// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface AggregatorInterface {
function latestAnswer() external view returns (int256);
function latestTimestamp() external view returns (uint256);
function latestRound() external view returns (uint256);
function getAnswer(uint256 roundId) external view returns (int256);
function getTimestamp(uint256 roundId) external view returns (uint256);
event AnswerUpdated(int256 indexed current, uint256 indexed roundId, uint256 updatedAt);
event NewRound(uint256 indexed roundId, address indexed startedBy, uint256 startedAt);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./AggregatorInterface.sol";
import "./AggregatorV3Interface.sol";
interface AggregatorV2V3Interface is AggregatorInterface, AggregatorV3Interface {}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface AggregatorV3Interface {
function decimals() external view returns (uint8);
function description() external view returns (string memory);
function version() external view returns (uint256);
function getRoundData(
uint80 _roundId
) external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
function latestRoundData()
external
view
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: AGPL-v3.0
pragma solidity ^0.8.28;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./IAssetRegistry.sol";
import "./IVaultEvents.sol";
import "./IHooks.sol";
/// @title IVault
/// @notice Interface for the vault.
/// @dev Any implementation MUST also implement Ownable2Step.
interface IAeraVaultWithOwner is IVaultEvents {
/// ERRORS ///
error Aera__AssetRegistryIsZeroAddress();
error Aera__AssetRegistryIsNotValid(address assetRegistry);
error Aera__AssetRegistryHasInvalidVault();
error Aera__HooksIsZeroAddress();
error Aera__HooksIsNotValid(address hooks);
error Aera__HooksHasInvalidVault();
error Aera__GuardianIsZeroAddress();
error Aera__GuardianIsOwner();
error Aera__InitialOwnerIsZeroAddress();
error Aera__FeeRecipientIsZeroAddress();
error Aera__ExecuteTargetIsHooksAddress();
error Aera__ExecuteTargetIsVaultAddress();
error Aera__SubmitTransfersAssetFromOwner();
error Aera__SubmitRedeemERC4626AssetFromOwner();
error Aera__SubmitTargetIsVaultAddress();
error Aera__SubmitTargetIsHooksAddress(uint256 index);
error Aera__FeeRecipientIsOwner();
error Aera__FeeIsAboveMax(uint256 actual, uint256 max);
error Aera__CallerIsNotOwnerAndGuardian();
error Aera__CallerIsNotGuardian();
error Aera__AssetIsNotRegistered(IERC20 asset);
error Aera__AmountExceedsAvailable(
IERC20 asset, uint256 amount, uint256 available
);
error Aera__ExecutionFailed(bytes result);
error Aera__VaultIsFinalized();
error Aera__SubmissionFailed(uint256 index, bytes result);
error Aera__CannotUseReservedFees();
error Aera__SpotPricesReverted();
error Aera__AmountsOrderIsIncorrect(uint256 index);
error Aera__NoAvailableFeesForCaller(address caller);
error Aera__NoClaimableFeesForCaller(address caller);
error Aera__NotWrappedNativeTokenContract();
error Aera__CannotRenounceOwnership();
/// FUNCTIONS ///
/// @notice Deposit assets.
/// @param amounts Assets and amounts to deposit.
/// @dev MUST revert if not called by owner.
function deposit(AssetValue[] memory amounts) external;
/// @notice Withdraw assets.
/// @param amounts Assets and amounts to withdraw.
/// @dev MUST revert if not called by owner.
function withdraw(AssetValue[] memory amounts) external;
/// @notice Set current guardian and fee recipient.
/// @param guardian New guardian address.
/// @param feeRecipient New fee recipient address.
/// @dev MUST revert if not called by owner.
function setGuardianAndFeeRecipient(
address guardian,
address feeRecipient
) external;
/// @notice Sets the current hooks module.
/// @param hooks New hooks module address.
/// @dev MUST revert if not called by owner.
function setHooks(address hooks) external;
/// @notice Execute a transaction via the vault.
