// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}
struct TokenInfo {
uint256 minAmount;
uint256 redeemDelay;
bool bridgeable;
bool redeemable;
bool owned; // whether or not the bridge has mint rights on the token
}
struct RedeemInfo {
uint256 blockNumber;
bytes32 paramsHash;
}
// When calling mint / burn, we assume that the token is a representation of a wrapped asset and is deployed and / or audited by the admin
interface IToken {
function mint(address,uint256) external;
function burn(uint256) external;
}
contract Bridge is Context {
using ECDSA for bytes32;
using SafeERC20 for IERC20;
event RegisteredRedeem(uint256 indexed nonce, address indexed to, address indexed token, uint256 amount);
event Redeemed(uint256 indexed nonce, address indexed to, address indexed token, uint256 amount);
event Unwrapped(address indexed from, address indexed token, string to, uint256 amount);
event Halted();
event Unhalted();
event PendingTokenInfo(address indexed token);
event SetTokenInfo(address indexed token);
event RevokedRedeem(uint256 indexed nonce);
event PendingAdministrator(address indexed newAdministrator);
event SetAdministrator(address indexed newAdministrator, address oldAdministrator);
event PendingTss(address indexed newTss);
event SetTss(address indexed newTss, address oldTss);
event PendingGuardians();
event SetGuardians();
event SetAdministratorDelay(uint256);
event SetSoftDelay(uint256);
event SetUnhaltDuration(uint256);
event SetEstimatedBlockTime(uint64);
event SetAllowKeyGen(bool);
event SetConfirmationsToFinality(uint64);
uint256 private constant uint256max = type(uint256).max;
uint32 private constant networkClass = 2;
uint8 private constant minNominatedGuardians = 5;
uint64 public estimatedBlockTime;
uint64 public confirmationsToFinality;
bool public halted;
bool public allowKeyGen;
address public administrator;
// Should be set greater than 72h
uint256 public administratorDelay;
uint256 public immutable minAdministratorDelay;
address public tss;
// Should be set greater than 72h
uint256 public softDelay;
uint256 public immutable minSoftDelay;
address[] public guardians;
address[] public guardiansVotes;
mapping(address => uint) public votesCount;
// same delay as set administrator
uint256 public unhaltedAt;
uint256 public unhaltDuration;
uint256 public immutable minUnhaltDuration;
uint256 public actionsNonce;
uint256 public immutable contractDeploymentHeight;
mapping(uint256 => RedeemInfo) public redeemsInfo;
mapping(address => TokenInfo) public tokensInfo;
mapping(string => RedeemInfo) public timeChallengesInfo;
modifier isNotHalted() {
require(!isHalted(), "bridge: Is halted");
_;
}
modifier onlyAdministrator() {
require(_msgSender() == administrator, "bridge: Caller not administrator");
_;
}
constructor(uint256 unhaltDurationParam, uint256 administratorDelayParam, uint256 softDelayParam, uint64 blockTime, uint64 confirmations, address[] memory initialGuardians) {
require(blockTime > 0, "BlockTime is less than minimum");
require(confirmations > 1, "Confirmations is less than minimum");
administrator = _msgSender();
emit SetAdministrator(administrator, address(0));
minUnhaltDuration = unhaltDurationParam;
unhaltDuration = unhaltDurationParam;
minAdministratorDelay = administratorDelayParam;
administratorDelay = administratorDelayParam;
minSoftDelay = softDelayParam;
softDelay = softDelayParam;
for(uint i = 0; i < initialGuardians.length; i++) {
for(uint j = i + 1; j < initialGuardians.length; j++) {
if(initialGuardians[i] == initialGuardians[j]) {
revert("Found duplicated guardian");
}
}
guardians.push(initialGuardians[i]);
guardiansVotes.push(address(0));
}
estimatedBlockTime = blockTime;
confirmationsToFinality = confirmations;
contractDeploymentHeight = block.number;
}
function isHalted() public view returns (bool) {
return halted || (unhaltedAt + unhaltDuration >= block.number);
}
// implement restrictions for amount
function redeem(address to, address token, uint256 amount, uint256 nonce, bytes memory signature) external isNotHalted {
// We use local variables for gas optimisation and also we don't use the redeemInfo variable anymore after updating the mapping entry
RedeemInfo memory redeemInfo = redeemsInfo[nonce];
TokenInfo memory tokenInfo = tokensInfo[token];
require(tokenInfo.redeemable, "redeem: Token not redeemable");
require(redeemInfo.blockNumber != uint256max, "redeem: Nonce already redeemed");
require((redeemInfo.blockNumber + tokenInfo.redeemDelay) < block.number, "redeem: Not redeemable yet");
if (redeemInfo.blockNumber == 0) {
// We only check the signature at the first redeem, on the second one we have only a check for the same parameters
// In case the tss key is changed, we don't need to resign the transaction for the second redeem
bytes32 messageHash = keccak256(abi.encode(networkClass, block.chainid, address(this), nonce, to, token, amount));
messageHash = messageHash.toEthSignedMessageHash();
address signer = messageHash.recover(signature);
require(signer == tss, "redeem: Wrong signature");
redeemsInfo[nonce].blockNumber = block.number;
redeemsInfo[nonce].paramsHash = keccak256(abi.encode(to, token, amount));
emit RegisteredRedeem(nonce, to, token, amount);
} else {
