// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.2) (utils/Base64.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides a set of functions to operate with Base64 strings.
*/
library Base64 {
/**
* @dev Base64 Encoding/Decoding Table
* See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
*/
string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
/**
* @dev Converts a `bytes` to its Bytes64 `string` representation.
*/
function encode(bytes memory data) internal pure returns (string memory) {
return _encode(data, _TABLE, true);
}
/**
* @dev Converts a `bytes` to its Bytes64Url `string` representation.
* Output is not padded with `=` as specified in https://www.rfc-editor.org/rfc/rfc4648[rfc4648].
*/
function encodeURL(bytes memory data) internal pure returns (string memory) {
return _encode(data, _TABLE_URL, false);
}
/**
* @dev Internal table-agnostic conversion
*/
function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) {
/**
* Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
* https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
*/
if (data.length == 0) return "";
// If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
// multiplied by 4 so that it leaves room for padding the last chunk
// - `data.length + 2` -> Prepare for division rounding up
// - `/ 3` -> Number of 3-bytes chunks (rounded up)
// - `4 *` -> 4 characters for each chunk
// This is equivalent to: 4 * Math.ceil(data.length / 3)
//
// If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
// opposed to when padding is required to fill the last chunk.
// - `4 * data.length` -> 4 characters for each chunk
// - ` + 2` -> Prepare for division rounding up
// - `/ 3` -> Number of 3-bytes chunks (rounded up)
// This is equivalent to: Math.ceil((4 * data.length) / 3)
uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3;
string memory result = new string(resultLength);
assembly ("memory-safe") {
// Prepare the lookup table (skip the first "length" byte)
let tablePtr := add(table, 1)
// Prepare result pointer, jump over length
let resultPtr := add(result, 0x20)
let dataPtr := data
let endPtr := add(data, mload(data))
// In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
// set it to zero to make sure no dirty bytes are read in that section.
let afterPtr := add(endPtr, 0x20)
let afterCache := mload(afterPtr)
mstore(afterPtr, 0x00)
// Run over the input, 3 bytes at a time
for {
} lt(dataPtr, endPtr) {
} {
// Advance 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// To write each character, shift the 3 byte (24 bits) chunk
// 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
// and apply logical AND with 0x3F to bitmask the least significant 6 bits.
// Use this as an index into the lookup table, mload an entire word
// so the desired character is in the least significant byte, and
// mstore8 this least significant byte into the result and continue.
mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
}
// Reset the value that was cached
mstore(afterPtr, afterCache)
if withPadding {
// When data `bytes` is not exactly 3 bytes long
// it is padded with `=` characters at the end
switch mod(mload(data), 3)
case 1 {
mstore8(sub(resultPtr, 1), 0x3d)
mstore8(sub(resultPtr, 2), 0x3d)
}
case 2 {
mstore8(sub(resultPtr, 1), 0x3d)
}
}
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/ERC721.sol)
pragma solidity ^0.8.20;
import {IERC721} from "./IERC721.sol";
import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
import {ERC721Utils} from "./utils/ERC721Utils.sol";
import {Context} from "../../utils/Context.sol";
import {Strings} from "../../utils/Strings.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including
* the Metadata extension, but not including the Enumerable extension, which is available separately as
* {ERC721Enumerable}.
*/
abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
using Strings for uint256;
// Token name
string private _name;
// Token symbol
string private _symbol;
mapping(uint256 tokenId => address) private _owners;
mapping(address owner => uint256) private _balances;
mapping(uint256 tokenId => address) private _tokenApprovals;
mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC721).interfaceId ||
interfaceId == type(IERC721Metadata).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner) public view virtual returns (uint256) {
if (owner == address(0)) {
revert ERC721InvalidOwner(address(0));
}
return _balances[owner];
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId) public view virtual returns (address) {
return _requireOwned(tokenId);
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
_requireOwned(tokenId);
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return "";
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual {
_approve(to, tokenId, _msgSender());
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId) public view virtual returns (address) {
_requireOwned(tokenId);
return _getApproved(tokenId);
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(address from, address to, uint256 tokenId) public virtual {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
// Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
// (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
address previousOwner = _update(to, tokenId, _msgSender());
if (previousOwner != from) {
revert ERC721IncorrectOwner(from, tokenId, previousOwner);
}
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) public {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
transferFrom(from, to, tokenId);
ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
}
/**
* @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
*
* IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
* core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances
* consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
* `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
*/
function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
return _owners[tokenId];
}
/**
* @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
*/
function _getApproved(uint256 tokenId) internal view virtual returns (address) {
return _tokenApprovals[tokenId];
}
/**
* @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
* particular (ignoring whether it is owned by `owner`).
*
* WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
* assumption.
*/
function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
return
spender != address(0) &&
(owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
}
/**
* @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
* Reverts if:
* - `spender` does not have approval from `owner` for `tokenId`.
* - `spender` does not have approval to manage all of `owner`'s assets.
*
* WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
* assumption.
*/
function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
if (!_isAuthorized(owner, spender, tokenId)) {
if (owner == address(0)) {
revert ERC721NonexistentToken(tokenId);
} else {
revert ERC721InsufficientApproval(spender, tokenId);
}
}
}
/**
* @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
*
* NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
* a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
*
* WARNING: Increasing an account's balance using this function tends to be paired with an override of the
* {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
* remain consistent with one another.
*/
function _increaseBalance(address account, uint128 value) internal virtual {
unchecked {
_balances[account] += value;
}
}
/**
* @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
* (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
*
* The `auth` argument is optional. If the value passed is non 0, then this function will check that
* `auth` is either the owner of the token, or approved to operate on the token (by the owner).
*
* Emits a {Transfer} event.
*
* NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
*/
function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
address from = _ownerOf(tokenId);
// Perform (optional) operator check
if (auth != address(0)) {
_checkAuthorized(from, auth, tokenId);
}
// Execute the update
if (from != address(0)) {
// Clear approval. No need to re-authorize or emit the Approval event
_approve(address(0), tokenId, address(0), false);
unchecked {
_balances[from] -= 1;
}
}
if (to != address(0)) {
unchecked {
_balances[to] += 1;
}
}
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
return from;
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/
function _mint(address to, uint256 tokenId) internal {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
address previousOwner = _update(to, tokenId, address(0));
if (previousOwner != address(0)) {
revert ERC721InvalidSender(address(0));
}
}
/**
* @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
*
* Requirements:
*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 tokenId) internal {
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
_mint(to, tokenId);
ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
* This is an internal function that does not check if the sender is authorized to operate on the token.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal {
address previousOwner = _update(address(0), tokenId, address(0));
if (previousOwner == address(0)) {
revert ERC721NonexistentToken(tokenId);
}
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(address from, address to, uint256 tokenId) internal {
if (to == address(0)) {
revert ERC721InvalidReceiver(address(0));
}
address previousOwner = _update(to, tokenId, address(0));
if (previousOwner == address(0)) {
revert ERC721NonexistentToken(tokenId);
} else if (previousOwner != from) {
revert ERC721IncorrectOwner(from, tokenId, previousOwner);
}
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
* are aware of the ERC-721 standard to prevent tokens from being forever locked.
*
* `data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is like {safeTransferFrom} in the sense that it invokes
* {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `tokenId` token must exist and be owned by `from`.
* - `to` cannot be the zero address.
* - `from` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(address from, address to, uint256 tokenId) internal {
_safeTransfer(from, to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
_transfer(from, to, tokenId);
ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
* either the owner of the token, or approved to operate on all tokens held by this owner.
*
* Emits an {Approval} event.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address to, uint256 tokenId, address auth) internal {
_approve(to, tokenId, auth, true);
}
/**
* @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
* emitted in the context of transfers.