/// @dev Execution still should work when vault is finalized.
/// @param operation Struct details for target and calldata to execute.
/// @dev MUST revert if not called by owner.
function execute(Operation memory operation) external;
/// @notice Terminate the vault and return all funds to owner.
/// @dev MUST revert if not called by owner.
function finalize() external;
/// @notice Stops the guardian from submission and halts fee accrual.
/// @dev MUST revert if not called by owner or guardian.
function pause() external;
/// @notice Resume fee accrual and guardian submissions.
/// @dev MUST revert if not called by owner.
function resume() external;
/// @notice Submit a series of transactions for execution via the vault.
/// @param operations Sequence of operations to execute.
/// @dev MUST revert if not called by guardian.
function submit(Operation[] memory operations) external;
/// @notice Claim fees on behalf of a current or previous fee recipient.
function claim() external;
/// @notice Get the current guardian.
/// @return guardian Address of guardian.
function guardian() external view returns (address guardian);
/// @notice Get the current fee recipient.
/// @return feeRecipient Address of fee recipient.
function feeRecipient() external view returns (address feeRecipient);
/// @notice Get the current asset registry.
/// @return assetRegistry Address of asset registry.
function assetRegistry()
external
view
returns (IAssetRegistry assetRegistry);
/// @notice Get the current hooks module address.
/// @return hooks Address of hooks module.
function hooks() external view returns (IHooks hooks);
/// @notice Get fee per second.
/// @return fee Fee per second in 18 decimal fixed point format.
function fee() external view returns (uint256 fee);
/// @notice Get current balances of all assets.
/// @return assetAmounts Amounts of registered assets.
function holdings()
external
view
returns (AssetValue[] memory assetAmounts);
/// @notice Get current total value of assets in vault.
/// @return value Current total value.
function value() external view returns (uint256 value);
function transferOwnership(address newOwner) external;
function acceptOwnership() external;
function owner() external view returns (address);
}
// SPDX-License-Identifier: AGPL-v3.0
pragma solidity ^0.8.28;
import "@chainlink/contracts/src/v0.8/interfaces/AggregatorV2V3Interface.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/// @title IAssetRegistry
/// @notice Asset registry interface.
/// @dev Any implementation MUST also implement Ownable2Step and ERC165.
interface IAssetRegistry {
/// @param asset Asset address.
/// @param heartbeat Frequency of oracle price updates.
/// @param isERC4626 True if yield-bearing asset, false if just an ERC20 asset.
/// @param oracle If applicable, oracle address for asset.
struct AssetInformation {
IERC20 asset;
uint256 heartbeat;
bool isERC4626;
AggregatorV2V3Interface oracle;
}
/// @param asset Asset address.
/// @param spotPrice Spot price of an asset in Numeraire token terms.
struct AssetPriceReading {
IERC20 asset;
uint256 spotPrice;
}
/// @notice Get address of vault.
/// @return vault Address of vault.
function vault() external view returns (address vault);
/// @notice Get a list of all registered assets.
/// @return assets List of assets.
/// @dev MUST return assets in an order sorted by address.
function assets()
external
view
returns (AssetInformation[] memory assets);
/// @notice Get address of fee token.
/// @return feeToken Address of fee token.
/// @dev Represented as an address for efficiency reasons.
/// @dev MUST be present in assets array.
function feeToken() external view returns (IERC20 feeToken);
/// @notice Get the index of the Numeraire token in the assets array.
/// @return numeraireToken Numeraire token address.
/// @dev Represented as an index for efficiency reasons.
/// @dev MUST be a number between 0 (inclusive) and the length of assets array (exclusive).
function numeraireToken() external view returns (IERC20 numeraireToken);
/// @notice Calculate spot prices of non-ERC4626 assets.
/// @return spotPrices Spot prices of non-ERC4626 assets in 18 decimals.
