// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// SPDX-License-Identifier: BUSL-1.1
// Last deployed from commit: 3742ed131202971f0b79e04769200986a3c7f8d0;
pragma solidity 0.8.17;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "./interfaces/facets/IYieldYakRouter.sol";
import "./Pool.sol";
contract DepositSwapArbitrum {
using SafeERC20 for IERC20;
address private constant PARA_TRANSFER_PROXY =
0x216B4B4Ba9F3e719726886d34a177484278Bfcae;
address private constant PARA_ROUTER =
0xDEF171Fe48CF0115B1d80b88dc8eAB59176FEe57;
address public constant WETH_POOL_TUP = 0x0BeBEB5679115f143772CfD97359BBcc393d46b3;
address public constant USDC_POOL_TUP = 0x8FE3842e0B7472a57f2A2D56cF6bCe08517A1De0;
address public constant ARB_POOL_TUP = 0x2B8C610F3fC6F883817637d15514293565C3d08A;
address public constant BTC_POOL_TUP = 0x5CdE36c23f0909960BA4D6E8713257C6191f8C35;
address public constant DAI_POOL_TUP = 0xd5E8f691756c3d7b86FD8A89A06497D38D362540;
address public constant WETH = 0x82aF49447D8a07e3bd95BD0d56f35241523fBab1;
address public constant USDC = 0xaf88d065e77c8cC2239327C5EDb3A432268e5831;
address public constant ARB = 0x912CE59144191C1204E64559FE8253a0e49E6548;
address public constant BTC = 0x2f2a2543B76A4166549F7aaB2e75Bef0aefC5B0f;
address public constant DAI = 0xDA10009cBd5D07dd0CeCc66161FC93D7c9000da1;
function _isTokenSupported(address token) private pure returns (bool) {
if(
token == WETH ||
token == USDC ||
token == BTC ||
token == DAI ||
token == ARB
){
return true;
}
return false;
}
function _tokenToPoolTUPMapping(address token) private pure returns (Pool){
if(token == WETH){
return Pool(WETH_POOL_TUP);
} else if (token == USDC){
return Pool(USDC_POOL_TUP);
} else if (token == ARB){
return Pool(ARB_POOL_TUP);
} else if (token == BTC){
return Pool(BTC_POOL_TUP);
} else if (token == DAI){
return Pool(DAI_POOL_TUP);
}
revert("Pool not supported");
}
function _withdrawFromPool(Pool pool, IERC20 token, uint256 amount, address user) private {
uint256 userInitialFromTokenDepositBalance = pool.balanceOf(user);
uint256 poolInitialBalance = pool.balanceOf(address(this));
require(userInitialFromTokenDepositBalance >= amount, "Insufficient fromToken deposit balance");
pool.transferFrom(user, address(this), amount);
require(pool.balanceOf(address(this)) - poolInitialBalance == amount, "amountFromToken and post-transfer contract balance mismatch");
require(pool.balanceOf(user) == userInitialFromTokenDepositBalance - amount, "user post-transfer balance is incorrect");
uint256 poolInitialTokenBalance = token.balanceOf(address(this));
pool.withdraw(amount);
require(pool.balanceOf(address(this)) == poolInitialBalance, "Post-withdrawal contract deposit balance must be 0");
require(token.balanceOf(address(this)) == poolInitialTokenBalance + amount, "Post-withdrawal contract fromToken balance is incorrect");
}
function _depositToPool(Pool pool, IERC20 token, uint256 amount, address user) private {
uint256 contractInitialToTokenBalance = token.balanceOf(address(this));
uint256 userInitialToTokenDepositBalance = pool.balanceOf(user);
uint256 poolInitialBalance = pool.balanceOf(address(this));
require(contractInitialToTokenBalance >= amount, "Insufficient contract toToken balance");
token.safeApprove(address(pool), 0);
token.safeApprove(address(pool), amount);
pool.deposit(amount);
require(token.balanceOf(address(this)) == contractInitialToTokenBalance - amount, "Post-deposit contract toToken balance must be 0");
require(pool.balanceOf(address(this)) == poolInitialBalance + amount, "Post-deposit contract deposit balance is incorrect");
pool.transfer(user, amount);
require(token.balanceOf(address(this)) == contractInitialToTokenBalance - amount, "Post-transfer contract deposit balance must be 0");
require(pool.balanceOf(user) == userInitialToTokenDepositBalance + amount, "Post-transfer user deposit balance is incorrect");
}
function _yakSwap(address[] calldata path, address[] calldata adapters, uint256 amountIn, uint256 amountOut) private {
IERC20(path[0]).safeApprove(YY_ROUTER(), 0);
IERC20(path[0]).safeApprove(YY_ROUTER(), amountIn);
IYieldYakRouter router = IYieldYakRouter(YY_ROUTER());
IYieldYakRouter.Trade memory trade = IYieldYakRouter.Trade({
amountIn: amountIn,
amountOut: amountOut,
path: path,
adapters: adapters
});
router.swapNoSplit(trade, address(this), 0);
}
// Needs approval on the fromToken Pool
function depositSwap(uint256 amountFromToken, uint256 minAmountToToken, address[] calldata path, address[] calldata adapters) public {
address fromToken = path[0];
address toToken = path[path.length - 1];
require(_isTokenSupported(fromToken), "fromToken not supported");
require(_isTokenSupported(toToken), "toToken not supported");
Pool fromPool = _tokenToPoolTUPMapping(fromToken);
Pool toPool = _tokenToPoolTUPMapping(toToken);
address user = msg.sender;
