// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface ILpETH is IERC20 {
/// @notice Deposits given amount of underlying tokens to the pool in exchange for pool shares
/// @param assets Amount of underlying to deposit
/// @param receiver Account to mint pool shares to
/// @return shares Number of shares minted
function deposit(
uint256 assets,
address receiver
)
external
returns (uint256 shares);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface ILpETHVault is IERC20 {
/**
* @notice Stake tokens to receive rewards.
* @dev Locked tokens cannot be withdrawn for defaultLockDuration and are eligible to receive rewards.
* @param amount to stake.
* @param onBehalfOf address for staking.
* @param typeIndex lock type index determining lock period and rewards multiplier.
*/
function stake(uint256 amount, address onBehalfOf, uint256 typeIndex) external;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IWETH is IERC20 {
function deposit() external payable;
function transfer(address to, uint256 value) external returns (bool);
function withdraw(uint256) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import {ILpETH, IERC20} from "./interfaces/ILpETH.sol";
import {ILpETHVault} from "./interfaces/ILpETHVault.sol";
import {IWETH} from "./interfaces/IWETH.sol";
/**
* @title PrelaunchPoints
* @author Loop
* @notice Staking points contract for the prelaunch of Loop Protocol.
*/
contract PrelaunchPoints {
using Math for uint256;
using SafeERC20 for IERC20;
using SafeERC20 for ILpETH;
/*//////////////////////////////////////////////////////////////
STORAGE
//////////////////////////////////////////////////////////////*/
ILpETH public lpETH;
ILpETHVault public lpETHVault;
IWETH public immutable WETH;
address public constant ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
address public immutable exchangeProxy;
address public owner;
address public proposedOwner;
uint256 public totalSupply;
uint256 public totalLpETH;
mapping(address => bool) public isTokenAllowed;
enum Exchange {
UniswapV3,
TransformERC20
}
bytes4 public constant UNI_SELECTOR = 0x803ba26d;
bytes4 public constant TRANSFORM_SELECTOR = 0x415565b0;
uint32 public loopActivation;
uint32 public startClaimDate;
uint32 public constant TIMELOCK = 7 days;
bool public emergencyMode;
mapping(address => mapping(address => uint256)) public balances; // User -> Token -> Balance
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event Locked(address indexed user, uint256 amount, address indexed token, bytes32 indexed referral);
event StakedVault(address indexed user, uint256 amount, uint256 typeIndex);
event Converted(uint256 amountETH, uint256 amountlpETH);
event Withdrawn(address indexed user, address indexed token, uint256 amount);
event Claimed(address indexed user, address indexed token, uint256 reward);
event Recovered(address token, uint256 amount);
event OwnerProposed(address newOwner);
event OwnerUpdated(address newOwner);
event LoopAddressesUpdated(address loopAddress, address vaultAddress);
event SwappedTokens(address sellToken, uint256 sellAmount, uint256 buyETHAmount);
/*//////////////////////////////////////////////////////////////
ERRORS
//////////////////////////////////////////////////////////////*/
error InvalidToken();
error NothingToClaim();
error TokenNotAllowed();
error CannotLockZero();
error CannotClaimZero();
error CannotWithdrawZero();
error UseClaimInstead();
error FailedToSendEther();
error SellTokenApprovalFailed();
error SwapCallFailed();
error WrongSelector(bytes4 selector);
error WrongDataTokens(address inputToken, address outputToken);
error WrongDataAmount(uint256 inputTokenAmount);
error WrongRecipient(address recipient);
error WrongExchange();
error LoopNotActivated();
error NotValidToken();
error NotAuthorized();
error NotProposedOwner();
error CurrentlyNotPossible();
error NoLongerPossible();
error ReceiveDisabled();
/*//////////////////////////////////////////////////////////////
INITIALIZATION
//////////////////////////////////////////////////////////////*/
/**
* @param _exchangeProxy address of the 0x protocol exchange proxy
* @param _allowedTokens list of token addresses to allow for locking
*/
constructor(address _exchangeProxy, address _wethAddress, address[] memory _allowedTokens) {
owner = msg.sender;
exchangeProxy = _exchangeProxy;
WETH = IWETH(_wethAddress);
loopActivation = uint32(block.timestamp + 120 days);
startClaimDate = 4294967295; // Max uint32 ~ year 2107
// Allow intital list of tokens
uint256 length = _allowedTokens.length;
for (uint256 i = 0; i < length;) {
isTokenAllowed[_allowedTokens[i]] = true;
unchecked {
i++;
}
}
isTokenAllowed[_wethAddress] = true;
}
/*//////////////////////////////////////////////////////////////
STAKE FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @notice Locks ETH
* @param _referral info of the referral. This value will be processed in the backend.