/// @dev MUST return assets in the same order as in assets but with ERC4626 assets filtered out.
/// @dev MUST also include Numeraire token (spot price = 1).
/// @dev MAY revert if oracle prices for any asset are unreliable at the time.
function spotPrices()
external
view
returns (AssetPriceReading[] memory spotPrices);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: AGPL-v3.0
pragma solidity ^0.8.28;
import {AssetValue, Operation} from "./Types.sol";
/// @title IHooks
/// @notice Interface for the hooks module.
interface IHooks {
/// @notice Get address of vault.
/// @return vault Vault address.
function vault() external view returns (address vault);
/// @notice Hook that runs before deposit.
/// @param amounts Struct details for assets and amounts to deposit.
/// @dev MUST revert if not called by vault.
function beforeDeposit(AssetValue[] memory amounts) external;
/// @notice Hook that runs after deposit.
/// @param amounts Struct details for assets and amounts to deposit.
/// @dev MUST revert if not called by vault.
function afterDeposit(AssetValue[] memory amounts) external;
/// @notice Hook that runs before withdraw.
/// @param amounts Struct details for assets and amounts to withdraw.
/// @dev MUST revert if not called by vault.
function beforeWithdraw(AssetValue[] memory amounts) external;
/// @notice Hook that runs after withdraw.
/// @param amounts Struct details for assets and amounts to withdraw.
/// @dev MUST revert if not called by vault.
function afterWithdraw(AssetValue[] memory amounts) external;
/// @notice Hook that runs before submit.
/// @param operations Array of struct details for target and calldata to submit.
/// @dev MUST revert if not called by vault.
function beforeSubmit(Operation[] memory operations) external;
/// @notice Hook that runs after submit.
/// @param operations Array of struct details for target and calldata to submit.
/// @dev MUST revert if not called by vault.
function afterSubmit(Operation[] memory operations) external;
/// @notice Hook that runs before finalize.
/// @dev MUST revert if not called by vault.
function beforeFinalize() external;
/// @notice Hook that runs after finalize.
/// @dev MUST revert if not called by vault.
function afterFinalize() external;
/// @notice Take hooks out of use.
function decommission() external;
}
// SPDX-License-Identifier: AGPL-v3.0
pragma solidity ^0.8.28;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {AssetValue, Operation} from "./Types.sol";
/// @title Interface for vault events.
interface IVaultEvents {
/// @notice Emitted when deposit is called.
/// @param owner Owner address.
/// @param asset Deposited asset.
/// @param amount Deposited asset amount.
event Deposit(address indexed owner, IERC20 indexed asset, uint256 amount);
/// @notice Emitted when withdraw is called.
/// @param owner Owner address.
/// @param asset Withdrawn asset.
/// @param amount Withdrawn asset amount.
event Withdraw(
address indexed owner, IERC20 indexed asset, uint256 amount
);
/// @notice Emitted when guardian is set.
/// @param guardian Address of new guardian.
/// @param feeRecipient Address of new fee recipient.
event SetGuardianAndFeeRecipient(
address indexed guardian, address indexed feeRecipient
);
/// @notice Emitted when asset registry is set.
/// @param assetRegistry Address of new asset registry.
event SetAssetRegistry(address assetRegistry);
/// @notice Emitted when hooks is set.
/// @param hooks Address of new hooks.
event SetHooks(address hooks);
/// @notice Emitted when execute is called.
/// @param owner Owner address.
/// @param operation Struct details for target and calldata.
event Executed(address indexed owner, Operation operation);
/// @notice Emitted when vault is finalized.
/// @param owner Owner address.
/// @param withdrawnAmounts Struct details for withdrawn assets and amounts (sent to owner).
event Finalized(address indexed owner, AssetValue[] withdrawnAmounts);
/// @notice Emitted when submit is called.
/// @param guardian Guardian address.
/// @param operations Array of struct details for targets and calldatas.
event Submitted(address indexed guardian, Operation[] operations);
/// @notice Emitted when guardian fees are claimed.