amountFromToken = Math.min(fromPool.balanceOf(user), amountFromToken);
_withdrawFromPool(fromPool, IERC20(fromToken), amountFromToken, user);
_yakSwap(path, adapters, amountFromToken, minAmountToToken);
_depositToPool(toPool, IERC20(toToken), IERC20(toToken).balanceOf(address(this)), user);
}
function depositSwapParaSwap(
bytes4 selector,
bytes memory data,
address fromToken,
uint256 fromAmount,
address toToken,
uint256 minOut
) public {
require(_isTokenSupported(fromToken), "fromToken not supported");
require(_isTokenSupported(toToken), "toToken not supported");
require(minOut > 0, "minOut needs to be > 0");
require(fromAmount > 0, "Amount of tokens to sell needs to be > 0");
Pool fromPool = _tokenToPoolTUPMapping(fromToken);
Pool toPool = _tokenToPoolTUPMapping(toToken);
address user = msg.sender;
fromAmount = Math.min(fromPool.balanceOf(user), fromAmount);
_withdrawFromPool(fromPool, IERC20(fromToken), fromAmount, user);
IERC20(fromToken).safeApprove(PARA_TRANSFER_PROXY, 0);
IERC20(fromToken).safeApprove(
PARA_TRANSFER_PROXY,
fromAmount
);
(bool success, ) = PARA_ROUTER.call((abi.encodePacked(selector, data)));
require(success, "Swap failed");
uint256 amountOut = IERC20(toToken).balanceOf(address(this));
require(amountOut >= minOut, "Too little received");
_depositToPool(toPool, IERC20(toToken), amountOut, user);
}
function YY_ROUTER() internal virtual pure returns (address) {
return 0xb32C79a25291265eF240Eb32E9faBbc6DcEE3cE3;
}
}
// SPDX-License-Identifier: BUSL-1.1
// Last deployed from commit: ;
pragma solidity 0.8.17;
/**
* @title IBorrowersRegistry
* Keeps a registry of created trading accounts to verify their borrowing rights
*/
interface IBorrowersRegistry {
function canBorrow(address _account) external view returns (bool);
function getLoanForOwner(address _owner) external view returns (address);
function getOwnerOfLoan(address _loan) external view returns (address);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: BUSL-1.1
// Last deployed from commit: c5c938a0524b45376dd482cd5c8fb83fa94c2fcc;
pragma solidity 0.8.17;
interface IIndex {
function setRate(uint256 _rate) external;
function updateUser(address user) external;
function getIndex() external view returns (uint256);
function getIndexedValue(uint256 value, address user) external view returns (uint256);
}
// SPDX-License-Identifier: BUSL-1.1
// Last deployed from commit: ;
pragma solidity ^0.8.17;
interface IPoolRewarder {
function stakeFor(uint _amount, address _stakeFor) external;
function withdrawFor(uint _amount, address _unstakeFor) external returns (uint);
function getRewardsFor(address _user) external;
function earned(address _account) external view returns (uint);
function balanceOf(address _account) external view returns (uint);
}
// SPDX-License-Identifier: BUSL-1.1
// Last deployed from commit: ;
pragma solidity 0.8.17;
/**
* @title IRatesCalculator
* @dev Interface defining base method for contracts implementing interest rates calculation.
* The calculated value could be based on the relation between funds borrowed and deposited.
*/
interface IRatesCalculator {
function calculateBorrowingRate(uint256 totalLoans, uint256 totalDeposits) external view returns (uint256);
function calculateDepositRate(uint256 totalLoans, uint256 totalDeposits) external view returns (uint256);
}
// SPDX-License-Identifier: BUSL-1.1
// Last deployed from commit: ;
pragma solidity ^0.8.17;
interface IYieldYakRouter {
struct Trade {
uint256 amountIn;
uint256 amountOut;
address[] path;
address[] adapters;
}
struct FormattedOffer {
uint256[] amounts;
address[] adapters;
address[] path;
}
function swapNoSplit(
Trade calldata _trade,
address _to,
uint256 _fee
) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized != type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/ContextUpgradeable.sol";
import "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
function __Ownable_init() internal onlyInitializing {
__Ownable_init_unchained();
}
function __Ownable_init_unchained() internal onlyInitializing {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: BUSL-1.1
// Last deployed from commit: 6094467959b5f026a0b2395f84a97536afb77aab;
pragma solidity 0.8.17;
import "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol";
import "@uniswap/lib/contracts/libraries/TransferHelper.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "./interfaces/IIndex.sol";
import "./interfaces/IRatesCalculator.sol";
import "./interfaces/IBorrowersRegistry.sol";
import "./interfaces/IPoolRewarder.sol";
import "./VestingDistributor.sol";
/**
* @title Pool
* @dev Contract allowing user to deposit to and borrow from a dedicated user account
* Depositors are rewarded with the interest rates collected from borrowers.
* The interest rates calculation is delegated to an external calculator contract.