*/
function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
// Avoid reading the owner unless necessary
if (emitEvent || auth != address(0)) {
address owner = _requireOwned(tokenId);
// We do not use _isAuthorized because single-token approvals should not be able to call approve
if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
revert ERC721InvalidApprover(auth);
}
if (emitEvent) {
emit Approval(owner, to, tokenId);
}
}
_tokenApprovals[tokenId] = to;
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Requirements:
* - operator can't be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
if (operator == address(0)) {
revert ERC721InvalidOperator(operator);
}
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
* Returns the owner.
*
* Overrides to ownership logic should be done to {_ownerOf}.
*/
function _requireOwned(uint256 tokenId) internal view returns (address) {
address owner = _ownerOf(tokenId);
if (owner == address(0)) {
revert ERC721NonexistentToken(tokenId);
}
return owner;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/ERC721Enumerable.sol)
pragma solidity ^0.8.20;
import {ERC721} from "../ERC721.sol";
import {IERC721Enumerable} from "./IERC721Enumerable.sol";
import {IERC165} from "../../../utils/introspection/ERC165.sol";
/**
* @dev This implements an optional extension of {ERC721} defined in the ERC that adds enumerability
* of all the token ids in the contract as well as all token ids owned by each account.
*
* CAUTION: {ERC721} extensions that implement custom `balanceOf` logic, such as {ERC721Consecutive},
* interfere with enumerability and should not be used together with {ERC721Enumerable}.
*/
abstract contract ERC721Enumerable is ERC721, IERC721Enumerable {
mapping(address owner => mapping(uint256 index => uint256)) private _ownedTokens;
mapping(uint256 tokenId => uint256) private _ownedTokensIndex;
uint256[] private _allTokens;
mapping(uint256 tokenId => uint256) private _allTokensIndex;
/**
* @dev An `owner`'s token query was out of bounds for `index`.
*
* NOTE: The owner being `address(0)` indicates a global out of bounds index.
*/
error ERC721OutOfBoundsIndex(address owner, uint256 index);
/**
* @dev Batch mint is not allowed.
*/
error ERC721EnumerableForbiddenBatchMint();
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC721) returns (bool) {
return interfaceId == type(IERC721Enumerable).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721Enumerable-tokenOfOwnerByIndex}.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual returns (uint256) {
if (index >= balanceOf(owner)) {
revert ERC721OutOfBoundsIndex(owner, index);
}
return _ownedTokens[owner][index];
}
/**
* @dev See {IERC721Enumerable-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _allTokens.length;
}
/**
* @dev See {IERC721Enumerable-tokenByIndex}.
*/
function tokenByIndex(uint256 index) public view virtual returns (uint256) {
if (index >= totalSupply()) {
revert ERC721OutOfBoundsIndex(address(0), index);
}
return _allTokens[index];
}
/**
* @dev See {ERC721-_update}.
*/
function _update(address to, uint256 tokenId, address auth) internal virtual override returns (address) {
address previousOwner = super._update(to, tokenId, auth);
if (previousOwner == address(0)) {
_addTokenToAllTokensEnumeration(tokenId);
} else if (previousOwner != to) {
_removeTokenFromOwnerEnumeration(previousOwner, tokenId);
}
if (to == address(0)) {
_removeTokenFromAllTokensEnumeration(tokenId);
} else if (previousOwner != to) {
_addTokenToOwnerEnumeration(to, tokenId);
}
return previousOwner;
}
/**
* @dev Private function to add a token to this extension's ownership-tracking data structures.
* @param to address representing the new owner of the given token ID
* @param tokenId uint256 ID of the token to be added to the tokens list of the given address
*/
function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private {
uint256 length = balanceOf(to) - 1;
_ownedTokens[to][length] = tokenId;
_ownedTokensIndex[tokenId] = length;
}
/**
* @dev Private function to add a token to this extension's token tracking data structures.
* @param tokenId uint256 ID of the token to be added to the tokens list
*/
function _addTokenToAllTokensEnumeration(uint256 tokenId) private {
_allTokensIndex[tokenId] = _allTokens.length;
_allTokens.push(tokenId);
}
/**
* @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that
* while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for
* gas optimizations e.g. when performing a transfer operation (avoiding double writes).
* This has O(1) time complexity, but alters the order of the _ownedTokens array.
* @param from address representing the previous owner of the given token ID
* @param tokenId uint256 ID of the token to be removed from the tokens list of the given address
*/
function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private {
// To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and
// then delete the last slot (swap and pop).
uint256 lastTokenIndex = balanceOf(from);
uint256 tokenIndex = _ownedTokensIndex[tokenId];
mapping(uint256 index => uint256) storage _ownedTokensByOwner = _ownedTokens[from];
// When the token to delete is the last token, the swap operation is unnecessary
if (tokenIndex != lastTokenIndex) {
uint256 lastTokenId = _ownedTokensByOwner[lastTokenIndex];
_ownedTokensByOwner[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
_ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
}
// This also deletes the contents at the last position of the array
delete _ownedTokensIndex[tokenId];
delete _ownedTokensByOwner[lastTokenIndex];
}
/**
* @dev Private function to remove a token from this extension's token tracking data structures.
* This has O(1) time complexity, but alters the order of the _allTokens array.
* @param tokenId uint256 ID of the token to be removed from the tokens list
*/
function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private {
// To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and
// then delete the last slot (swap and pop).
uint256 lastTokenIndex = _allTokens.length - 1;
uint256 tokenIndex = _allTokensIndex[tokenId];
// When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so
// rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding
// an 'if' statement (like in _removeTokenFromOwnerEnumeration)
uint256 lastTokenId = _allTokens[lastTokenIndex];
_allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
_allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
// This also deletes the contents at the last position of the array
delete _allTokensIndex[tokenId];
_allTokens.pop();
}
/**
* See {ERC721-_increaseBalance}. We need that to account tokens that were minted in batch
*/
function _increaseBalance(address account, uint128 amount) internal virtual override {
if (amount > 0) {
revert ERC721EnumerableForbiddenBatchMint();
}
super._increaseBalance(account, amount);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import {IERC721Receiver} from "../IERC721Receiver.sol";
import {IERC721Errors} from "../../../interfaces/draft-IERC6093.sol";
/**
* @dev Library that provide common ERC-721 utility functions.
*
* See https://eips.ethereum.org/EIPS/eip-721[ERC-721].
*
* _Available since v5.1._
*/
library ERC721Utils {
/**
* @dev Performs an acceptance check for the provided `operator` by calling {IERC721-onERC721Received}
* on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
*
* The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
* Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value to accept
* the transfer.