*/
function lockETH(bytes32 _referral) external payable {
_processLock(ETH, msg.value, msg.sender, _referral);
}
/**
* @notice Locks ETH for a given address
* @param _for address for which ETH is locked
* @param _referral info of the referral. This value will be processed in the backend.
*/
function lockETHFor(address _for, bytes32 _referral) external payable {
_processLock(ETH, msg.value, _for, _referral);
}
/**
* @notice Locks a valid token
* @param _token address of token to lock
* @param _amount amount of token to lock
* @param _referral info of the referral. This value will be processed in the backend.
*/
function lock(address _token, uint256 _amount, bytes32 _referral) external {
if (_token == ETH) {
revert InvalidToken();
}
_processLock(_token, _amount, msg.sender, _referral);
}
/**
* @notice Locks a valid token for a given address
* @param _token address of token to lock
* @param _amount amount of token to lock
* @param _for address for which ETH is locked
* @param _referral info of the referral. This value will be processed in the backend.
*/
function lockFor(address _token, uint256 _amount, address _for, bytes32 _referral) external {
if (_token == ETH) {
revert InvalidToken();
}
_processLock(_token, _amount, _for, _referral);
}
/**
* @dev Generic internal locking function that updates rewards based on
* previous balances, then update balances.
* @param _token Address of the token to lock
* @param _amount Units of ETH or token to add to the users balance
* @param _receiver Address of user who will receive the stake
* @param _referral Address of the referral user
*/
function _processLock(address _token, uint256 _amount, address _receiver, bytes32 _referral)
internal
onlyBeforeDate(startClaimDate)
{
if (_amount == 0) {
revert CannotLockZero();
}
if (_token == ETH) {
WETH.deposit{value: _amount}();
totalSupply += _amount;
balances[_receiver][address(WETH)] += _amount;
} else {
if (!isTokenAllowed[_token]) {
revert TokenNotAllowed();
}
IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount);
if (_token == address(WETH)) {
totalSupply += _amount;
}
balances[_receiver][_token] += _amount;
}
emit Locked(_receiver, _amount, _token, _referral);
}
/*//////////////////////////////////////////////////////////////
CLAIM AND WITHDRAW FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @dev Called by a user to get their vested lpETH
* @param _token Address of the token to convert to lpETH
* @param _percentage Proportion in % of tokens to withdraw. NOT useful for ETH
* @param _exchange Exchange identifier where the swap takes place
* @param _data Swap data obtained from 0x API
*/
function claim(address _token, uint8 _percentage, Exchange _exchange, bytes calldata _data)
external
onlyAfterDate(startClaimDate)
{
_claim(_token, msg.sender, _percentage, _exchange, _data);
}
/**
* @dev Called by a user to get their vested lpETH and stake them in a
* Loop vault for extra rewards
* @param _token Address of the token to convert to lpETH
* @param _percentage Proportion in % of tokens to withdraw. NOT useful for ETH
* @param _exchange Exchange identifier where the swap takes place
* @param _typeIndex lock type index determining lock period and rewards multiplier.
* @param _data Swap data obtained from 0x API
*/
function claimAndStake(address _token, uint8 _percentage, Exchange _exchange, uint256 _typeIndex, bytes calldata _data)
external
onlyAfterDate(startClaimDate)
{
uint256 claimedAmount = _claim(_token, address(this), _percentage, _exchange, _data);
lpETH.approve(address(lpETHVault), claimedAmount);
lpETHVault.stake(claimedAmount, msg.sender, _typeIndex);
emit StakedVault(msg.sender, claimedAmount, _typeIndex);
}
/**
* @dev Claim logic. If necessary converts token to ETH before depositing into lpETH contract.