*/
contract Pool is OwnableUpgradeable, ReentrancyGuardUpgradeable, IERC20 {
using TransferHelper for address payable;
uint256 public totalSupplyCap;
mapping(address => mapping(address => uint256)) private _allowed;
mapping(address => uint256) internal _deposited;
mapping(address => uint256) public borrowed;
IRatesCalculator public ratesCalculator;
IBorrowersRegistry public borrowersRegistry;
IPoolRewarder public poolRewarder;
IIndex public depositIndex;
IIndex public borrowIndex;
address payable public tokenAddress;
VestingDistributor public vestingDistributor;
uint8 internal _decimals;
function initialize(IRatesCalculator ratesCalculator_, IBorrowersRegistry borrowersRegistry_, IIndex depositIndex_, IIndex borrowIndex_, address payable tokenAddress_, IPoolRewarder poolRewarder_, uint256 _totalSupplyCap) public initializer {
require(AddressUpgradeable.isContract(address(ratesCalculator_))
&& AddressUpgradeable.isContract(address(borrowersRegistry_))
&& AddressUpgradeable.isContract(address(depositIndex_))
&& AddressUpgradeable.isContract(address(borrowIndex_))
&& (AddressUpgradeable.isContract(address(poolRewarder_)) || address(poolRewarder_) == address(0)), "Wrong init arguments");
borrowersRegistry = borrowersRegistry_;
ratesCalculator = ratesCalculator_;
depositIndex = depositIndex_;
borrowIndex = borrowIndex_;
poolRewarder = poolRewarder_;
tokenAddress = tokenAddress_;
totalSupplyCap = _totalSupplyCap;
_decimals = IERC20Metadata(tokenAddress_).decimals();
__Ownable_init();
__ReentrancyGuard_init();
_updateRates();
}
/* ========== SETTERS ========== */
/**
* Sets new totalSupplyCap limiting how much in total can be deposited to the Pool.
* Only the owner of the Contract can execute this function.
* @dev _newTotalSupplyCap new deposit cap
**/
function setTotalSupplyCap(uint256 _newTotalSupplyCap) external onlyOwner {
totalSupplyCap = _newTotalSupplyCap;
}
/**
* Sets the new Pool Rewarder.
* The IPoolRewarder that distributes additional token rewards to people having a stake in this pool proportionally to their stake and time of participance.
* Only the owner of the Contract can execute this function.
* @dev _poolRewarder the address of PoolRewarder
**/
function setPoolRewarder(IPoolRewarder _poolRewarder) external onlyOwner {
if(!AddressUpgradeable.isContract(address(_poolRewarder)) && address(_poolRewarder) != address(0)) revert NotAContract(address(poolRewarder));
poolRewarder = _poolRewarder;
emit PoolRewarderChanged(address(_poolRewarder), block.timestamp);
}
/**
* Sets the new rate calculator.
* The calculator is an external contract that contains the logic for calculating deposit and borrowing rates.
* Only the owner of the Contract can execute this function.
* @dev ratesCalculator the address of rates calculator
**/
function setRatesCalculator(IRatesCalculator ratesCalculator_) external onlyOwner {
// setting address(0) ratesCalculator_ freezes the pool
if(!AddressUpgradeable.isContract(address(ratesCalculator_)) && address(ratesCalculator_) != address(0)) revert NotAContract(address(ratesCalculator_));
ratesCalculator = ratesCalculator_;
if (address(ratesCalculator_) != address(0)) {
_updateRates();
}
emit RatesCalculatorChanged(address(ratesCalculator_), block.timestamp);
}
/**
* Sets the new borrowers registry contract.
* The borrowers registry decides if an account can borrow funds.
* Only the owner of the Contract can execute this function.
* @dev borrowersRegistry the address of borrowers registry
**/
function setBorrowersRegistry(IBorrowersRegistry borrowersRegistry_) external onlyOwner {
if(!AddressUpgradeable.isContract(address(borrowersRegistry_))) revert NotAContract(address(borrowersRegistry_));
borrowersRegistry = borrowersRegistry_;
emit BorrowersRegistryChanged(address(borrowersRegistry_), block.timestamp);
}
/**
* Sets the new Pool Rewarder.
* The IPoolRewarder that distributes additional token rewards to people having a stake in this pool proportionally to their stake and time of participance.
* Only the owner of the Contract can execute this function.
* @dev _poolRewarder the address of PoolRewarder
**/
function setVestingDistributor(address _distributor) external onlyOwner {
if(!AddressUpgradeable.isContract(_distributor) && _distributor != address(0)) revert NotAContract(_distributor);
vestingDistributor = VestingDistributor(_distributor);
emit VestingDistributorChanged(_distributor, block.timestamp);
}
/* ========== MUTATIVE FUNCTIONS ========== */
function transfer(address recipient, uint256 amount) external override nonReentrant returns (bool) {
if(recipient == address(0)) revert TransferToZeroAddress();
if(recipient == address(this)) revert TransferToPoolAddress();
address account = msg.sender;
_accumulateDepositInterest(account);
(uint256 lockedAmount, uint256 transferrableAmount) = _getAmounts(account);
if(amount > transferrableAmount) revert TransferAmountExceedsBalance(amount, transferrableAmount);
_updateWithdrawn(account, amount, lockedAmount);
// (this is verified in "require" above)
unchecked {
_deposited[account] -= amount;
}
_accumulateDepositInterest(recipient);
_deposited[recipient] += amount;
// Handle rewards
if(address(poolRewarder) != address(0) && amount != 0){
uint256 unstaked = poolRewarder.withdrawFor(amount, account);
if(unstaked > 0) {
poolRewarder.stakeFor(unstaked, recipient);
}
}
emit Transfer(account, recipient, amount);
return true;
}
function allowance(address owner, address spender) external view override returns (uint256) {
return _allowed[owner][spender];
}
function increaseAllowance(address spender, uint256 addedValue) external returns (bool) {
