in units of current chain currency, that the delivery provider charges to perform the relay
* @return encodedExecutionInfo encoded information on how the delivery will be executed
* e.g. for version EVM_V1, this is a struct that encodes the `gasLimit` and `targetChainRefundPerGasUnused`
* (which is the amount of target chain currency that will be refunded per unit of gas unused,
* if a refundAddress is specified)
*/
function quoteDeliveryPrice(
uint16 targetChain,
uint256 receiverValue,
bytes memory encodedExecutionParameters,
address deliveryProviderAddress
) external view returns (uint256 nativePriceQuote, bytes memory encodedExecutionInfo);
/**
* @notice Returns the (extra) amount of target chain currency that `targetAddress`
* will be called with, if the `paymentForExtraReceiverValue` field is set to `currentChainAmount`
*
* @param targetChain in Wormhole Chain ID format
* @param currentChainAmount The value that `paymentForExtraReceiverValue` will be set to
* @param deliveryProviderAddress The address of the desired delivery provider's implementation of IDeliveryProvider
* @return targetChainAmount The amount such that if `targetAddress` will be called with `msg.value` equal to
* receiverValue + targetChainAmount
*/
function quoteNativeForChain(uint16 targetChain, uint256 currentChainAmount, address deliveryProviderAddress)
external
view
returns (uint256 targetChainAmount);
/**
* @notice Returns the address of the current default delivery provider
* @return deliveryProvider The address of (the default delivery provider)'s contract on this source
* chain. This must be a contract that implements IDeliveryProvider.
*/
function getDefaultDeliveryProvider() external view returns (address deliveryProvider);
}
/**
* @title IWormholeRelayerDelivery
* @notice The interface to execute deliveries. Only relevant for Delivery Providers
*/
interface IWormholeRelayerDelivery is IWormholeRelayerBase {
enum DeliveryStatus {
SUCCESS,
RECEIVER_FAILURE,
FORWARD_REQUEST_FAILURE,
FORWARD_REQUEST_SUCCESS
}
enum RefundStatus {
REFUND_SENT,
REFUND_FAIL,
CROSS_CHAIN_REFUND_SENT,
CROSS_CHAIN_REFUND_FAIL_PROVIDER_NOT_SUPPORTED,
CROSS_CHAIN_REFUND_FAIL_NOT_ENOUGH
}
/**
* @custom:member recipientContract - The target contract address
* @custom:member sourceChain - The chain which this delivery was requested from (in wormhole
* ChainID format)
* @custom:member sequence - The wormhole sequence number of the delivery VAA on the source chain
* corresponding to this delivery request
* @custom:member deliveryVaaHash - The hash of the delivery VAA corresponding to this delivery
* request
* @custom:member gasUsed - The amount of gas that was used to call your target contract
* @custom:member status:
* - RECEIVER_FAILURE, if the target contract reverts
* - SUCCESS, if the target contract doesn't revert and no forwards were requested
* - FORWARD_REQUEST_FAILURE, if the target contract doesn't revert, forwards were requested,
* but provided/leftover funds were not sufficient to cover them all
* - FORWARD_REQUEST_SUCCESS, if the target contract doesn't revert and all forwards are covered
* @custom:member additionalStatusInfo:
* - If status is SUCCESS or FORWARD_REQUEST_SUCCESS, then this is empty.
* - If status is RECEIVER_FAILURE, this is `RETURNDATA_TRUNCATION_THRESHOLD` bytes of the
* return data (i.e. potentially truncated revert reason information).
* - If status is FORWARD_REQUEST_FAILURE, this is also the revert data - the reason the forward failed.