require(redeemsInfo[nonce].paramsHash == keccak256(abi.encode(to, token, amount)), "redeem: Second redeem has different params than the first one");
// it cannot be uint256max or in delay
redeemsInfo[nonce].blockNumber = uint256max;
// if the bridge has ownership of the token then it means that this token is wrapped and it should have mint rights on it
if (tokenInfo.owned) {
// bridge should have 0 balance of this wrapped token unless someone sent to this contract
// mint the needed amount
IToken(token).mint(to, amount);
} else {
// if we do not own the token it means it is probably originating from this network so we should have locked tokens here
IERC20(token).safeTransfer(to, amount);
}
emit Redeemed(nonce, to, token, amount);
}
}
function unwrap(address token, uint256 amount, string memory to) external isNotHalted {
require(tokensInfo[token].bridgeable, "unwrap: Token not bridgeable");
require(amount >= tokensInfo[token].minAmount, "unwrap: Amount has to be greater then the token minAmount");
uint256 oldBalance = IERC20(token).balanceOf(address(this));
IERC20(token).safeTransferFrom(_msgSender(), address(this), amount);
uint256 newBalance = IERC20(token).balanceOf(address(this));
require(amount <= newBalance, "unwrap: Amount bigger than the new balance");
require(newBalance - amount == oldBalance, "unwrap: Tokens not sent");
// if we have ownership to this token, we will burn because we can mint on redeem, otherwise we just keep the tokens
if (tokensInfo[token].owned) {
IToken(token).burn(amount);
}
emit Unwrapped(_msgSender(), token, to, amount);
}
function timeChallenge(string memory methodName, bytes32 paramsHash, uint256 challengeDelay) internal {
if (timeChallengesInfo[methodName].paramsHash == paramsHash) {
if (timeChallengesInfo[methodName].blockNumber + challengeDelay >= block.number) {
revert("challenge not due");
}
// otherwise the challenge is due and we reset it
delete timeChallengesInfo[methodName].paramsHash;
} else {
// we start a new challenge
timeChallengesInfo[methodName].paramsHash = paramsHash;
timeChallengesInfo[methodName].blockNumber = block.number;
}
}
function setTokenInfo(address token, uint256 minAmount, uint256 redeemDelay, bool bridgeable, bool redeemable, bool isOwned) external onlyAdministrator {
require(redeemDelay > 2, "setTokenInfo: RedeemDelay is less than minimum");
bytes32 paramsHash = keccak256(abi.encode(token, minAmount, redeemDelay, bridgeable, redeemable, isOwned));
timeChallenge("setTokenInfo", paramsHash, softDelay);
// early return for when we have a new challenge
if (timeChallengesInfo["setTokenInfo"].paramsHash != bytes32(0)) {
emit PendingTokenInfo(token);
return;
}
tokensInfo[token].minAmount = minAmount;
tokensInfo[token].redeemDelay = redeemDelay;
tokensInfo[token].bridgeable = bridgeable;
tokensInfo[token].redeemable = redeemable;
tokensInfo[token].owned = isOwned;
emit SetTokenInfo(token);
}
function halt(bytes memory signature) external {
if (_msgSender() != administrator) {
bytes32 messageHash = keccak256(abi.encode("halt", networkClass, block.chainid, address(this), actionsNonce));
messageHash = messageHash.toEthSignedMessageHash();
address signer = messageHash.recover(signature);
require(signer == tss, "halt: Wrong signature");
actionsNonce += 1;
}
halted = true;
emit Halted();
}
function unhalt() external onlyAdministrator {
require(halted, "unhalt: halted is false");
halted = false;
unhaltedAt = block.number;
emit Unhalted();
}
// This method would be called if we detect a redeem transaction that did not originated from a user embedded bridge call on the znn network
function revokeRedeems(uint256[] memory nonces) external onlyAdministrator {
for(uint i = 0; i < nonces.length; i++) {
redeemsInfo[nonces[i]].blockNumber = uint256max;
emit RevokedRedeem(nonces[i]);
}
}
function setAdministrator(address newAdministrator) external onlyAdministrator {
require(newAdministrator != address(0), "setAdministrator: Invalid administrator address");
bytes32 paramsHash = keccak256(abi.encode(newAdministrator));
timeChallenge("setAdministrator", paramsHash, administratorDelay);
// early return for when we have a new challenge
if (timeChallengesInfo["setAdministrator"].paramsHash != bytes32(0)) {
emit PendingAdministrator(newAdministrator);
return;
}
emit SetAdministrator(newAdministrator, administrator);
administrator = newAdministrator;
}
function setTss(address newTss, bytes memory oldSignature, bytes memory newSignature) external {
require(newTss != address(0), "setTss: Invalid newTss");
if (_msgSender() != administrator) {
// this only applies for non administrator calls
require(allowKeyGen, "setTss: KeyGen is not allowed");
require(!isHalted(), "setTss: Bridge halted");
allowKeyGen = false;
bytes32 messageHash = keccak256(abi.encode("setTss", networkClass, block.chainid, address(this), actionsNonce, newTss));
messageHash = messageHash.toEthSignedMessageHash();
address signer = messageHash.recover(oldSignature);
require(signer == tss, "setTss: Wrong old signature");
signer = messageHash.recover(newSignature);
require(signer == newTss, "setTss: Wrong new signature");
actionsNonce += 1;
} else {
bytes32 paramsHash = keccak256(abi.encode(newTss));
timeChallenge("setTss", paramsHash, softDelay);