if(spender == address(0)) revert SpenderZeroAddress();
uint256 newAllowance = _allowed[msg.sender][spender] + addedValue;
_allowed[msg.sender][spender] = newAllowance;
emit Approval(msg.sender, spender, newAllowance);
return true;
}
function decreaseAllowance(address spender, uint256 subtractedValue) external returns (bool) {
if(spender == address(0)) revert SpenderZeroAddress();
uint256 currentAllowance = _allowed[msg.sender][spender];
if(currentAllowance < subtractedValue) revert InsufficientAllowance(subtractedValue, currentAllowance);
uint256 newAllowance = currentAllowance - subtractedValue;
_allowed[msg.sender][spender] = newAllowance;
emit Approval(msg.sender, spender, newAllowance);
return true;
}
function approve(address spender, uint256 amount) external override returns (bool) {
if(spender == address(0)) revert SpenderZeroAddress();
_allowed[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint256 amount) external override nonReentrant returns (bool) {
if(_allowed[sender][msg.sender] < amount) revert InsufficientAllowance(amount, _allowed[sender][msg.sender]);
if(recipient == address(0)) revert TransferToZeroAddress();
if(recipient == address(this)) revert TransferToPoolAddress();
_accumulateDepositInterest(sender);
(uint256 lockedAmount, uint256 transferrableAmount) = _getAmounts(sender);
if(amount > transferrableAmount) revert TransferAmountExceedsBalance(amount, transferrableAmount);
_updateWithdrawn(sender, amount, lockedAmount);
_deposited[sender] -= amount;
_allowed[sender][msg.sender] -= amount;
_accumulateDepositInterest(recipient);
_deposited[recipient] += amount;
// Handle rewards
if(address(poolRewarder) != address(0) && amount != 0){
uint256 unstaked = poolRewarder.withdrawFor(amount, sender);
if(unstaked > 0) {
poolRewarder.stakeFor(unstaked, recipient);
}
}
emit Transfer(sender, recipient, amount);
return true;
}
/**
* Deposits the amount
* It updates user deposited balance, total deposited and rates
**/
function deposit(uint256 _amount) public virtual {
depositOnBehalf(_amount, msg.sender);
}
/**
* Deposits the amount on behalf of `_of` user.
* It updates `_of` user deposited balance, total deposited and rates
**/
function depositOnBehalf(uint256 _amount, address _of) public virtual nonReentrant {
if(_amount == 0) revert ZeroDepositAmount();
require(_of != address(0), "Address zero");
require(_of != address(this), "Cannot deposit on behalf of pool");
_amount = Math.min(_amount, IERC20(tokenAddress).balanceOf(msg.sender));
_accumulateDepositInterest(_of);
if(totalSupplyCap != 0){
if(_deposited[address(this)] + _amount > totalSupplyCap) revert TotalSupplyCapBreached();
}
_transferToPool(msg.sender, _amount);
_mint(_of, _amount);
_deposited[address(this)] += _amount;
_updateRates();
if (address(poolRewarder) != address(0)) {
poolRewarder.stakeFor(_amount, _of);
}
emit DepositOnBehalfOf(msg.sender, _of, _amount, block.timestamp);
}
function _transferToPool(address from, uint256 amount) internal virtual {
tokenAddress.safeTransferFrom(from, address(this), amount);
}
function _transferFromPool(address to, uint256 amount) internal virtual {
tokenAddress.safeTransfer(to, amount);
}
/**
* Withdraws selected amount from the user deposits
* @dev _amount the amount to be withdrawn
**/
function withdraw(uint256 _amount) external nonReentrant {
_accumulateDepositInterest(msg.sender);
_amount = Math.min(_amount, _deposited[msg.sender]);
if(_amount > IERC20(tokenAddress).balanceOf(address(this))) revert InsufficientPoolFunds();
if(_amount > _deposited[address(this)]) revert BurnAmountExceedsBalance();
// verified in "require" above
unchecked {
_deposited[address(this)] -= _amount;
}
_burn(msg.sender, _amount);
_updateRates();
_transferFromPool(msg.sender, _amount);
if (address(poolRewarder) != address(0)) {
poolRewarder.withdrawFor(_amount, msg.sender);
}
emit Withdrawal(msg.sender, _amount, block.timestamp);
}
/**
* Borrows the specified amount
* It updates user borrowed balance, total borrowed amount and rates
* @dev _amount the amount to be borrowed
* @dev It is only meant to be used by a SmartLoanDiamondProxy
**/
function borrow(uint256 _amount) public virtual canBorrow nonReentrant {
if (_amount > IERC20(tokenAddress).balanceOf(address(this))) revert InsufficientPoolFunds();
_accumulateBorrowingInterest(msg.sender);
borrowed[msg.sender] += _amount;
borrowed[address(this)] += _amount;
_transferFromPool(msg.sender, _amount);
_updateRates();
emit Borrowing(msg.sender, _amount, block.timestamp);
}
/**
* Repays the amount
* It updates user borrowed balance, total borrowed amount and rates
* @dev It is only meant to be used by a SmartLoanDiamondProxy
**/
function repay(uint256 amount) external nonReentrant {
_accumulateBorrowingInterest(msg.sender);
if(amount > borrowed[msg.sender]) revert RepayingMoreThanWasBorrowed();
_transferToPool(msg.sender, amount);
borrowed[msg.sender] -= amount;
borrowed[address(this)] -= amount;
_updateRates();
emit Repayment(msg.sender, amount, block.timestamp);
}
/* =========
/**
* Returns the current borrowed amount for the given user
* The value includes the interest rates owned at the current moment
* @dev _user the address of queried borrower
**/
function getBorrowed(address _user) public view returns (uint256) {
return borrowIndex.getIndexedValue(borrowed[_user], _user);
}
function name() public virtual pure returns(string memory _name){
_name = "";
}
function symbol() public virtual pure returns(string memory _symbol){
_symbol = "";
}
function decimals() public virtual view returns(uint8){
return _decimals;
}
function totalSupply() public view override returns (uint256) {