*/
function checkOnERC721Received(
address operator,
address from,
address to,
uint256 tokenId,
bytes memory data
) internal {
if (to.code.length > 0) {
try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) {
if (retval != IERC721Receiver.onERC721Received.selector) {
// Token rejected
revert IERC721Errors.ERC721InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-IERC721Receiver implementer
revert IERC721Errors.ERC721InvalidReceiver(to);
} else {
assembly ("memory-safe") {
revert(add(32, reason), mload(reason))
}
}
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC-721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.20;
/**
* @title ERC-721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC-721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be
* reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
// SPDX-License-Identifier: MIT
// Compatible with OpenZeppelin Contracts ^5.0.0
pragma solidity ^0.8.26;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/utils/Base64.sol";
import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import "@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol";
contract TRW is ERC721, ERC721Enumerable, Ownable {
uint256 private _nextTokenId;
string public b64fontFam =
"d09GMk9UVE8AABZkAAkAAAAAGkgAABYfAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAADa1lBmAARAE2AiQDPgQGBYJcByAbohkRFbv/i+yLhLJNDk1LQxlFk9TaIHbdNfnf+d3weOvf1hgPW1y16BM7d9YXiJ/n56wf565l9e7uT+bDmFTGO9uOVp06FPEAQSNqEEMD3iJealTcaMfsvPSkncbJ5//XAP/hBAPAf/7e6R9LH+BfJJ9CfLd9/qAoe9jYVrY2SRbYmBhgFFBgiWGjeh2B/O6AAAI/AYmDtJiXX549O73oglUy8eeidOgnX2VET/zgPMkwTzHSZzD4z0/rseZh7+ef6X4W8L+C8O/B5/997h9PwNCT/3jtvMnN3FB1xgscI0kArewJnsyvnwZmQLOffATffHrsmZxnrj2reM6S8FcyibT/Yd4fkHvlT48ET/2lhqX+66W/Nf498R+X/tn8r1aa8+8XGCVz6flnumm84PmHI5iC5xAwyyh6sQ94EyAvhSI7D9jnRuBbyLMRRIA9msJdfzEBWEhMeiv2GYW88YSR6zRl8pvIjozvmDySMA4MTVk78tzot/TN8fXYB4wJ0Acyqerq8RTsQ0jvCOj9eD3Wm5rw5rxnQRdRee7bo8++qf3VmvUCKzbKSQeqwLTWeMwNaDU0QZ8RZ0dBApsNYBVDPZ439mNHWPEoPU4wldgUz2JanIyJIBO6pxKoKaG4W4bX9LhzZA4wYzAGmtoYNh+vwLkGSDdCF/hW7MGOGPuoGzOc+fjFoxoSb3KZIoMvTdAAmCRIBEksuRdZfDQNIUwaRxGfgDfWlpbFs+J+ZgwcuH0vcOVj8YeExeTBWTpnrkz0RdJqCaplBgTS1E0zhIWzYSSI2mDQPu7IELzY2hPdZrk52mJ7cxTi6qbUVhz4YbuChEoKpea8xmagrmR9ICmSSEoL6+zbgsL8ypzMimLu9rjlvzBZNJxZgTMLkPbBHmGn5OffaVrE9O8DDxLBuRh0eYCjV7BxwoYPgcSCcgwmufCMjm/qW/a6iUhUvpAuCfROGvTd02cVVdgzZMYuwoo9ZGiq1On1TnGNy+mUh0k8lxHS6gq/PKzvUvYrel2kscHvb0xqqdG3FNUsaFmgW1ik1OuUch2Js49G0KoHqaC4tbvW794cVTbJGzuiJlLtrrI4OV5nXbXf4fX6DcZIq95Z0+jUtezJ5g2eFmyEFMMQ9mBKYmM3Y5N4c3HOuxj/dQdpW6HeE0kn0QSdy61zcfxylzIcrhcGdoU2RKOu7GY32ZDAj5RHtIn1YotSXL5jhWGKc071p+vLPq8jKenOVA7yNAg3IK5GlQ4xKaqChBVzxSiK2NY5l7nAQz7ywYw2KaqOK/erDndKB1x+52ZrXdcOSZVeb1Pp1QQbxlvROqjCJ2uGMacdnTAtKoQYAnuZMTS9vS8lV2ESmo1Ch0ln0RmMCONA+A5/bMCa1rd0r3lf1+l0FpNNXbowKtQR3BrEGWKc7C1zZqhs3TUPlA989+uhMxODYzNhmhTIt4D56pcNAAHffSftVmo9JvCnEaTfoTqtU6U08YI8C1e53A7IvuENBLMgira270hfqyUyuSViSGI91Md0tCsBzTo089FkUK87qY6GSedRaGC/xXlMxDXUCWzXDtAbIdV7pXAxtOef3XCz41Lrjt4dR6wQ6oYoJfD7oji3KN6sC/v3Bb9cnOsiuHANDmvFxVXIlx+EPNUFAiMi1A4Z2GHiQdQeeOnn3SrASCyEOUGNHZO0uKDoJff/8SLpaVvEwDODKAo8z+lAn7lGT1jMf6/SyI/aLf/LR3h9LaZ8l3495zKghrMENjx6QPFgFa5w4nQnopEzEGu+QUKuiLs2cQjEIFv94zQgPfb9+eNYwtQx4nsncU/bhyjANYCaTij6rYeVYCkWYJUdCU9W/scZVqKwibV2P2Ex6bCN5kIkhkMLWHv4TPjwqpYFzcibjpAaYWZN7MTjjo1n4gNr0Nn7ClATCLMMnVQp60DKJl+qnhqZr8GJEZwuwjkicthrh+RrHADN36lcgIbxJLTnMbeYkSvh6f8wOp6EDNZMfp2hgGxCJ8H/ZtHXvcC9N5ZCclumi0o42PTfCHuvnjmcS3hjyaJcDitWCN1ps3doaKk3Wd2YFxGROhDT7aKT6twknmGec3OSEXS0P6OlR9E1vc6UGxERXAYI7VKP7pnezBXxswZEpBcH0+aI4kAav0RUs6Srlgjfpd7kXcFhtqZ1ucZaQkphEc3m9azbu6ljcEF9aSWBL99Tb3NypCS3hHt6cfN18gaEUO+qoxLXaXXXQoW6hOCILppdok09I7senXsyVU0gEvV0s/6EqisRGztxhQgbJ4qsouZEKGyG6hKoSoQqfE1hURcaHjFeeOW9shEy3yh5F4fjCAx5Fx6iowSHR7pw5gyYCYu8ENGMqx/iD2WgwKrHDQmLWRs7ResyDwfbogUtKy0lPDITfBQdUj+q6lAQenU/GlCbjZPmdyDQ/O4OtAY8XcA4pXB6JxxJg9OEGfZ4NTXsfKyW8urrulfs3Altm0AGySXnr4wDwD4miTHxYUYhGnGaFMO8OAK+wXxtPNS0KjKzYA1hwbnYHponjKJ1R6D0tKFJsYeA45GBrjxntO5KHP7cv4o9hflL8/rud+3gnB/DoekCOYGR12gFdMRNM+ux9KveO56fhpOpeJSWb3SWFiR14zVcAEJoOKlWVaeq95Mto3bHaNIWa9O2vvqWegzaLvSUj0TB/Wkmwey7dGoWH9rvsxeCH9b/eAxzapYJ9fsU977AAA47Aeba7kFgp0lcKNqAmuBrVVgEp0FYg+2If2oA8fVLXCAfgGaY2j81NKZNyUH+6u0fq1/yfonqoRTlXEMbhAv6y1uTfcVNBEsBRhP2uYUJc0ebvg2d/Pn7XiYuHoUtmNMEhJhGg0Egg+t5xFTMs5RwWMwgpjVt8O5WN7Ezr2NgEujE5BZTQyeMv/hmBUI/LbnD+zqqCXk2lYclXku0XEMY1eMMirM78ZgMF+VjbH7Hvg5QHAI7TJ7UDnEEeB8AHAJ5ogf0wIP24EMIFKhbgSNnYvw0XMT0ZdCs+HLCeljjpP07CsCi2R6Feuy+BNHthHvj8o377K1QhgJIxzKkEJu3ByNCCEFZfPgjlvFfibftkqfPGbDCKCczcwPYR0ncDMOpJ319aUETmb8PVMc/YjPdnlk6P6wZSJQc/0atWUq4cYJO74PQtVuTShs1a7gcD9ONLvd67u9Rd0gsczLVRIID6Kjnc/X6pHWaG1s5LJgFaykPtAEwyUBr2K5qOamud8Lkhp+GDWn1eCz8oVVZlS8ye7UKXtgOTC2gUjHGET12uHQDD1bGB5X8d6NmljNFoTRWhNusgDQzt7yQFGiBbCNYse9aotdb9EkqoaZHKPysDFfqFypw/+k7uN2YSSRCS4hthmZLgYRVyYQ5uoZKVg1/lp2yzJTKX+rkur0Oc5tuS+lYw6C3FgKB6jLCYo7DGxoCvBbEHUCQ5gmzNx5ITNk+dNG729FQXaurN1RLDSJ9csXKPEHyTOwxDjVAoni04gXsultTbW0wBFwkZHW6fKrWwvmlMoGw8pDVqyKFz4gFueZyeR4XaJe/vHUZUjVFpW9ugAFpqCn/UjZmFnMnFCLe+bpssnxwj3wvEUATCKwDpanT5q311wzdm/F1yW3hrQ1ft9+J7GoZ3NYKyMkr3C3I7UYwE8PESBFDTgHyN3GBmQZ9IVmJ10i6oqmDrYQDOBCbIQ0MYcXGMS4aJ/vgNzMFI66+sg9hJGte8SF6BHNQuvzVvKOhAws9Q9bQFsNZ0bWRk1wSNlgsZRUOQSm7vXNTR2c3eREfUTxt63qRDy+EnekNxdHUjqXcNXrkJrdhkvVFojb4fEnSY44TnpNWgAEMP7XC/CqEodAA/jIohpO3Q9jJNCXvM/nHihkdU07K4E3FBuxWgPNJKtDjEP8iEHktqf6M6mJX6oQsQdHCgYmFCwiq7tBj7tNH2EalVWdNUm7wr1SnFaEOjLdes5HjX1FvmndnwBTwmlok9qkO55TRDoIJ9dRd7rA02rRyp8zndm3uLDN1F9eVGUorCSgxjMrLSy2VnEik01WnJKyYOdaPasotmRWyoobh9qL+/b2pFmkHCXksliCnrdzy06KFQ9M27q5YcG1DNsSm9hKkGvDSom+TJAdBAPqXxAQbYCE9/uBbaI3esY9fsaDn3CuEGRW/TnHlbvychzs1FVvEwOzfDYLLkPnBefB3gw51YNsPtgaQQ/nhexN++f0+UujPQdsUvMXchVmYGY8k8ZzYKaopdOS7k4IeT5BT3qgp11RaNNLE2QnFXFu7voq4Q8amENtTaNRyJJ5qe5gdCljcoaRogtVYbtVw1BpDl4fTawt63A3acEuNTlFXItSZZCTSaJIakrRylSaRxXBii2njENK55d7GtMOb+jUE5PW0LB8SbeGIpwlR0zIVAUn8IBV19Fk6OHt3iVefTuos+wq7vt/sObEeIqd6p21/ecm0E29dBAG4M37scgIF4fIPpyMCTbEKqTnIF6Ew8v5LJG+lvWk+e/0SLzh7NwMfBHcXA7MJx0IxxjOxjBhoZhggu+IDcAk+ISymNLaBituSq/Nz+/K2+YIRAjgG02P11vo5wZnCavHeCpIOPNqp3C5oas/fmmYpWEc+m0XLapdqxaIAd19Zy0HyIUK0PmW7NLqVVGeGl4kSwSqmjpyLnraAemSxKz2HrMYy2tl+dvEA6DA96wGsEAPV2Qa8dR9d+rxnijrtPdD35yOtQeDxWN57zecscOcdSyVwPq6kaPfiibJXPNhJ6usegEbbwQuTULUJ4tZAxRymEPbMhlHv4ey4GnhoJpAH8Hs4oCzJk4nipnw1YTE+xkRL9MVacdEmV70r3EaYU3EDVf3YD6JaujHL83+p1YVtGeu+SZ/0uXSRXqQt5ysVQlOOulLfWtudlktsFqcu8ecLGFEIOjCd7Ub9nvFBjAIrjIfEpVCwAipw4qc2TMpAD5TgSGw569xMJHhbsloqunRNpaSjqOL9deHTB9a3zKlFei9YjqRFRcPr+anV80wYNKB4Xfm+d3rondSjrt/GXSJgbYO0T7/n7IJmIMUNrzDGd5kxMRGKcUS8QppSsN637rBpvzj3M9iwJFsjw+0Eb8Xa0RTth507d4DhQRf6X7WRVFTRtatt3Eji7OjP38NbcTrhMRC9WSVHco5pgl357Q8TyYvYgSJtBww8Fz7rWZOSl2wnIMehVKHTy9lcd76WF2mJDjlbRARE79EqcaW7kuPLH8p27yQsZuXDGHpQ31u2OQ0g5KIJvVIMFX6+6b2rNlC7Ae53YYW3TJJWK4vqhNkmoUFZ7lUbyQRDfEUlGpqTbctVy3SB5sxLtR2+A94frvu/lX8/95vdx/pM9/IOpJ5cMSK9SfT3ewC5NURC4X2ODs6+x1G0pmElk69iOyGwoRZ8auKpDbRH2WlVSwyr7aqdzuO2XUXOUnuBrCm7bFI0c5300+oKmybXXBzmNvr3uY4pSQPavPhWibYGU5e9zUZYcP4qzdE793W4+g2B+Su9BP7uolHHkKKCn5lS1lwzSuAcUlR+ZxBc7+9acCRXND34pl8w5rjnAxsYYBkOa0dBeMaEEGKjmAg2jMBRr6CPj6YbKuxP3BuyUbtNA3Y7yKRgC0KsCnJaIcZKWMyMh30pbtAAib1OoD+81rpOt7apCqw8YYv85rar9Vd775uAmjE8ZdSlUH+ifE08WfcaMa49NhbkaSU8u8z4ZXH99+7Bup/GARq+THIfd6fYXYdm0yK32lPvEPttTtF2a4gHiq0/fZ9ohOkZcmjwOQQyv10N1l/OgPUqpE+sRD/hYxISCJ1HbXvhfmuv4bT2mrFpVu1q26pQcvNbqbL3vV47FjmxiZLMjn2jzr02eX7SenODR5JPHIpgg5KjslWqTQGftV7vq67qdBu0+SSwmgbMkkqbhvhsVo0nSWYUe/hsP3+DsnNI58ktMTe02xuM9h4ClU1UazRYjHrSnKA2lmhtPuKwmq1Wts/Toqhlm1wOu81G7BaDgyPWW+1BTpfoy0BDCVkwhxpqhspMjdZI2KDku60+rcumF5U0OovNapnZEfDU8RQqO2meTZ32oEmtEdntCm2ZMNwWzjeYAh6V0x5ymLs8uQQTQzRoUGodao81YlYodTal06xyq/laW5XNqzNqrURl9jmc7JDZUWWuIiyXiUIhOJlKLIJbvXzAD0MJhjfjy8B9aLITBkVH3+IJ3IrpXehdu3ayaR80kx5J82Ro0u1EiizgiBtQvQQXx0WMSRSfVQnkDsgGtfOU9wTvRN1IqLZPs7vi18BtKYB5cIwZcOQjfEFScCniKIBfGWDZmI95VhSS2dh2aJ09EYd24rBtOGQ+YZbHjlKZU2uyygjfLhCwjWgxi2zGWuP/+a/KrtquEOFmGjJavVVsAwTnaJ9lPQzANKrrz/rBLsHFyXfBvwWiAocadpoPKe68te0jPrJZBRh7APkH0XgB3dhF+4EfVYGstwiEekBeCtwA+Ksh1gXJUvLYiZNocU/9KdswaQ9t1rQlNh3Z3XHGOeYd4+927Q/uGRYdNRzK2SLYy7si/Wnf+bOAQLb1EIoOvYwOHBxFOQkvAeXYQcUdvh/57s/ca0P/E62YK/s8PMeOiipUilHWiIgZORWI+EhMFptEiyN5sgKHWa7DQOk54t5s2dLDzrHxLLk6qcEU8bj6gpcK5Ef0ndYOW3ud3SExq0xc40dRa632VnflMsKCT7GjdL/03BEh8oguyzJXxFabDXI1W5c5Zuljh7RuqS1xzH9wB9tntbQKOdk59dqMpBZoB3uKarCFUCtw5LpIhbWwNputw/RqzOdjQGiW8P08l6TD4Pdvas5pl1tJK6QpIQ1y2ZLRtlAPx4VGPgZzUaNc/UOPXWJQrb06VYhpZWU4olVunezFMzask5R5NlZWtrkuCUF9o4EcHYLplZGvdOBCAmRDEE5YTPFDQBfZo8KIpEpSVefytzZ3NnYV7UlNfX1BT7lTFBCEBCHZeysbF1epgHtZRiB6Ni1yD2sbkkJaQ7lCS9ChpBp+q7UuqdFTlcszEWboo2XUWd6bZhopeLAdpNMvTDiOKzB8N1wM3t51vOp2/RklCGZ2vrsTce6iD0vS7Attq0gzxkNj1GE7lC9cjiWjK2cUrtAvVcwlCkGFoyIRJDekIOVAvRGaHoZSLmEl1k35nU9a/vynh33+BcfpEwhn55POJ1BAwOan1jwBQDZxCFT3hBf6BYipHPCwdMHqxU8cACxYgHT/DgCw9cSJEoBSsRdP31fZBC4ECo4ggiHADUKK4Az1qicW/N9Sknv6Y6dny4kxRJ2xdDwyd+NfP/mVeLriFnhsNLUbfb/3H869Z7o54BXmCmQ7xTOK3xE8lZCtbGgoPTC+Z9CJREGFFCLtVRqBEQhV4riMblRQxDERNOQJ5iRB0IAFCiJmEGGzYXWMBBApnnUIhpDLwj5HgtFHmJv4KP8YYFH6ucWgKtTgR+3at+zcNL1h2yLkRRsYRVy5eVeHR/R28jjd0s/FlmaX58UWW+EgJssSxNplTTuhZRLa4UMNIiO50rNDC4QiZR+8LHwOM/sQkWE3ls7kNtu+/2GvCAA=";
string public b64fontText =
"d09GMk9UVE8AAAssAAkAAAAADlgAAArmAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZV5BmAARAE2AiQDPAQGBYJcByAbtA1RlGxamOxnQU52mh6oNKeSs7P0tyLEnLpcCiqVJ857Q7TNe554UF6sQrSxE6OD1EbXhYtqcIEuItlaFxWHnoEgu/2/SCBx4oEHzond/++dZsvvK38qSD2jBWTTAqEtWXJSAFaB0InkAtCyXUB0e0e5k+Z/OI5Bp3Ky9QWeJBTE/8+8DIqFApYOoLWFlxVsbKD6BKoVK0AF7jU3o+sBa7Jvz8sYagIsMOOmZqlcmFDdeDso9fi5SFS+0EGrB7QOprWiaM2oSF8XX4DwgdEDp2mQrgfZ+iutWN8MACUwA6fLxlu2BnI6j/HcLoDdAgaPmPv/HVflSphhIuwPJZVyGg/EJ+N3qSlUBXWENoH2ih5LP8CwYbQynhAhxG6mBVPO7GMFk6SWr802hkL6cuiKXOA1iL8CYMBzahu/fIj4Uvf4ka1TFBmj4Qau4V6HDHyqz+Xroj81zyzyt22Dx4fgfwDGu8j6AHlggA/XKUzl9W3EpUW7oc566JqjTj/bXYnc+96pqXcAePrbjJN5Z16m6GLtAdrEd2YgiL0AxAiADRPRQeCSGZb+h/LMVE41rR2CHEs1HfeuncCBAH1wrKEXjlpt1EbGZCHTH9hvgc5vXR+7L9I/m3FbszQLXyiQ3YrW1oo7ejGN2mCkvmrd1Kro2LZ6QSE7pc88WoPB6F97Ino26CBbb+1cBObRBInOdK1Fk1kmFvYbVVrBb/phfVDH9a9lnvScVMBTlukwc9DERK5Wp191fvXkK+RwbI0mGQcmXqkzB/YODuq60SbRbYGczlyr9AGoH0y1352K7A/fF8HtIf2GwaaQxEPq4dHDNVGjTFpUmOVc3XbBGReUzrn32FvPO0cQfQ9112YouKHkrtx3Lt1Jo+F7dHOmTnm/UJwmsAPGdxfR7l53yfmnXXr+bcw02M/kb5MowdRHp7pFjHkIY4sYJ4+mIe/9R1SLNih9b5XnRONm2wOj6FYIjgwuQZxiy7WM+ZQmzuzZeygMBvDKVvhizKnfBBhzKxStKJBvkM/d1a5+DRDYvnOA1I9dUQ7U5OfpVx7QLmT6EZ+tv9G1LjHdemBmATMTzcFMcMH9Gwr+/oMEcT7q5Xs9KvmkHsvyZWe/4TmcsoEFVIDLmXKHXM07BrV2DC5n/tPVEwJe4zfUJIgWzd/SJFbgxjDqSa59zEX3haucln4+XlrcmxA01fxFUG8HuSdPdDadf/F9l90gahizBbGItRtk64kIIE9h+feMN0seO1Yg6x/FePDcK266/O6zn0heH4Wrr2gI1a+ehqcSz8t7dsK5x1KZcI5I4sls2tk9KHpZlzTsFq0PvK1tWPUc5Gizp/P10z8gw31vbWoJknymCpqYuQqBvGg/TBcGGpmmb0c1PbtuBA/BRc7QAk53INtp6T/5l3FP8th5D2MaS4GhpbYiJwmaextNy3oz7vWkKfnnJ7xYeKZHkr+dvJxIVsR3J06ePNrC1EtyyNIj0rrfVNG0S15njJDpeLhY/w0m8KIeTP9R5AvmnXeBTa8QLE4lx67OoyD80SaHnC87O3600QivIWZGdciP2xGnun07sWfPvO3bbaDE3moVNmEYHh6uXB6Gah45NNs6hBxwHjmJo34Mtw8BZ244ZO3gi3b1/l5InYogqxEjxo/rAm/8jVYmjFG3Ex8x06uJxu+ZzzucXcr1wnW71kSd6RA8w2RB16HLTu62WwZKYstr9TyVTWjpNexGM95rciFue+V+FCtDmjrwwaBGlwmvxuQ3u+44Lae8Uq7mOf7l0YUXXySS+FzD9qCJoEyg8epIOybxsMnsHnghfmsni6prT+TZCePI6CLhMFPIdOSFFVYif75zVRRX7laVgeGuHRZkYwkNoEs3yBdQ3kG3BymXxvoR4Wyb7PCKNvjFhj7Z2hBuHeqtcgTDN+cihWr40xBs3n31Uyh+rYXJgz/Tbe6Dv8iey281vOlU39yR5tK/AnZXC9kO2W+UvrAuClZcVytJg8IPVdmPPpntGOuOZ8wb9AUCxwcfYSIkNkymvDZnl9oAbwsVCGA5q450y5y6iYu4dpSgC7SiTAcDWbxxWggX0H6Rvp9g/gM/OC1wf/rUet6wVj3Cr4dwfZb6iCXnHhFER0evdI855u6j1C3/W1iswBRQMeiES7Jy9ONJ4vzF2Lt73MrTksqTNqbG2Or/habt5RbjfgYjCoXe8OVU+pIjpL6d3raMENGLu5B28jf4BQmT+MBXIOSb1/za3nBf+6YZ0YtAjLoYPUhiIXHp/qiqNNOkWLnuXpxRD3mNvJeRWCni8jnXhJkKczldq021KcSQ/CvC3J5IyEZUJYwXEqvT/8akvMMwTgTm9NsBM53wZ/B7grAPLDTqbo7sI6buM5n7SsRmwCY6vLsSTmyqleg+ulQjhmRS/kQpwGTk+RdpPMM+cvvka09RJYasLb2rijh0qjZ+B0uFTPMgto7gIr2p87W+D10zRmpRSU9Q7I0vTH9+umO2cWYnh0k3cb+g8i189Cj9HZKXIRUqcRn6or5A2iaxi8AJux5GwKdC6u/3WEFUDpygg+07f71O7N0b7QzcAHkfYOtA+EtqwUvz57iLMsf7r6urXyhUn4I5eubg/kPoLgtqiJn/xgAnqAZRaAfsiBjbzg5pUJSDUNX8Eq8///ZKe6uQqQghFt+aQJOK/9Be9+9PInS/nRWJCBVRyaYZG5Z2adCrbQU2IPEWLMIiO4EjWggyBMIeehK8zW5FAGw4cvTUEvBuGlREkpD6CTqsK+7ZULzitFvWnXXlWStFqfKjsh/Fvsspvq/5fWBZgOVMWPqwEqlybxTZHXtjP/ZFBh3Xl33VwSk1En+iSvhizBIkIgyrRKX8fmbs+NzKCE6ZySl577z7rntNyLQVP40/xsRroxPgftbH1z6QvC1d+8BeKrEpI4/SHKUqZ/b00L8kiM9l2WLmZv+Lx3ymauHLkMk+aBCV3ITzz2UUbCmVu3UhFoPnwI7pcAUX+goi2t3NtVV2CqmVqbEFAbEgSw11eiGLgDpqBZLXWSBI3biMh+g9UbvAO4yLmLUoXusRJ4+oRRMGv4RqQ3rhCzPfPAq/cMhCzTAJ+kAfAur0oqmI9cSG1F6HVsbLG2XJWddmpZjXy2ZdOT0DeQundXRCQe95GA+dJz2iGSxOgSXmFcRN2c2owxLW9wSjWXAcGkeooNne2zCz0JlmSpXrx33nycEL9Smy5NGFSj4vnyg71z6Z6L9gjMK60Dh75NX87v1e0H//umc17IqeclugBbTw7Pppo1IqpLccWC4Z/DF4ToYE2pQf8HFBDigBtd/lPcRAV3u2aBA7acJ/OBFyoTN8CekwjSC5m4JGdJkKXZ2BCUaAWh+xRYCGyHmUIgBAqr4K9oBv/AWWHXcy/xZmgDN4NvX+kQDWBFcygHUiH/+o8FIKFoyYGBMJlTcIW9TX85TYNGI5us7Oqoa5VoK5W8zPtOcb9ML/EXjPJXiz594K1+GzpF5TXQEAjB49DHdWHDiLo9Wb3hLAiD6E+1ag0FGRMpU6q0qqJRZYZbd4ydJIORNqxxcpCq7SVilAFmAFAIIIDmsmwJgBKaUgmQHHSZ1SSuWijtLE6AS9TrvVz+lD0b9lk2ZSckIJqjXKIzRGuxxCYh0aVGvjw5O3/W1h8qUqlCEMb4iH2B7EiocCHW0QSKFoamkYcV2iBmO1kJDXSn7wdeGXEhd+CARMhz8bb6stG7mFLwsAAA==";
uint256 public constant MAX_AMOUNT = 2024;
uint256 public constant WL_PRICE = 0.0404 ether;
uint256 public constant SALE_PRICE = 0.0404 ether;
string private constant RAND_CHARS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
uint256 private constant ALPHABET_SIZE = 26;
uint256 private constant OFFSET = 1000;
address public HIN_ADDRESS = 0xf55dD62034b534e71Cb17EF6E2Bb112e93d6131A;
bool public saleIsActive = false;
bool public whiteListSaleIsActive = false;
mapping(uint256 => uint256) private _hinMints;
string[] public words;
mapping(uint256 => uint256) public random;
mapping(uint256 segment => uint256 tokenId) public segmentAllocated;
mapping(uint256 tokenId => uint256 letterIndex) public isTokenSpecial;
constructor(address initialOwner) ERC721("THREE RANDOM WORDS", "TRW") Ownable(initialOwner) {
numbersSpecial = shuffle(numbersSpecial, block.timestamp);
}
function withdraw() public onlyOwner {
uint256 balance = address(this).balance;
payable(msg.sender).transfer(balance);
}
function setHINAddress(address addr) public onlyOwner {
HIN_ADDRESS = addr;
}
function startSale() public onlyOwner {
saleIsActive = true;
whiteListSaleIsActive = false;
}
function stopSale() public onlyOwner {
saleIsActive = false;
whiteListSaleIsActive = false;
}
function startWhiteListSale() public onlyOwner {
whiteListSaleIsActive = true;
}
function stopWhiteListSale() public onlyOwner {
whiteListSaleIsActive = false;
}
function getSaleState() public view returns (bool[2] memory) {
return [whiteListSaleIsActive, saleIsActive];
}
function setWords(string[] calldata inWords) public onlyOwner {
for (uint256 i = 0; i < inWords.length; i++) {
words.push(inWords[i]);
}
}
function getWordsList() public view returns (string[] memory) {
return words;
}
function getWord1(uint256 tokenId) public view returns (string memory) {
uint256 seed = 123;
return words[uint256(keccak256(abi.encodePacked(tokenId, random[tokenId], seed))) % words.length];
}
function getWord2(uint256 tokenId) public view returns (string memory) {
uint256 seed = 234;
return words[uint256(keccak256(abi.encodePacked(tokenId, random[tokenId], seed))) % words.length];
}
function getWord3(uint256 tokenId) public view returns (string memory) {
uint256 seed = 345;
return words[uint256(keccak256(abi.encodePacked(tokenId, random[tokenId], seed))) % words.length];
}
function strlen(string memory s) public pure returns (uint256) {
uint256 len;
uint256 i = 0;
uint256 bytelength = bytes(s).length;
for (len = 0; i < bytelength; len++) {
bytes1 b = bytes(s)[i];
if (b < 0x80) {
i += 1;
} else if (b < 0xE0) {
i += 2;
} else if (b < 0xF0) {
i += 3;
} else if (b < 0xF8) {
i += 4;
} else if (b < 0xFC) {
i += 5;
} else {
i += 6;
}
}
return len;
}
function getChar(string memory _originString, uint256 index) public pure returns (string memory char) {
bytes memory charByte = new bytes(1);
charByte[0] = bytes(_originString)[index];
return string(charByte);
}
function shuffle(uint256[] memory array, uint256 tokenId) public view returns (uint256[] memory) {
uint256 n = array.length;
for (uint256 i = 0; i < n; i++) {
// Generate a pseudo-random index
uint256 randomIndex = i + (uint256(keccak256(abi.encodePacked(tokenId, random[tokenId], i))) % (n - i));
// Swap the elements
uint256 temp = array[randomIndex];
array[randomIndex] = array[i];
array[i] = temp;
}
return array;
}
// Function to create an array (of size n) with numbers from 0 to n-1
function createSequentialArray(uint256 n) public pure returns (uint256[] memory) {
// Create a dynamic array with size n
uint256[] memory array = new uint256[](n);
// Fill the array with numbers 0, 1, 2, 3, ..., n-1
for (uint256 i = 0; i < n; i++) {
array[i] = i; // Storing i at each position
}
return array;
}
// Function to generate a random string of a given length
function getRandomString(uint256 stringLength, uint256 tokenId) public view returns (string memory) {
bytes memory result = new bytes(stringLength); // Create a new byte array for the result
for (uint256 i = 0; i < stringLength; i++) {
// Generate a pseudo-random index
// uint randomIndex = uint(keccak256(abi.encodePacked(tokenId, random[tokenId], uint(312), i))) % strlen(RAND_CHARS);
uint256 randomIndex = uint256(keccak256(abi.encodePacked(tokenId, random[tokenId], i))) % ALPHABET_SIZE; // strlen(RAND_CHARS)