*/
function _claim(address _token, address _receiver, uint8 _percentage, Exchange _exchange, bytes calldata _data)
internal
returns (uint256 claimedAmount)
{
if (_percentage == 0) {
revert CannotClaimZero();
}
uint256 userStake = balances[msg.sender][_token];
if (userStake == 0) {
revert NothingToClaim();
}
if (_token == address(WETH)) {
claimedAmount = userStake.mulDiv(totalLpETH, totalSupply);
balances[msg.sender][_token] = 0;
if (_receiver != address(this)){
lpETH.safeTransfer(_receiver, claimedAmount);
}
} else {
uint256 userClaim = userStake * _percentage / 100;
_validateData(_token, userClaim, _exchange, _data);
balances[msg.sender][_token] = userStake - userClaim;
uint256 balanceWethBefore = WETH.balanceOf(address(this));
// Swap token to ETH
_fillQuote(IERC20(_token), userClaim, _data);
// Convert swapped ETH to lpETH (1 to 1 conversion)
claimedAmount = WETH.balanceOf(address(this)) - balanceWethBefore;
WETH.approve(address(lpETH), claimedAmount);
lpETH.deposit(claimedAmount, _receiver);
}
emit Claimed(msg.sender, _token, claimedAmount);
}
/**
* @dev Called by a staker to withdraw all their ETH or LRT
* Note Can only be called before claiming lpETH has started.
* In emergency mode can be called at any time.
* @param _token Address of the token to withdraw
*/
function withdraw(address _token) external {
if (!emergencyMode) {
if (block.timestamp >= startClaimDate) {
revert NoLongerPossible();
}
}
uint256 lockedAmount = balances[msg.sender][_token];
balances[msg.sender][_token] = 0;
if (lockedAmount == 0) {
revert CannotWithdrawZero();
}
if (_token == address(WETH)) {
if (block.timestamp >= startClaimDate){
revert UseClaimInstead();
}
totalSupply -= lockedAmount;
}
IERC20(_token).safeTransfer(msg.sender, lockedAmount);
emit Withdrawn(msg.sender, _token, lockedAmount);
}
/*//////////////////////////////////////////////////////////////
PROTECTED FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @dev Called by a owner to convert all the locked ETH to get lpETH
*/
function convertAllETH() external onlyAuthorized onlyBeforeDate(startClaimDate) {
if (block.timestamp - loopActivation <= TIMELOCK) {
revert LoopNotActivated();
}
// deposits all the WETH to lpETH contract. Receives lpETH back
WETH.approve(address(lpETH), totalSupply);
lpETH.deposit(totalSupply, address(this));
// If there is extra lpETH (sent by external actor) then it is distributed amoung all users
totalLpETH = lpETH.balanceOf(address(this));
// Claims of lpETH can start immediately after conversion.
startClaimDate = uint32(block.timestamp);
emit Converted(totalSupply, totalLpETH);
}
/**
* @notice Sets a new proposedOwner
* @param _owner address of the new owner
*/
function proposeOwner(address _owner) external onlyAuthorized {
proposedOwner = _owner;
emit OwnerProposed(_owner);
}
/**
* @notice Proposed owner accepts the ownership.
* Can only be called by current proposed owner.
*/
function acceptOwnership() external {
if (msg.sender != proposedOwner) {
revert NotProposedOwner();
}
owner = proposedOwner;
emit OwnerUpdated(owner);
}
/**
* @notice Sets the lpETH contract address
* @param _loopAddress address of the lpETH contract
* @dev Can only be set once before 120 days have passed from deployment.
* After that users can only withdraw ETH.
*/
function setLoopAddresses(address _loopAddress, address _vaultAddress)
external
onlyAuthorized
onlyBeforeDate(loopActivation)
{
lpETH = ILpETH(_loopAddress);
lpETHVault = ILpETHVault(_vaultAddress);
loopActivation = uint32(block.timestamp);
emit LoopAddressesUpdated(_loopAddress, _vaultAddress);
}
/**
* @param _token address of a wrapped LRT token
* @dev ONLY add wrapped LRT tokens. Contract not compatible with rebase tokens.