return balanceOf(address(this));
}
function totalBorrowed() public view returns (uint256) {
return getBorrowed(address(this));
}
// Calls the IPoolRewarder.getRewardsFor() that sends pending rewards to msg.sender
function getRewards() external {
poolRewarder.getRewardsFor(msg.sender);
}
// Returns number of pending rewards for msg.sender
function checkRewards() external view returns (uint256) {
return poolRewarder.earned(msg.sender);
}
// Returns max. acceptable pool utilisation after borrow action
function getMaxPoolUtilisationForBorrowing() virtual public view returns (uint256) {
return 0.925e18;
}
/**
* Returns the current deposited amount for the given user
* The value includes the interest rates earned at the current moment
* @dev _user the address of queried depositor
**/
function balanceOf(address user) public view override returns (uint256) {
return depositIndex.getIndexedValue(_deposited[user], user);
}
/**
* Returns the current interest rate for deposits
**/
function getDepositRate() public view returns (uint256) {
return ratesCalculator.calculateDepositRate(totalBorrowed(), totalSupply());
}
/**
* Returns the current interest rate for borrowings
**/
function getBorrowingRate() public view returns (uint256) {
return ratesCalculator.calculateBorrowingRate(totalBorrowed(), totalSupply());
}
/**
* Returns full pool status
*/
function getFullPoolStatus() public view returns (uint256[5] memory) {
return [
totalSupply(),
getDepositRate(),
getBorrowingRate(),
totalBorrowed(),
getMaxPoolUtilisationForBorrowing()
];
}
/**
* Recovers the surplus funds resultant from difference between deposit and borrowing rates
**/
function recoverSurplus(uint256 amount, address account) public onlyOwner nonReentrant {
uint256 balance = IERC20(tokenAddress).balanceOf(address(this));
uint256 surplus = balance + totalBorrowed() - totalSupply();
if(amount > balance) revert InsufficientPoolFunds();
if(surplus < amount) revert InsufficientSurplus();
_transferFromPool(account, amount);
}
/* ========== INTERNAL FUNCTIONS ========== */
function _mint(address to, uint256 amount) internal {
if(to == address(0)) revert MintToAddressZero();
_deposited[to] += amount;
emit Transfer(address(0), to, amount);
}
function _burn(address account, uint256 amount) internal {
if(amount > _deposited[account]) revert BurnAmountExceedsBalance();
(uint256 lockedAmount, uint256 transferrableAmount) = _getAmounts(account);
if(amount > transferrableAmount) revert BurnAmountExceedsAvailableForUser();
_updateWithdrawn(account, amount, lockedAmount);
// verified in "require" above
unchecked {
_deposited[account] -= amount;
}
emit Transfer(account, address(0), amount);
}
function _getAmounts(address account) internal view returns (uint256 lockedAmount, uint256 transferrableAmount) {
if (address(vestingDistributor) != address(0)) {
lockedAmount = vestingDistributor.locked(account);
if (lockedAmount > 0) {
transferrableAmount = _deposited[account] - (lockedAmount - vestingDistributor.availableToWithdraw(account));
} else {
transferrableAmount = _deposited[account];
}
} else {
transferrableAmount = _deposited[account];
}
}
function _updateWithdrawn(address account, uint256 amount, uint256 lockedAmount) internal {
uint256 availableUnvested = _deposited[account] - lockedAmount;
if (amount > availableUnvested && address(vestingDistributor) != address(0)) {
vestingDistributor.updateWithdrawn(account, amount - availableUnvested);
}
}
function _updateRates() internal {
uint256 _totalBorrowed = totalBorrowed();
uint256 _totalSupply = totalSupply();
if(address(ratesCalculator) == address(0)) revert PoolFrozen();
depositIndex.setRate(ratesCalculator.calculateDepositRate(_totalBorrowed, _totalSupply));
borrowIndex.setRate(ratesCalculator.calculateBorrowingRate(_totalBorrowed, _totalSupply));
}
function _accumulateDepositInterest(address user) internal {
uint256 interest = balanceOf(user) - _deposited[user];
_mint(user, interest);
_deposited[address(this)] = balanceOf(address(this));
emit InterestCollected(user, interest, block.timestamp);
depositIndex.updateUser(user);
depositIndex.updateUser(address(this));
}
function _accumulateBorrowingInterest(address user) internal {
borrowed[user] = getBorrowed(user);
borrowed[address(this)] = getBorrowed(address(this));
borrowIndex.updateUser(user);
borrowIndex.updateUser(address(this));
}
/* ========== OVERRIDDEN FUNCTIONS ========== */
function renounceOwnership() public virtual override {}
/* ========== MODIFIERS ========== */
modifier canBorrow() {
if(address(borrowersRegistry) == address(0)) revert BorrowersRegistryNotConfigured();
if(!borrowersRegistry.canBorrow(msg.sender)) revert NotAuthorizedToBorrow();
if(totalSupply() == 0) revert InsufficientPoolFunds();
_;
if((totalBorrowed() * 1e18) / totalSupply() > getMaxPoolUtilisationForBorrowing()) revert MaxPoolUtilisationBreached();
}
/* ========== EVENTS ========== */
/**
* @dev emitted after the user deposits funds
* @param user the address performing the deposit
* @param value the amount deposited
* @param timestamp of the deposit
**/
event Deposit(address indexed user, uint256 value, uint256 timestamp);
/**
* @dev emitted after the user deposits funds on behalf of other user
* @param user the address performing the deposit
* @param _of the address on behalf of which the deposit is being performed
* @param value the amount deposited
* @param timestamp of the deposit
**/
event DepositOnBehalfOf(address indexed user, address indexed _of, uint256 value, uint256 timestamp);
/**
* @dev emitted after the user withdraws funds
* @param user the address performing the withdrawal