// early return for when we have a new challenge
if (timeChallengesInfo["setTss"].paramsHash != bytes32(0)) {
emit PendingTss(newTss);
return;
}
}
emit SetTss(newTss, tss);
tss = newTss;
}
function emergency() external onlyAdministrator {
emit SetAdministrator(address(0), administrator);
administrator = address(0);
emit SetTss(address(0), tss);
tss = address(0);
halted = true;
emit Halted();
}
function nominateGuardians(address[] memory newGuardians) external onlyAdministrator {
require(newGuardians.length >= minNominatedGuardians, "nominateGuardians: Length less than minimum");
require(newGuardians.length < 30, "nominateGuardians: Length bigger than maximum");
bytes32 paramsHash = keccak256(abi.encode(newGuardians));
timeChallenge("nominateGuardians", paramsHash, administratorDelay);
// early return for when we have a new challenge
if (timeChallengesInfo["nominateGuardians"].paramsHash != bytes32(0)) {
// we check for duplicates only on new challenges
for (uint i = 0; i < newGuardians.length; i++) {
if(newGuardians[i] == address(0)) {
revert("nominateGuardians: Found zero address");
}
for(uint j = i + 1; j < newGuardians.length; j++) {
if(newGuardians[i] == newGuardians[j]) {
revert("nominateGuardians: Found duplicated guardian");
}
}
}
emit PendingGuardians();
return;
}
for (uint i = 0; i < guardians.length; i++) {
delete votesCount[guardiansVotes[i]];
}
delete guardiansVotes;
delete guardians;
for (uint i = 0; i < newGuardians.length; i++) {
guardians.push(newGuardians[i]);
guardiansVotes.push(address(0));
}
emit SetGuardians();
}
function proposeAdministrator(address newAdministrator) external {
require(administrator == address(0), "proposeAdministrator: Bridge not in emergency");
require(newAdministrator != address(0), "proposeAdministrator: Invalid new address");
for(uint i = 0; i < guardians.length; i++) {
if (guardians[i] == _msgSender()) {
if (guardiansVotes[i] != address(0)) {
votesCount[guardiansVotes[i]] -= 1;
}
guardiansVotes[i] = newAdministrator;
votesCount[newAdministrator] += 1;
uint threshold = guardians.length / 2;
if (votesCount[newAdministrator] > threshold) {
for(uint j = 0; j < guardiansVotes.length; j++) {
delete votesCount[guardiansVotes[j]];
guardiansVotes[j] = address(0);
}
administrator = newAdministrator;
emit SetAdministrator(newAdministrator, address(0));
}
break;
}
}
}
function setAdministratorDelay(uint256 delay) external onlyAdministrator {
require(delay >= minAdministratorDelay, "setAdministratorDelay: Delay is less than minimum");
administratorDelay = delay;
emit SetAdministratorDelay(delay);
}
function setSoftDelay(uint256 delay) external onlyAdministrator {
require(delay >= minSoftDelay, "setSoftDelay: Delay is less than minimum");
softDelay = delay;
emit SetSoftDelay(delay);
}
function setUnhaltDuration(uint256 duration) external onlyAdministrator {
require(duration >= minUnhaltDuration, "setUnhaltDuration: Duration is less than minimum");
unhaltDuration = duration;
emit SetUnhaltDuration(duration);
}
function setEstimatedBlockTime(uint64 blockTime) external onlyAdministrator {
require(blockTime > 0, "setEstimatedBlockTime: BlockTime is less than minimum");
estimatedBlockTime = blockTime;
emit SetEstimatedBlockTime(blockTime);
}
function setAllowKeyGen(bool value) external onlyAdministrator {
allowKeyGen = value;
emit SetAllowKeyGen(value);
}
function setConfirmationsToFinality(uint64 confirmations) external onlyAdministrator {
require(confirmations > 1, "setConfirmationsToFinality: Confirmations is less than minimum");
confirmationsToFinality = confirmations;
emit SetConfirmationsToFinality(confirmations);
}
}
{
"compilationTarget": {
"Bridge.sol": "Bridge"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 10000
},
"remappings": []
}
[{"inputs":[{"internalType":"uint256","name":"unhaltDurationParam","type":"uint256"},{"internalType":"uint256","name":"administratorDelayParam","type":"uint256"},{"internalType":"uint256","name":"softDelayParam","type":"uint256"},{"internalType":"uint64","name":"blockTime","type":"uint64"},{"internalType":"uint64","name":"confirmations","type":"uint64"},{"internalType":"address[]","name":"initialGuardians","type":"address[]"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[],"name":"Halted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newAdministrator","type":"address"}],"name":"PendingAdministrator","type":"event"},{"anonymous":false,"inputs":[],"name":"PendingGuardians","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"}],"name":"PendingTokenInfo","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newTss","type":"address"}],"name":"PendingTss","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"nonce","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Redeemed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"nonce","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"RegisteredRedeem","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"nonce","type":"uint256"}],"name":"RevokedRedeem","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newAdministrator","type":"address"},{"indexed":false,"internalType":"address","name":"oldAdministrator","type":"address"}],"name":"SetAdministrator","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