result[i] = bytes(RAND_CHARS)[randomIndex]; // Assign random character from RAND_CHARS
}
return string(result); // Convert byte array to string
}
function getSpansRed(string memory w, uint256 tokenId) public view returns (string memory) {
string memory code = "";
uint256 len = strlen(w);
for (uint256 index = 0; index < len; index++) {
string memory i = getChar(w, index);
// uint randTime = uint(keccak256(abi.encodePacked(tokenId, index, random[tokenId], uint(311)))) % 1701 + 300;
uint256 randTime = uint256(keccak256(abi.encodePacked(tokenId, index, random[tokenId]))) % 1701 + 300;
code = string(
abi.encodePacked(
code,
"<tspan class='letter' fill='red' style='animation: k0 ",
Strings.toString(randTime),
"ms infinite;'>",
i,
"</tspan>"
)
);
}
return code;
}
function getSpansBW(string memory w) public pure returns (string memory) {
string memory code = "";
uint256 len = strlen(w);
for (uint256 index = 0; index < len; index++) {
string memory i = getChar(w, index);
code = string(abi.encodePacked(code, "<tspan class='letter'>", i, "</tspan>"));
}
return code;
}
function getSpansAnimated(string memory w, bool redGlyph, uint256 tokenId)
public
view
returns (string memory, string memory)
{
string memory redGlyphChar;
uint256 redGlyphIndex = 10000000;
if (redGlyph) {
redGlyphIndex = uint256(keccak256(abi.encodePacked(tokenId, random[tokenId], uint256(181)))) % strlen(w);
}
string memory code = "";
uint256 len = strlen(w);
for (uint256 index = 0; index < len; index++) {
string memory i = getChar(w, index);
if (redGlyph && index == redGlyphIndex) {
code = string(abi.encodePacked(code, "<tspan style='fill: red;'>", i, "</tspan>"));
redGlyphChar = i;
} else {
uint256 randTime =
uint256(keccak256(abi.encodePacked(tokenId, random[tokenId], index, uint256(191)))) % 1701 + 300;
code = string(
abi.encodePacked(
code,
"<tspan style='animation: k0 ",
Strings.toString(randTime),
"ms infinite;'>",
i,
"</tspan>"
)
);
}
}
return (code, redGlyphChar);
}
struct OrdinarySVGVars {
uint256 color;
string fC;
string bg;
uint256 fontPhase;
uint256 numLines;
uint256 lineLength;
string redGlyphCharTrait;
uint256[] lines;
bool redWords;
// bool redGlyph;
uint256 redGlyphLine;
string textSpans;
string fontKeyframes;
string svg;
}
function getNumLines(uint256 tokenId) public view returns (uint256) {
return uint256(keccak256(abi.encodePacked(tokenId, random[tokenId], uint256(121)))) % 18 + 3;
}
function getLineLength(uint256 tokenId) public view returns (uint256) {
return uint256(keccak256(abi.encodePacked(tokenId, random[tokenId], uint256(11)))) % 13 + 8;
}
function getColor(uint256 tokenId) public view returns (uint256, bool) {
bool redWords = false;
uint256 color = uint256(keccak256(abi.encodePacked(tokenId, random[tokenId], uint256(111)))) % 2;
if (uint256(keccak256(abi.encodePacked(tokenId, random[tokenId], uint256(171)))) % 1000 < 200 && color == 1) {
redWords = true;
}
return (color, redWords);
}
function getSVGOrdinary(uint256 tokenId) public view returns (string memory, string memory) {
OrdinarySVGVars memory v;
(v.color, v.redWords) = getColor(tokenId);
if (v.color != 0) {
v.bg = "#fff";
v.fC = "#000";
} else {
v.bg = "#000";
v.fC = "#fff";
}
v.fontPhase = uint256(keccak256(abi.encodePacked(tokenId, random[tokenId], uint256(111)))) % 94 + 3;
v.numLines = getNumLines(tokenId);
v.lineLength = getLineLength(tokenId);
v.redGlyphCharTrait = "None";
v.lines = createSequentialArray(v.numLines);
v.lines = shuffle(v.lines, tokenId);
// v.redGlyph = false;
v.redGlyphLine = 100000000;
if (
!v.redWords && uint256(keccak256(abi.encodePacked(tokenId, random[tokenId], uint256(181)))) % 1000 < 300
&& v.numLines > 3
) {
v.redGlyphLine = v.lines[3];
}
v.textSpans = "";
for (uint256 line = 0; line < v.numLines; line++) {
string memory lineText = "";
string memory currentWord;
uint256 lineHasWord = 100000000;
if (line == v.lines[0]) {
lineHasWord = v.lines[0];
currentWord = getWord1(tokenId);
} else if (line == v.lines[1]) {
lineHasWord = v.lines[1];
currentWord = getWord2(tokenId);
} else if (line == v.lines[2]) {
lineHasWord = v.lines[2];
currentWord = getWord3(tokenId);
}
if (lineHasWord != 100000000) {
uint256 currentWordStart;
if (v.lineLength == strlen(currentWord)) {
// to avoid modulo 0
currentWordStart = 0;
} else {
currentWordStart = uint256(
keccak256(abi.encodePacked(tokenId, line, random[tokenId], uint256(171)))
) % (v.lineLength - strlen(currentWord));
}
(lineText,) = getSpansAnimated(getRandomString(currentWordStart, tokenId + line), false, tokenId + line);
if (v.redWords) {
lineText = string(abi.encodePacked(lineText, getSpansRed(currentWord, tokenId + line)));
} else {
lineText = string(abi.encodePacked(lineText, getSpansBW(currentWord)));
}
string memory spanAnimated;
(spanAnimated,) = getSpansAnimated(
getRandomString(v.lineLength - strlen(currentWord) - currentWordStart, tokenId + line),
false,
tokenId + line
);
lineText = string(abi.encodePacked(lineText, spanAnimated));
} else {
if (line == v.redGlyphLine) {
(lineText, v.redGlyphCharTrait) =
getSpansAnimated(getRandomString(v.lineLength, tokenId + line), true, tokenId + line);
} else {
(lineText,) = getSpansAnimated(getRandomString(v.lineLength, tokenId + line), false, tokenId + line);
}
}
v.textSpans = string(
abi.encodePacked(
v.textSpans,
"<text x='9' y='",
Strings.toString(46 * (line + 1) + 15 * line + 9),
"' fill='",
v.fC,
"'>",
lineText,
"</text>"
)
);
}
v.fontKeyframes = string(
abi.encodePacked(
"@keyframes k0 {0%,",
Strings.toString(v.fontPhase),
"% { font-family: theText;}",
Strings.toString(v.fontPhase),
".01%, 100% { font-family: theFont; }}"
)
);
v.svg = string(
abi.encodePacked(