* @param value the amount withdrawn
* @param timestamp of the withdrawal
**/
event Withdrawal(address indexed user, uint256 value, uint256 timestamp);
/**
* @dev emitted after the user borrows funds
* @param user the address that borrows
* @param value the amount borrowed
* @param timestamp time of the borrowing
**/
event Borrowing(address indexed user, uint256 value, uint256 timestamp);
/**
* @dev emitted after the user repays debt
* @param user the address that repays debt
* @param value the amount repaid
* @param timestamp of the repayment
**/
event Repayment(address indexed user, uint256 value, uint256 timestamp);
/**
* @dev emitted after accumulating deposit interest
* @param user the address that the deposit interest is accumulated for
* @param value the amount that interest is calculated from
* @param timestamp of the interest accumulation
**/
event InterestCollected(address indexed user, uint256 value, uint256 timestamp);
/**
* @dev emitted after changing borrowers registry
* @param registry an address of the newly set borrowers registry
* @param timestamp of the borrowers registry change
**/
event BorrowersRegistryChanged(address indexed registry, uint256 timestamp);
/**
* @dev emitted after changing rates calculator
* @param calculator an address of the newly set rates calculator
* @param timestamp of the borrowers registry change
**/
event RatesCalculatorChanged(address indexed calculator, uint256 timestamp);
/**
* @dev emitted after changing pool rewarder
* @param poolRewarder an address of the newly set pool rewarder
* @param timestamp of the pool rewarder change
**/
event PoolRewarderChanged(address indexed poolRewarder, uint256 timestamp);
/**
* @dev emitted after changing vesting distributor
* @param distributor an address of the newly set distributor
* @param timestamp of the distributor change
**/
event VestingDistributorChanged(address indexed distributor, uint256 timestamp);
/* ========== ERRORS ========== */
// Only authorized accounts may borrow
error NotAuthorizedToBorrow();
// Borrowers registry is not configured
error BorrowersRegistryNotConfigured();
// Pool is frozen
error PoolFrozen();
// Not enough funds in the pool.
error InsufficientPoolFunds();
// Insufficient pool surplus to cover the requested recover amount
error InsufficientSurplus();
// Address (`target`) must be a contract
// @param target target address that must be a contract
error NotAContract(address target);
// ERC20: Spender cannot be a zero address
error SpenderZeroAddress();
// ERC20: cannot transfer to the zero address
error TransferToZeroAddress();
// ERC20: cannot transfer to the pool address
error TransferToPoolAddress();
// ERC20: transfer amount (`amount`) exceeds balance (`balance`)
/// @param amount transfer amount
/// @param balance available balance
error TransferAmountExceedsBalance(uint256 amount, uint256 balance);
// ERC20: requested transfer amount (`requested`) exceeds current allowance (`allowance`)
/// @param requested requested transfer amount
/// @param allowance current allowance
error InsufficientAllowance(uint256 requested, uint256 allowance);
// This deposit operation would result in a breach of the totalSupplyCap
error TotalSupplyCapBreached();
// The deposit amount must be > 0
error ZeroDepositAmount();
// ERC20: cannot mint to the zero address
error MintToAddressZero();
// ERC20: burn amount exceeds current pool indexed balance
error BurnAmountExceedsBalance();
// ERC20: burn amount exceeds current amount available (including vesting)
error BurnAmountExceedsAvailableForUser();
// Trying to repay more than was borrowed
error RepayingMoreThanWasBorrowed();
// getMaxPoolUtilisationForBorrowing was breached
error MaxPoolUtilisationBreached();
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuardUpgradeable is Initializable {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
function __ReentrancyGuard_init() internal onlyInitializing {
__ReentrancyGuard_init_unchained();
}
function __ReentrancyGuard_init_unchained() internal onlyInitializing {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.6.0;
// helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false
library TransferHelper {
function safeApprove(
address token,
address to,
uint256 value
) internal {
// bytes4(keccak256(bytes('approve(address,uint256)')));
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value));
require(
success && (data.length == 0 || abi.decode(data, (bool))),
'TransferHelper::safeApprove: approve failed'
);
}
function safeTransfer(
address token,
address to,
uint256 value
) internal {
// bytes4(keccak256(bytes('transfer(address,uint256)')));
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value));
require(
success && (data.length == 0 || abi.decode(data, (bool))),
'TransferHelper::safeTransfer: transfer failed'
);
}
function safeTransferFrom(
address token,
address from,
address to,
uint256 value
) internal {
// bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));
require(
success && (data.length == 0 || abi.decode(data, (bool))),
'TransferHelper::transferFrom: transferFrom failed'
);
}
function safeTransferETH(address to, uint256 value) internal {
(bool success, ) = to.call{value: value}(new bytes(0));
require(success, 'TransferHelper::safeTransferETH: ETH transfer failed');
}
}
// SPDX-License-Identifier: BUSL-1.1
// Last deployed from commit: 9f1e1bba11316303810f35a4440e20bc5ad0ef86;
pragma solidity 0.8.17;
import "./Pool.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
/**
* @title VestingDistributor
* @dev Contract distributing pool's spread among vesting participants.