*/
function allowToken(address _token) external onlyAuthorized {
isTokenAllowed[_token] = true;
}
/**
* @param _mode boolean to activate/deactivate the emergency mode
* @dev On emergency mode all withdrawals are accepted at
*/
function setEmergencyMode(bool _mode) external onlyAuthorized {
emergencyMode = _mode;
}
/**
* @dev Allows the owner to recover other ERC20s mistakingly sent to this contract
*/
function recoverERC20(address tokenAddress, uint256 tokenAmount) external onlyAuthorized {
if (tokenAddress == address(lpETH) || isTokenAllowed[tokenAddress]) {
revert NotValidToken();
}
IERC20(tokenAddress).safeTransfer(owner, tokenAmount);
emit Recovered(tokenAddress, tokenAmount);
}
/**
* Disable receive ETH
*/
receive() external payable {
revert ReceiveDisabled();
}
/*//////////////////////////////////////////////////////////////
INTERNAL FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @notice Validates the data sent from 0x API to match desired behaviour
* @param _token address of the token to sell
* @param _amount amount of token to sell
* @param _exchange exchange identifier where the swap takes place
* @param _data swap data from 0x API
*/
function _validateData(address _token, uint256 _amount, Exchange _exchange, bytes calldata _data) internal view {
address inputToken;
address outputToken;
uint256 inputTokenAmount;
address recipient;
bytes4 selector;
if (_exchange == Exchange.UniswapV3) {
(inputToken, outputToken, inputTokenAmount, recipient, selector) = _decodeUniswapV3Data(_data);
if (selector != UNI_SELECTOR) {
revert WrongSelector(selector);
}
// UniswapV3Feature.sellTokenForEthToUniswapV3(encodedPath, sellAmount, minBuyAmount, recipient) requires `encodedPath` to be a Uniswap-encoded path, where the last token is WETH
if (outputToken != address(WETH)) {
revert WrongDataTokens(inputToken, outputToken);
}
if (recipient != address(this)) {
revert WrongRecipient(recipient);
}
} else if (_exchange == Exchange.TransformERC20) {
(inputToken, outputToken, inputTokenAmount, selector) = _decodeTransformERC20Data(_data);
if (selector != TRANSFORM_SELECTOR) {
revert WrongSelector(selector);
}
if (outputToken != address(WETH)) {
revert WrongDataTokens(inputToken, outputToken);
}
} else {
revert WrongExchange();
}
if (inputToken != _token) {
revert WrongDataTokens(inputToken, outputToken);
}
if (inputTokenAmount != _amount) {
revert WrongDataAmount(inputTokenAmount);
}
}
/**
* @notice Decodes the data sent from 0x API when UniswapV3 is used
* @param _data swap data from 0x API
*/
function _decodeUniswapV3Data(bytes calldata _data)
internal
pure
returns (address inputToken, address outputToken, uint256 inputTokenAmount, address recipient, bytes4 selector)
{
uint256 encodedPathLength;
assembly {
let p := _data.offset
selector := calldataload(p)
p := add(p, 36) // Data: selector 4 + lenght data 32
inputTokenAmount := calldataload(p)
recipient := calldataload(add(p, 64))
encodedPathLength := calldataload(add(p, 96)) // Get length of encodedPath (obtained through abi.encodePacked)
inputToken := shr(96, calldataload(add(p, 128))) // Shift to the Right with 24 zeroes (12 bytes = 96 bits) to get address
outputToken := shr(96, calldataload(add(p, add(encodedPathLength, 108)))) // Get last address of the hop
}
}
/**
* @notice Decodes the data sent from 0x API when other exchanges are used via 0x TransformERC20 function
* @param _data swap data from 0x API
*/
function _decodeTransformERC20Data(bytes calldata _data)
internal
pure
returns (address inputToken, address outputToken, uint256 inputTokenAmount, bytes4 selector)
{
assembly {
let p := _data.offset
selector := calldataload(p)
inputToken := calldataload(add(p, 4)) // Read slot, selector 4 bytes
outputToken := calldataload(add(p, 36)) // Read slot
inputTokenAmount := calldataload(add(p, 68)) // Read slot
}
}
/**
*
* @param _sellToken The `sellTokenAddress` field from the API response.
* @param _amount The `sellAmount` field from the API response.
* @param _swapCallData The `data` field from the API response.
*/
function _fillQuote(IERC20 _sellToken, uint256 _amount, bytes calldata _swapCallData) internal {
// Track our balance of the buyToken to determine how much we've bought.
uint256 boughtWETHAmount = WETH.balanceOf(address(this));
if (!_sellToken.approve(exchangeProxy, _amount)) {
revert SellTokenApprovalFailed();
}
(bool success,) = payable(exchangeProxy).call{value: 0}(_swapCallData);
if (!success) {
revert SwapCallFailed();
}
// Use our current buyToken balance to determine how much we've bought.