* This will be either an encoded Cancelled, DeliveryProviderReverted, or DeliveryProviderPaymentFailed error
* @custom:member refundStatus - Result of the refund. REFUND_SUCCESS or REFUND_FAIL are for
* refunds where targetChain=refundChain; the others are for targetChain!=refundChain,
* where a cross chain refund is necessary
* @custom:member overridesInfo:
* - If not an override: empty bytes array
* - Otherwise: An encoded `DeliveryOverride`
*/
event Delivery(
address indexed recipientContract,
uint16 indexed sourceChain,
uint64 indexed sequence,
bytes32 deliveryVaaHash,
DeliveryStatus status,
uint256 gasUsed,
RefundStatus refundStatus,
bytes additionalStatusInfo,
bytes overridesInfo
);
/**
* @notice The delivery provider calls `deliver` to relay messages as described by one delivery instruction
*
* The delivery provider must pass in the specified (by VaaKeys[]) signed wormhole messages (VAAs) from the source chain
* as well as the signed wormhole message with the delivery instructions (the delivery VAA)
*
* The messages will be relayed to the target address (with the specified gas limit and receiver value) iff the following checks are met:
* - the delivery VAA has a valid signature
* - the delivery VAA's emitter is one of these WormholeRelayer contracts
* - the delivery provider passed in at least enough of this chain's currency as msg.value (enough meaning the maximum possible refund)
* - the instruction's target chain is this chain
* - the relayed signed VAAs match the descriptions in container.messages (the VAA hashes match, or the emitter address, sequence number pair matches, depending on the description given)
*
* @param encodedVMs - An array of signed wormhole messages (all from the same source chain
* transaction)
* @param encodedDeliveryVAA - Signed wormhole message from the source chain's WormholeRelayer
* contract with payload being the encoded delivery instruction container
* @param relayerRefundAddress - The address to which any refunds to the delivery provider
* should be sent
* @param deliveryOverrides - Optional overrides field which must be either an empty bytes array or
* an encoded DeliveryOverride struct
*/
function deliver(
bytes[] memory encodedVMs,
bytes memory encodedDeliveryVAA,
address payable relayerRefundAddress,
bytes memory deliveryOverrides
) external payable;
}
interface IWormholeRelayer is IWormholeRelayerDelivery, IWormholeRelayerSend {}
/*
* Errors thrown by IWormholeRelayer contract
*/
// Bound chosen by the following formula: `memoryWord * 4 + selectorSize`.
// This means that an error identifier plus four fixed size arguments should be available to developers.
// In the case of a `require` revert with error message, this should provide 2 memory word's worth of data.
uint256 constant RETURNDATA_TRUNCATION_THRESHOLD = 132;
//When msg.value was not equal to `delivery provider's quoted delivery price` + `paymentForExtraReceiverValue`
error InvalidMsgValue(uint256 msgValue, uint256 totalFee);
error RequestedGasLimitTooLow();
error DeliveryProviderDoesNotSupportTargetChain(address relayer, uint16 chainId);
error DeliveryProviderCannotReceivePayment();
//When calling `forward()` on the WormholeRelayer if no delivery is in progress
error NoDeliveryInProgress();
//When calling `delivery()` a second time even though a delivery is already in progress
error ReentrantDelivery(address msgSender, address lockedBy);
//When any other contract but the delivery target calls `forward()` on the WormholeRelayer while a
// delivery is in progress
error ForwardRequestFromWrongAddress(address msgSender, address deliveryTarget);