*/
contract VestingDistributor {
Pool immutable pool;
IERC20Metadata immutable poolToken;
address keeper;
address pendingKeeper;
uint256 totalLockedMultiplied;
address[] public participants;
mapping(address => uint256) public locked;
mapping(address => uint256) public withdrawn;
mapping(address => uint256) public unvestingTime;
mapping(address => uint256) public unlockTimestamp;
mapping(address => uint256) public multiplier;
mapping(uint256 => uint256) rewardAmount;
mapping(uint256 => mapping(address => bool)) rewardDistributed;
mapping(uint256 => uint256) numRewardDistributed;
uint256 lastUpdated;
uint256 updateInterval = 6 hours;
uint256 public constant ONE_DAY = 24 * 3600; // 24 hours * 3600 seconds
uint256 public constant MIN_VESTING_TIME = ONE_DAY; // 1 day * 24 hours * 3600 seconds
uint256 public constant MAX_VESTING_TIME = 30 * ONE_DAY; // 30 days * 24 hours * 3600 seconds
modifier onlyPool() {
require(msg.sender == address(pool), "Unauthorized: onlyPool");
_;
}
modifier onlyKeeper() {
require(msg.sender == keeper, "Unauthorized: onlyKeeper");
_;
}
modifier onlyPendingKeeper() {
require(msg.sender == pendingKeeper, "Unauthorized: onlyPendingKeeper");
_;
}
constructor(address poolAddress, address keeperAddress) {
pool = Pool(poolAddress);
poolToken = IERC20Metadata(pool.tokenAddress());
keeper = keeperAddress;
lastUpdated = block.timestamp;
}
function transferKeeper(address keeperAddress) external onlyKeeper {
pendingKeeper = keeperAddress;
}
function acceptKeeper() external onlyPendingKeeper {
keeper = pendingKeeper;
pendingKeeper = address(0);
}
/**
* Add vesting participant (msg.sender)
**/
function startVesting(uint256 amount, uint256 time) public {
if (time < MIN_VESTING_TIME || time > MAX_VESTING_TIME) revert InvalidVestingTime();
if (pool.balanceOf(msg.sender) < amount) revert InsufficientPoolBalance();
if (locked[msg.sender] > 0 || unvestingTime[msg.sender] > 0) revert AlreadyLocked();
participants.push(msg.sender);
locked[msg.sender] = amount;
unvestingTime[msg.sender] = time;
uint256 _multiplier = getMultiplier(time);
multiplier[msg.sender] = _multiplier;
totalLockedMultiplied += amount * _multiplier / 1e18;
}
/**
* Increase vesting of msg.sender
**/
function increaseVesting(uint256 amount) public {
if (locked[msg.sender] == 0 || unvestingTime[msg.sender] == 0) revert UserNotLocked();
if (pool.balanceOf(msg.sender) < locked[msg.sender] + amount) revert InsufficientPoolBalance();
if (unlockTimestamp[msg.sender] > 0) revert TooLate();
locked[msg.sender] += amount;
totalLockedMultiplied += amount * multiplier[msg.sender] / 1e18;
}
/**
* Unlock funds - start of unvesting
**/
function unlock() public {
if (locked[msg.sender] == 0 || unvestingTime[msg.sender] == 0) revert UserNotLocked();
unlockTimestamp[msg.sender] = block.timestamp;
}
/**
* Check how much user can withdraw
**/
function availableToWithdraw(address account) public view returns (uint256) {
if (locked[account] == 0 || unvestingTime[account] == 0) revert UserNotLocked();
if (unlockTimestamp[account] == 0) revert UserLocked();
uint256 timeFromUnlock = block.timestamp - unlockTimestamp[account];
if (timeFromUnlock > unvestingTime[account]) timeFromUnlock = unvestingTime[account];
uint256 initialUnlock = ONE_DAY * locked[account] / (unvestingTime[account] + ONE_DAY); // 1D / vesting days * locked amount
return initialUnlock + timeFromUnlock * (locked[account] - initialUnlock) / unvestingTime[account];
}
/**
* Gets pool's spread and distributes among vesting participants.
* @dev _totalLoans total value of loans
* @dev _totalDeposits total value of deposits
**/
//TODO: run periodically by bots
function distributeRewards(uint256 fromIndex, uint256 toIndex) public onlyKeeper {
if (block.timestamp < lastUpdated + updateInterval) revert DistributeTooEarly();
(fromIndex, toIndex) = fromIndex < toIndex ? (fromIndex, toIndex) : (toIndex, fromIndex);
toIndex = toIndex < participants.length ? toIndex : participants.length - 1;
if (rewardAmount[lastUpdated] == 0) {
rewardAmount[lastUpdated] = pool.balanceOf(address(this));
}
uint256 rewards = rewardAmount[lastUpdated];
for (uint256 i = fromIndex; i <= toIndex; i++) {
address participant = participants[i];
if (rewardDistributed[lastUpdated][participant]) {
continue;
}
//TODO: right now we distribute rewards even when someone start withdrawing. The rewards should depend on the amount which is still locked.