boughtWETHAmount = WETH.balanceOf(address(this)) - boughtWETHAmount;
emit SwappedTokens(address(_sellToken), _amount, boughtWETHAmount);
}
/*//////////////////////////////////////////////////////////////
MODIFIERS
//////////////////////////////////////////////////////////////*/
modifier onlyAuthorized() {
if (msg.sender != owner) {
revert NotAuthorized();
}
_;
}
modifier onlyAfterDate(uint256 limitDate) {
if (block.timestamp <= limitDate) {
revert CurrentlyNotPossible();
}
_;
}
modifier onlyBeforeDate(uint256 limitDate) {
if (block.timestamp >= limitDate) {
revert NoLongerPossible();
}
_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
{
"compilationTarget": {
"src/PrelaunchPoints.sol": "PrelaunchPoints"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 100
},
"remappings": [
":@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/"
]
}
[{"inputs":[{"internalType":"address","name":"_exchangeProxy","type":"address"},{"internalType":"address","name":"_wethAddress","type":"address"},{"internalType":"address[]","name":"_allowedTokens","type":"address[]"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"CannotClaimZero","type":"error"},{"inputs":[],"name":"CannotLockZero","type":"error"},{"inputs":[],"name":"CannotWithdrawZero","type":"error"},{"inputs":[],"name":"CurrentlyNotPossible","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"FailedToSendEther","type":"error"},{"inputs":[],"name":"InvalidToken","type":"error"},{"inputs":[],"name":"LoopNotActivated","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[],"name":"NoLongerPossible","type":"error"},{"inputs":[],"name":"NotAuthorized","type":"error"},{"inputs":[],"name":"NotProposedOwner","type":"error"},{"inputs":[],"name":"NotValidToken","type":"error"},{"inputs":[],"name":"NothingToClaim","type":"error"},{"inputs":[],"name":"ReceiveDisabled","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"SellTokenApprovalFailed","type":"error"},{"inputs":[],"name":"SwapCallFailed","type":"error"},{"inputs":[],"name":"TokenNotAllowed","type":"error"},{"inputs":[],"name":"UseClaimInstead","type":"error"},{"inputs":[{"internalType":"uint256","name":"inputTokenAmount","type":"uint256"}],"name":"WrongDataAmount","type":"error"},{"inputs":[{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"address","name":"outputToken","type":"address"}],"name":"WrongDataTokens","type":"error"},{"inputs":[],"name":"WrongExchange","type":"error"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"WrongRecipient","type":"error"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"WrongSelector","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amountETH","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountlpETH","type":"uint256"}],"name":"Converted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"bytes32","name":"referral","type":"bytes32"}],"name":"Locked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"loopAddress","type":"address"},{"indexed":false,"internalType":"address","name":"vaultAddress","type":"address"}],"name":"LoopAddressesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerProposed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Recovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"typeIndex","type":"uint256"}],"name":"StakedVault","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sellToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"sellAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"buyETHAmount","type":"uint256"}],"name":"SwappedTokens","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdrawn","type":"event"},{"inputs":[],"name":"ETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TIMELOCK","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TRANSFORM_SELECTOR","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"UNI_SELECTOR","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH","outputs":[{"internalType":"contract IWETH","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"allowToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"balances","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint8","name":"_percentage","type":"uint8"},{"internalType":"enum PrelaunchPoints.Exchange","name":"_exchange","type":"uint8"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint8","name":"_percentage","type":"uint8"},{"internalType":"enum PrelaunchPoints.Exchange","name":"_exchange","type":"uint8"},{"internalType":"uint256","name":"_typeIndex","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"claimAndStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"convertAllETH","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"emergencyMode","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"exchangeProxy","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isTokenAllowed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bytes32","name":"_referral","type":"bytes32"}],"name":"lock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_referral","type":"bytes32"}],"name":"lockETH","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_for","type":"address"},{"internalType":"bytes32","name":"_referral","type":"bytes32"}],"name":"lockETHFor","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address","name":"_for","type":"address"},{"internalType":"bytes32","name":"_referral","type":"bytes32"}],"name":"lockFor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"loopActivation","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lpETH","outputs":[{"internalType":"contract ILpETH","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lpETHVault","outputs":[{"internalType":"contract ILpETHVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"proposeOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"proposedOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"recoverERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_mode","type":"bool"}],"name":"setEmergencyMode","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_loopAddress","type":"address"},{"internalType":"address","name":"_vaultAddress","type":"address"}],"name":"setLoopAddresses","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startClaimDate","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalLpETH","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]