error InvalidPayloadId(uint8 parsed, uint8 expected);
error InvalidPayloadLength(uint256 received, uint256 expected);
error InvalidVaaKeyType(uint8 parsed);
error InvalidDeliveryVaa(string reason);
//When the delivery VAA (signed wormhole message with delivery instructions) was not emitted by the
// registered WormholeRelayer contract
error InvalidEmitter(bytes32 emitter, bytes32 registered, uint16 chainId);
error VaaKeysLengthDoesNotMatchVaasLength(uint256 keys, uint256 vaas);
error VaaKeysDoNotMatchVaas(uint8 index);
//When someone tries to call an external function of the WormholeRelayer that is only intended to be
// called by the WormholeRelayer itself (to allow retroactive reverts for atomicity)
error RequesterNotWormholeRelayer();
//When trying to relay a `DeliveryInstruction` to any other chain but the one it was specified for
error TargetChainIsNotThisChain(uint16 targetChain);
error ForwardNotSufficientlyFunded(uint256 amountOfFunds, uint256 amountOfFundsNeeded);
//When a `DeliveryOverride` contains a gas limit that's less than the original
error InvalidOverrideGasLimit();
//When a `DeliveryOverride` contains a receiver value that's less than the original
error InvalidOverrideReceiverValue();
//When a `DeliveryOverride` contains a 'refund per unit of gas unused' that's less than the original
error InvalidOverrideRefundPerGasUnused();
//When the delivery provider doesn't pass in sufficient funds (i.e. msg.value does not cover the
// maximum possible refund to the user)
error InsufficientRelayerFunds(uint256 msgValue, uint256 minimum);
//When a bytes32 field can't be converted into a 20 byte EVM address, because the 12 padding bytes
// are non-zero (duplicated from Utils.sol)
error NotAnEvmAddress(bytes32);
/**
* @notice Interface for a contract which can receive Wormhole messages.
*/
interface IWormholeReceiver {
/**
* @notice When a `send` is performed with this contract as the target, this function will be
* invoked by the WormholeRelayer contract
*
* NOTE: This function should be restricted such that only the Wormhole Relayer contract can call it.
*
* We also recommend that this function:
* - Stores all received `deliveryHash`s in a mapping `(bytes32 => bool)`, and
* on every call, checks that deliveryHash has not already been stored in the
* map (This is to prevent other users maliciously trying to relay the same message)
* - Checks that `sourceChain` and `sourceAddress` are indeed who
* you expect to have requested the calling of `send` or `forward` on the source chain
*
* The invocation of this function corresponding to the `send` request will have msg.value equal
* to the receiverValue specified in the send request.
*
* If the invocation of this function reverts or exceeds the gas limit
* specified by the send requester, this delivery will result in a `ReceiverFailure`.
*
* @param payload - an arbitrary message which was included in the delivery by the
* requester.
* @param additionalVaas - Additional VAAs which were requested to be included in this delivery.
* They are guaranteed to all be included and in the same order as was specified in the
* delivery request.
* @param sourceAddress - the (wormhole format) address on the sending chain which requested
* this delivery.
* @param sourceChain - the wormhole chain ID where this delivery was requested.
* @param deliveryHash - the VAA hash of the deliveryVAA.
*
* NOTE: These signedVaas are NOT verified by the Wormhole core contract prior to being provided
* to this call. Always make sure `parseAndVerify()` is called on the Wormhole core contract
* before trusting the content of a raw VAA, otherwise the VAA may be invalid or malicious.