/// @param feeRecipient Fee recipient address.
/// @param claimedFee Claimed amount of fee token.
/// @param unclaimedFee Unclaimed amount of fee token (unclaimed because Vault does not have enough balance of feeToken).
/// @param feeTotal New total reserved fee value.
event Claimed(
address indexed feeRecipient,
uint256 claimedFee,
uint256 unclaimedFee,
uint256 feeTotal
);
/// @notice Emitted when new fees are reserved for recipient.
/// @param feeRecipient Fee recipient address.
/// @param newFee Fee amount reserved.
/// @param lastFeeCheckpoint Updated fee checkpoint.
/// @param lastValue Last registered vault value.
/// @param lastFeeTokenPrice Last registered fee token price.
/// @param feeTotal New total reserved fee value.
event FeesReserved(
address indexed feeRecipient,
uint256 newFee,
uint256 lastFeeCheckpoint,
uint256 lastValue,
uint256 lastFeeTokenPrice,
uint256 feeTotal
);
/// @notice Emitted when no fees are reserved.
/// @param lastFeeCheckpoint Updated fee checkpoint.
/// @param lastValue Last registered vault value.
/// @param feeTotal New total reserved fee value.
event NoFeesReserved(
uint256 lastFeeCheckpoint,
uint256 lastValue,
uint256 feeTotal
);
/// @notice Emitted when the call to get spot prices from the asset registry reverts.
/// @param reason Revert reason.
event SpotPricesReverted(bytes reason);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.0;
import "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/access/Ownable2Step.sol";
import "./interfaces/IAeraVaultWithOwner.sol";
contract RedeemVault is Ownable2Step {
using SafeERC20 for IERC20;
IERC20 public asset;
address public vaultAera; // Guantlet Vault
mapping(address => uint256) public allocatedTokens; // Tracks the allocated tokens for each user
uint256 private _totalAssets;
constructor(address _asset, address _vaultAera) {
asset = IERC20(_asset);
vaultAera = _vaultAera;
}
// Owner allocates tokens for users and sets allowances
function allocateTokens(
address[] calldata recipients,
uint256[] calldata amounts
) external onlyOwner {
require(
recipients.length == amounts.length,
"Recipients and amounts length mismatch"
);
require(_totalAssets == 0, "Already Allocated");
for (uint256 i = 0; i < recipients.length; i++) {
allocatedTokens[recipients[i]] = amounts[i];
_totalAssets += amounts[i];
}
}
// Allow a user to withdraw their allocated tokens
function withdrawTokens(uint256 amount) external {
require(amount > 0, "Withdrawal amount must be greater than 0");
require(
allocatedTokens[msg.sender] >= amount,
"Insufficient allocated tokens to withdraw"
);
require(_getAssetBalance() >= amount, "AmountTooHigh");
_freeFunds(amount);
// Deduct the withdrawn amount from the user's allocation
allocatedTokens[msg.sender] -= amount;
// Deduct the withdrawn amount from totalAssets
_totalAssets -= amount;
// Transfer the tokens to the user
require(asset.transfer(msg.sender, amount), "Token transfer failed");
}
// Owner can recover unused tokens from the contract
function recoverUnusedTokens() external onlyOwner {
uint256 contractBalance = asset.balanceOf(address(this));
require(contractBalance > 0, "No tokens to recover");
require(
asset.transfer(owner(), contractBalance),
"Token recovery failed"
);
}
function _freeFunds(uint256 _amount) internal {
AssetValue[] memory amounts = new AssetValue[](1);
amounts[0] = AssetValue(asset, _amount);
IAeraVaultWithOwner(vaultAera).withdraw(amounts);
}
function _getAssetBalance() internal view returns (uint256) {
AssetValue[] memory assetAmounts = IAeraVaultWithOwner(vaultAera)
.holdings();
uint256 lenAssetAmounts = assetAmounts.length;
for (uint256 i; i < lenAssetAmounts; ++i) {
if (address(asset) == address(assetAmounts[i].asset)) {
return assetAmounts[i].value;
}
}
return 0;
}
// View the remaining allocated tokens for a user
function balanceOf(address user) external view returns (uint256) {
return allocatedTokens[user];
}
function totalAssets() external view returns (uint256) {
return _totalAssets;
}
function transferAeraVaultOwnership(address newOwner) external onlyOwner {
address _vaultAera = vaultAera;
IERC20(asset).safeApprove(_vaultAera, 0);
IAeraVaultWithOwner(_vaultAera).transferOwnership(newOwner);
}
function acceptAeraVaultOwnership() external onlyOwner {
IAeraVaultWithOwner(vaultAera).acceptOwnership();
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: AGPL-v3.0
pragma solidity ^0.8.28;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./IAssetRegistry.sol";
// Types.sol
//
// This file defines the types used in V2.