"","type":"uint256"}],"name":"SetAdministratorDelay","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"","type":"bool"}],"name":"SetAllowKeyGen","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"","type":"uint64"}],"name":"SetConfirmationsToFinality","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"","type":"uint64"}],"name":"SetEstimatedBlockTime","type":"event"},{"anonymous":false,"inputs":[],"name":"SetGuardians","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"","type":"uint256"}],"name":"SetSoftDelay","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"}],"name":"SetTokenInfo","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newTss","type":"address"},{"indexed":false,"internalType":"address","name":"oldTss","type":"address"}],"name":"SetTss","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"","type":"uint256"}],"name":"SetUnhaltDuration","type":"event"},{"anonymous":false,"inputs":[],"name":"Unhalted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"string","name":"to","type":"string"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Unwrapped","type":"event"},{"inputs":[],"name":"actionsNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"administrator","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"administratorDelay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"allowKeyGen","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"confirmationsToFinality","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"contractDeploymentHeight","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"emergency","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"estimatedBlockTime","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"guardians","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"guardiansVotes","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"halt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"halted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isHalted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minAdministratorDelay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minSoftDelay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minUnhaltDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"newGuardians","type":"address[]"}],"name":"nominateGuardians","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newAdministrator","type":"address"}],"name":"proposeAdministrator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"redeem","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"redeemsInfo","outputs":[{"internalType":"uint256","name":"blockNumber","type":"uint256"},{"internalType":"bytes32","name":"paramsHash","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"nonces","type":"uint256[]"}],"name":"revokeRedeems","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newAdministrator","type":"address"}],"name":"setAdministrator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"delay","type":"uint256"}],"name":"setAdministratorDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"value","type":"bool"}],"name":"setAllowKeyGen","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"confirmations","type":"uint64"}],"name":"setConfirmationsToFinality","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"blockTime","type":"uint64"}],"name":"setEstimatedBlockTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"delay","type":"uint256"}],"name":"setSoftDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"minAmount","type":"uint256"},{"internalType":"uint256","name":"redeemDelay","type":"uint256"},{"internalType":"bool","name":"bridgeable","type":"bool"},{"internalType":"bool","name":"redeemable","type":"bool"},{"internalType":"bool","name":"isOwned","type":"bool"}],"name":"setTokenInfo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newTss","type":"address"},{"internalType":"bytes","name":"oldSignature","type":"bytes"},{"internalType":"bytes","name":"newSignature","type":"bytes"}],"name":"setTss","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"duration","type":"uint256"}],"name":"setUnhaltDuration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"softDelay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"","type":"string"}],"name":"timeChallengesInfo","outputs":[{"internalType":"uint256","name":"blockNumber","type":"uint256"},{"internalType":"bytes32","name":"paramsHash","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"tokensInfo","outputs":[{"internalType":"uint256","name":"minAmount","type":"uint256"},{"internalType":"uint256","name":"redeemDelay","type":"uint256"},{"internalType":"bool","name":"bridgeable","type":"bool"},{"internalType":"bool","name":"redeemable","type":"bool"},{"internalType":"bool","name":"owned","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tss","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unhalt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unhaltDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unhaltedAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"string","name":"to","type":"string"}],"name":"unwrap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"votesCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]