*/
function receiveWormholeMessages(
bytes memory payload,
bytes[] memory additionalVaas,
bytes32 sourceAddress,
uint16 sourceChain,
bytes32 deliveryHash
) external payable;
}
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized != type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}
interface IVault {
function deposit(uint256 amount) external;
function withdraw(address to, uint256 amount) external;
}
contract CbyWormholeBridge is IWormholeReceiver, Ownable, Initializable {
IWormholeRelayer public immutable wormholeRelayer;
IVault public vault;
IERC20 public cby;
mapping(bytes32 => bool) public seenDeliveryVaaHashes;
uint256 constant MIN_GAS_LIMIT = 300_000;
uint256 constant MAX_GAS_LIMIT = 30_000_000;
address public crossChainCounterParty;
uint16 public crossChainId;
event Deposit(address indexed from, uint256 amount);
event Withdraw(address indexed to, uint256 amount);
constructor(address _wormholeRelayer) Ownable() {
wormholeRelayer = IWormholeRelayer(_wormholeRelayer);
}
function initialize(
address _vault,
address _cby,
address _crossChainCounterParty,
uint16 _crossChainId
) external onlyOwner initializer {
require(_vault != address(0), "Vault cannot be zero");
require(_cby != address(0), "CBY cannot be zero");
require(_crossChainCounterParty != address(0), "CrossChainCounterparty cannot be zero");
require(_crossChainId != 0, "CrossChainId cannot be zero");
vault = IVault(_vault);
cby = IERC20(_cby);
crossChainCounterParty = _crossChainCounterParty;
crossChainId = _crossChainId;
}
function quoteCrossChainCall(uint16 targetChain, uint256 extraGasLimit) public view returns (uint256 cost) {
(cost,) = wormholeRelayer.quoteEVMDeliveryPrice(targetChain, 0, MIN_GAS_LIMIT + extraGasLimit);
}
function sendCrossChainDeposit(
address receiver,
uint256 amount,
uint256 extraGasLimit
) public payable {
require(crossChainId != 0, "CrossChainId not set");
require(crossChainCounterParty != address(0), "CrossChainCounterParty not set");
require(receiver != address(0), "Receiver cannot be zero");
require(amount > 0, "Amount cannot be zero");
require(MIN_GAS_LIMIT + extraGasLimit <= MAX_GAS_LIMIT, "Gas limit too high");
uint256 cost = quoteCrossChainCall(crossChainId, extraGasLimit);
require(msg.value >= cost);
require(cby.transferFrom(msg.sender, address(this), amount));
cby.approve(address(vault), amount);
vault.deposit(amount);
wormholeRelayer.sendPayloadToEvm{value: cost}(
crossChainId,
crossChainCounterParty,
abi.encode(receiver, amount),
0,
MIN_GAS_LIMIT + extraGasLimit,
crossChainId,
msg.sender
);
emit Deposit(receiver, amount);
}
function receiveWormholeMessages(
bytes memory payload,
bytes[] memory,
bytes32 sourceAddress,
uint16 sourceChain,
bytes32 deliveryHash
) public payable override {
require(msg.sender == address(wormholeRelayer), "Only relayer allowed");
require(sourceChain == crossChainId, "Invalid source chain");
require(address(uint160(uint256(sourceAddress))) == crossChainCounterParty, "Invalid source address");
require(!seenDeliveryVaaHashes[deliveryHash], "Message already processed");
seenDeliveryVaaHashes[deliveryHash] = true;
(address receiver, uint256 amount) = abi.decode(payload, (address, uint256));
require(receiver != address(0), "Receiver cannot be zero");
require(amount > 0, "Amount cannot be zero");
vault.withdraw(receiver, amount);
emit Withdraw(receiver, amount);
}
}
{
"compilationTarget": {
"Project Ethereum/Bridge.sol": "CbyWormholeBridge"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_wormholeRelayer","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"cby","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"crossChainCounterParty","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"crossChainId","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"address","name":"_cby","type":"address"},{"internalType":"address","name":"_crossChainCounterParty","type":"address"},{"internalType":"uint16","name":"_crossChainId","type":"uint16"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint16","name":"targetChain","type":"uint16"},{"internalType":"uint256","name":"extraGasLimit","type":"uint256"}],"name":"quoteCrossChainCall","outputs":[{"internalType":"uint256","name":"cost","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"payload","type":"bytes"},{"internalType":"bytes[]","name":"","type":"bytes[]"},{"internalType":"bytes32","name":"sourceAddress","type":"bytes32"},{"internalType":"uint16","name":"sourceChain","type":"uint16"},{"internalType":"bytes32","name":"deliveryHash","type":"bytes32"}],"name":"receiveWormholeMessages","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"seenDeliveryVaaHashes","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"extraGasLimit","type":"uint256"}],"name":"sendCrossChainDeposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"vault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"wormholeRelayer","outputs":[{"internalType":"contract IWormholeRelayer","name":"","type":"address"}],"stateMutability":"view","type":"function"}]