/// @notice Combination of contract address and sighash to be used in allowlist.
/// @dev It's packed as follows:
/// [target 160 bits] [selector 32 bits] [<empty> 64 bits]
type TargetSighash is bytes32;
/// @notice Struct encapulating an asset and an associated value.
/// @param asset Asset address.
/// @param value The associated value for this asset (e.g., amount or price).
struct AssetValue {
IERC20 asset;
uint256 value;
}
/// @notice Execution details for a vault operation.
/// @param target Target contract address.
/// @param value Native token amount.
/// @param data Calldata.
struct Operation {
address target;
uint256 value;
bytes data;
}
/// @notice Contract address and sighash struct to be used in the public interface.
struct TargetSighashData {
address target;
bytes4 selector;
}
/// @notice Parameters for vault deployment.
/// @param owner Initial owner address.
/// @param assetRegistry Asset registry address.
/// @param hooks Hooks address.
/// @param guardian Guardian address.
/// @param feeRecipient Fee recipient address.
/// @param fee Fees accrued per second, denoted in 18 decimal fixed point format.
struct Parameters {
address owner;
address assetRegistry;
address hooks;
address guardian;
address feeRecipient;
uint256 fee;
}
/// @notice Vault parameters for vault deployment.
/// @param owner Initial owner address.
/// @param guardian Guardian address.
/// @param feeRecipient Fee recipient address.
/// @param fee Fees accrued per second, denoted in 18 decimal fixed point format.
struct VaultParameters {
address owner;
address guardian;
address feeRecipient;
uint256 fee;
}
/// @notice Asset registry parameters for asset registry deployment.
/// @param factory Asset registry factory address.
/// @param owner Initial owner address.
/// @param assets Initial list of registered assets.
/// @param numeraireToken Numeraire token address.
/// @param feeToken Fee token address.
/// @param sequencer Sequencer Uptime Feed address for L2.
struct AssetRegistryParameters {
address factory;
address owner;
IAssetRegistry.AssetInformation[] assets;
IERC20 numeraireToken;
IERC20 feeToken;
AggregatorV2V3Interface sequencer;
}
/// @notice Hooks parameters for hooks deployment.
/// @param factory Hooks factory address.
/// @param owner Initial owner address.
/// @param minDailyValue The fraction of value that the vault has to retain per day
/// in the course of submissions.
/// @param targetSighashAllowlist Array of target contract and sighash combinations to allow.
struct HooksParameters {
address factory;
address owner;
uint256 minDailyValue;
TargetSighashData[] targetSighashAllowlist;
}
{
"compilationTarget": {
"contracts/RedeemVault.sol": "RedeemVault"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_asset","type":"address"},{"internalType":"address","name":"_vaultAera","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"acceptAeraVaultOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"recipients","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"allocateTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"allocatedTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"recoverUnusedTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferAeraVaultOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"vaultAera","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawTokens","outputs":[],"stateMutability":"nonpayable","type":"function"}]