"<svg width='",
Strings.toString(v.lineLength * 46 + 18),
"' height='",
Strings.toString(8 + 61 * v.numLines),
"' xmlns='http://www.w3.org/2000/svg'>" "<style type='text/css'>" "@font-face {" "font-family:theFont;"
"src: url('data:font/woff2;charset=utf-8;base64,",
b64fontFam,
"') format('woff2');" "}" "@font-face {" "font-family:theText;"
"src: url('data:font/woff2;charset=utf-8;base64,",
b64fontText,
"') format('woff2');" "}",
v.fontKeyframes,
"text{" "font-family:theFont;" "font-size: 46px;" "}" ".letter{" "font-family:theText;" "}" ".fam{"
"font-family:theFont;" "}" "</style>" "<rect width='100%' height='100%' fill='",
v.bg,
"'/>",
v.textSpans,
"</svg>"
)
);
return (v.svg, v.redGlyphCharTrait);
}
function getSVGSpecial(string memory symbol) public view returns (string memory) {
string memory svg;
svg = string(
abi.encodePacked(
"<svg width='460' height='460' xmlns='http://www.w3.org/2000/svg'>" "<style type='text/css'>"
"@font-face {" "font-family:theFont;" "src: url('data:font/woff2;charset=utf-8;base64,",
b64fontFam,
"') format('woff2');" "}" "text{" "font-family:theFont;" "font-size: 400px;" "}" "</style>"
"<rect width='100%' height='100%' fill='#ffffff'/>" "<text x='30' y='430' fill='#000000'>",
symbol,
"</text>" "</svg>"
)
);
return svg;
}
function tokenSVG(uint256 tokenId) public view returns (string memory) {
if (isTokenSpecial[tokenId] != 0) {
string memory symbol = symbolLookup(isTokenSpecial[tokenId] - OFFSET);
return getSVGSpecial(symbol);
} else {
string memory svg;
(svg, ) = getSVGOrdinary(tokenId);
return svg;
}
}
// decide if we are a winner
function lottery(uint256 tokenId) private {
uint256 segmentLength = (MAX_AMOUNT / ALPHABET_SIZE) + 1;
// which segment are we in
uint256 letter = tokenId / segmentLength;
// skip token id 0 as a winner to avoid double winner, segmentAllocated[letter] = tokenId;
if (tokenId == 0) {
return;
}
// is there already a winner for this segment
if (segmentAllocated[letter] != 0) {
return;
}
// are we at the end of the segment (next letter isn't the same)? or at the end of the supply? if yes auto win
uint256 nextTokenLetter = (tokenId + 1) / segmentLength;
if (letter != nextTokenLetter || tokenId+1 == MAX_AMOUNT) {
isTokenSpecial[tokenId] = letter + OFFSET; // to avoid first letter not showing as special, since 0 is not special
segmentAllocated[letter] = tokenId;
return;
}
// if not, get odds
uint256 odds = uint256(keccak256(abi.encodePacked(tokenId, random[tokenId], uint256(731)))) % segmentLength;
if (odds < 3) {
// arbitrary number to avoid arriving at the end too much
isTokenSpecial[tokenId] = letter + OFFSET;
segmentAllocated[letter] = tokenId;
}
}
function getSpecialTokenURI(uint256 tokenId) public view virtual returns (string memory) {
string memory symbol = symbolLookup(isTokenSpecial[tokenId] - OFFSET);
string memory json = string(
abi.encodePacked(
'{"name":"MR.',
symbol,
'",',
'"description":"THREE RANDOM WORDS",',
'"image_data": "',
getSVGSpecial(symbol),
'",' '"attributes": [{"trait_type": "SYMBOL", "value": "',
symbol,
'"}',
"]}"
)
);
json = Base64.encode(bytes(json));
return string(abi.encodePacked("data:application/json;base64,", json));
}
function getOrdinaryTokenURI(uint256 tokenId) public view virtual returns (string memory) {
string memory svg;
string memory redGlyphCharTrait;
(svg, redGlyphCharTrait) = getSVGOrdinary(tokenId);
string memory json = string(
abi.encodePacked(
'{"name":"',
getWord1(tokenId),
" ",
getWord2(tokenId),
" ",
getWord3(tokenId),
'",',
'"description":"THREE RANDOM WORDS",',
'"image_data": "',
svg,
'",',
'"attributes": [{"trait_type": "FIRST", "value": "',
getWord1(tokenId),
'"},',
'{"trait_type": "SECOND", "value": "',
getWord2(tokenId),
'"},'
)
);
uint256 color;
bool redWords;
string memory colorTrait;
(color, redWords) = getColor(tokenId);
if (!redWords) {
colorTrait = ["BLACK", "WHITE"][color];
} else {
colorTrait = "RED";
}
json = string(
abi.encodePacked(
json,
'{"trait_type": "THIRD", "value": "',
getWord3(tokenId),
'"},',
'{"trait_type": "COLOR", "value": "',
colorTrait,
'"},',
'{"trait_type": "SIGNATURE", "value": "',
redGlyphCharTrait,
'"},',
'{"trait_type": "SIZE", "value": "',
Strings.toString(getNumLines(tokenId)),
"x",
Strings.toString(getLineLength(tokenId)),
'"}',
"]}"
)
);
json = Base64.encode(bytes(json));
return string(abi.encodePacked("data:application/json;base64,", json));
}
// each unit represents a letter from A-Z, it gets shuffled in the constructor
uint256[] public numbersSpecial =
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25];
function symbolLookup(uint256 letter) public view returns (string memory) {
return getChar(RAND_CHARS, numbersSpecial[letter]);
}
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
if (isTokenSpecial[tokenId] != 0) {
return getSpecialTokenURI(tokenId);
} else {
return getOrdinaryTokenURI(tokenId);
}
}
function mintToken(uint256 hinId) public payable {
require(msg.sender.code.length == 0, "contracts are not allowed to mint");
if (whiteListSaleIsActive) {
require(WL_PRICE <= msg.value, "Ether value is too small");
IERC721Enumerable hinContract = IERC721Enumerable(HIN_ADDRESS);
require(hinContract.ownerOf(hinId) == msg.sender, "You are not the owner of this HIN");
require(_hinMints[hinId] == 0, "TRW with this HIN has already been minted");
_hinMints[hinId]++;
} else {
require(saleIsActive, "Sale must be active to mint");
require(SALE_PRICE <= msg.value, "Ether value is too small");
}
require(totalSupply() + 1 <= MAX_AMOUNT, "Purchase would exceed max supply");
uint256 tokenId = _nextTokenId++;
random[tokenId] = uint256(keccak256(abi.encodePacked(tokenId, block.timestamp)));
lottery(tokenId);
_safeMint(msg.sender, tokenId);