uint256 participantReward = rewards * (locked[participant] - withdrawn[participant]) * multiplier[participant] / 1e18 / totalLockedMultiplied;
pool.transfer(participant, participantReward);
rewardDistributed[lastUpdated][participant] = true;
++numRewardDistributed[lastUpdated];
if (numRewardDistributed[lastUpdated] == participants.length) {
lastUpdated = block.timestamp;
}
}
}
//TODO: run periodically by bots
function updateParticipants(uint256 fromIndex, uint256 toIndex) public onlyKeeper {
(fromIndex, toIndex) = fromIndex < toIndex ? (fromIndex, toIndex) : (toIndex, fromIndex);
toIndex = toIndex < participants.length ? toIndex : participants.length - 1;
for (uint256 i = fromIndex; i <= toIndex;) {
address participant = participants[i];
if (unlockTimestamp[participant] > 0 && (block.timestamp - unlockTimestamp[participant]) > unvestingTime[participant]) {
totalLockedMultiplied -= (locked[participant] - withdrawn[participant]) * multiplier[participant] / 1e18;
unvestingTime[participant] = 0;
locked[participant] = 0;
unlockTimestamp[participant] = 0;
withdrawn[participant] = 0;
multiplier[participant] = 0;
participants[i] = participants[participants.length - 1];
participants.pop();
--toIndex;
} else {
++i;
}
}
}
function updateWithdrawn(address account, uint256 amount) public onlyPool {
withdrawn[account] += amount;
if (withdrawn[account] > locked[account]) {
revert WithdrawMoreThanLocked();
}
totalLockedMultiplied -= amount * multiplier[account] / 1e18;
}
function getMultiplier(uint256 time) public pure returns (uint256){
if (time >= 30 * ONE_DAY) return 2e18; // min. 30 days
if (time >= 29 * ONE_DAY) return 1.99e18; // min. 29 days
if (time >= 28 * ONE_DAY) return 1.98e18; // min. 28 days
if (time >= 27 * ONE_DAY) return 1.97e18; // min. 27 days
if (time >= 26 * ONE_DAY) return 1.96e18; // min. 26 days
if (time >= 25 * ONE_DAY) return 1.948e18; // min. 25 days
if (time >= 24 * ONE_DAY) return 1.936e18; // min. 24 days
if (time >= 23 * ONE_DAY) return 1.924e18; // min. 23 days
if (time >= 22 * ONE_DAY) return 1.912e18; // min. 22 days
if (time >= 21 * ONE_DAY) return 1.9e18; // min. 21 days
if (time >= 20 * ONE_DAY) return 1.885e18; // min. 20 days
if (time >= 19 * ONE_DAY) return 1.871e18; // min. 19 days
if (time >= 18 * ONE_DAY) return 1.856e18; // min. 18 days
if (time >= 17 * ONE_DAY) return 1.841e18; // min. 17 days
if (time >= 16 * ONE_DAY) return 1.824e18; // min. 16 days
if (time >= 15 * ONE_DAY) return 1.806e18; // min. 15 days
if (time >= 14 * ONE_DAY) return 1.788e18; // min. 14 days
if (time >= 13 * ONE_DAY) return 1.768e18; // min. 13 days
if (time >= 12 * ONE_DAY) return 1.746e18; // min. 12 days
if (time >= 11 * ONE_DAY) return 1.723e18; // min. 11 days
if (time >= 10 * ONE_DAY) return 1.698e18; // min. 10 days
if (time >= 9 * ONE_DAY) return 1.67e18; // min. 9 days
if (time >= 8 * ONE_DAY) return 1.64e18; // min. 8 days
if (time >= 7 * ONE_DAY) return 1.605e18; // min. 7 days
if (time >= 6 * ONE_DAY) return 1.566e18; // min. 6 days
if (time >= 5 * ONE_DAY) return 1.521e18; // min. 5 days
if (time >= 4 * ONE_DAY) return 1.468e18; // min. 4 days
if (time >= 3 * ONE_DAY) return 1.4e18; // min. 3 days
if (time >= 2 * ONE_DAY) return 1.32e18; // min. 2 days
if (time >= 1 * ONE_DAY) return 1.2e18; // min. 1 day
return 1e18;
}
// Trying to distribute before the update interval has been reached
error DistributeTooEarly();
// Already participates in vesting
error AlreadyLocked();
// Vesting time is out of range
error InvalidVestingTime();
// Insufficient user balance of pool's tokens
error InsufficientPoolBalance();
// User not locked
error UserNotLocked();
// User funds are locked
error UserLocked();
// Too late
error TooLate();
// Withdraw amount is more than locked
error WithdrawMoreThanLocked();
}
{
"compilationTarget": {
"contracts/DepositSwapArbitrum.sol": "DepositSwapArbitrum"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 10
},
"remappings": []
}
[{"inputs":[],"name":"ARB","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ARB_POOL_TUP","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BTC","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BTC_POOL_TUP","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DAI","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DAI_POOL_TUP","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"USDC","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"USDC_POOL_TUP","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH_POOL_TUP","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountFromToken","type":"uint256"},{"internalType":"uint256","name":"minAmountToToken","type":"uint256"},{"internalType":"address[]","name":"path","type":"address[]"},{"internalType":"address[]","name":"adapters","type":"address[]"}],"name":"depositSwap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"address","name":"fromToken","type":"address"},{"internalType":"uint256","name":"fromAmount","type":"uint256"},{"internalType":"address","name":"toToken","type":"address"},{"internalType":"uint256","name":"minOut","type":"uint256"}],"name":"depositSwapParaSwap","outputs":[],"stateMutability":"nonpayable","type":"function"}]