}
function hinTokenCanMint(uint256 hinId) public view returns (bool) {
return _hinMints[hinId] == 0;
}
// The following functions are overrides required by Solidity.
function _update(address to, uint256 tokenId, address auth)
internal
override(ERC721, ERC721Enumerable)
returns (address)
{
return super._update(to, tokenId, auth);
}
function _increaseBalance(address account, uint128 value) internal override(ERC721, ERC721Enumerable) {
super._increaseBalance(account, value);
}
function supportsInterface(bytes4 interfaceId) public view override(ERC721, ERC721Enumerable) returns (bool) {
return super.supportsInterface(interfaceId);
}
}
{
"compilationTarget": {
"src/trw.sol": "TRW"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
":ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/"
],
"viaIR": true
}
[{"inputs":[{"internalType":"address","name":"initialOwner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ERC721EnumerableForbiddenBatchMint","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721IncorrectOwner","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721InsufficientApproval","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC721InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC721InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721InvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC721InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC721InvalidSender","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721NonexistentToken","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"ERC721OutOfBoundsIndex","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"HIN_ADDRESS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_AMOUNT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SALE_PRICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WL_PRICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"b64fontFam","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"b64fontText","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"n","type":"uint256"}],"name":"createSequentialArray","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"_originString","type":"string"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getChar","outputs":[{"internalType":"string","name":"char","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getColor","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getLineLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getNumLines","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getOrdinaryTokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"stringLength","type":"uint256"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getRandomString","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getSVGOrdinary","outputs":[{"internalType":"string","name":"","type":"string"},{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"symbol","type":"string"}],"name":"getSVGSpecial","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSaleState","outputs":[{"internalType":"bool[2]","name":"","type":"bool[2]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"w","type":"string"},{"internalType":"bool","name":"redGlyph","type":"bool"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getSpansAnimated","outputs":[{"internalType":"string","name":"","type":"string"},{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"w","type":"string"}],"name":"getSpansBW","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"string","name":"w","type":"string"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getSpansRed","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getSpecialTokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getWord1","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getWord2","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getWord3","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getWordsList","outputs":[{"internalType":"string[]","name":"","type":"string[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"hinId","type":"uint256"}],"name":"hinTokenCanMint","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"isTokenSpecial","outputs":[{"internalType":"uint256","name":"letterIndex","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"hinId","type":"uint256"}],"name":"mintToken","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"numbersSpecial","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"random","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"saleIsActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"segment","type":"uint256"}],"name":"segmentAllocated","outputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"setHINAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string[]","name":"inWords","type":"string[]"}],"name":"setWords","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"array","type":"uint256[]"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"shuffle","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"startSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startWhiteListSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stopSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stopWhiteListSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"s","type":"string"}],"name":"strlen","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"letter","type":"uint256"}],"name":"symbolLookup","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenOfOwnerByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenSVG","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"whiteListSaleIsActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"words","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]