// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
library FarmAccounting {
error ZeroDuration();
error DurationTooLarge();
error AmountTooLarge();
struct Info {
uint40 finished;
uint32 duration;
uint184 reward;
uint256 balance;
}
uint256 internal constant _MAX_REWARD_AMOUNT = 1e32; // 108 bits
uint256 internal constant _SCALE = 1e18; // 60 bits
/// @dev Requires extra 18 decimals for precision, result fits in 168 bits
function farmedSinceCheckpointScaled(Info storage info, uint256 checkpoint) internal view returns(uint256 amount) {
unchecked {
(uint40 finished, uint32 duration, uint184 reward) = (info.finished, info.duration, info.reward);
if (duration > 0) {
uint256 elapsed = Math.min(block.timestamp, finished) - Math.min(checkpoint, finished);
// size of (type(uint32).max * _MAX_REWARD_AMOUNT * _SCALE) is less than 200 bits, so there is no overflow
return elapsed * reward * _SCALE / duration;
}
}
}
function startFarming(Info storage info, uint256 amount, uint256 period) internal returns(uint256) {
if (period == 0) revert ZeroDuration();
if (period > type(uint32).max) revert DurationTooLarge();
// If something left from prev farming add it to the new farming
(uint40 finished, uint32 duration, uint184 reward, uint256 balance) = (info.finished, info.duration, info.reward, info.balance);
if (block.timestamp < finished) {
amount += reward - farmedSinceCheckpointScaled(info, finished - duration) / _SCALE;
}
if (amount > _MAX_REWARD_AMOUNT) revert AmountTooLarge();
(info.finished, info.duration, info.reward, info.balance) = (
uint40(block.timestamp + period),
uint32(period),
uint184(amount),
balance + amount
);
return amount;
}
function stopFarming(Info storage info) internal returns(uint256 leftover) {
leftover = info.reward - farmedSinceCheckpointScaled(info, info.finished - info.duration) / _SCALE;
(info.finished, info.duration, info.reward, info.balance) = (
uint40(block.timestamp),
uint32(0),
uint184(0),
info.balance - leftover
);
}
function claim(Info storage info, uint256 amount) internal {
info.balance -= amount;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { FarmAccounting } from "./accounting/FarmAccounting.sol";
import { UserAccounting } from "./accounting/UserAccounting.sol";
/// @title FarmingLib
/// @dev A library for farming logic, using FarmAccounting and UserAccounting.
library FarmingLib {
using FarmAccounting for FarmAccounting.Info;
using UserAccounting for UserAccounting.Info;
using FarmingLib for FarmingLib.Info;
/// @dev Struct containing farm and user detailed info for farming operations. See {FarmAccounting.Info} and {UserAccounting.Info} for.
struct Data {
FarmAccounting.Info farmInfo;
UserAccounting.Info userInfo;
}
/// @dev Struct containing the total supply function and a data slot for EVM storage.
struct Info {
function() internal view returns(uint256) getTotalSupply;
bytes32 dataSlot;
}
/**
* @notice Creates a new Info struct.
* @param getTotalSupply The function to get the total supply.
* @param data The data struct for storage.
* @return info The created Info struct.
*/
function makeInfo(function() internal view returns(uint256) getTotalSupply, Data storage data) internal pure returns(Info memory info) {
info.getTotalSupply = getTotalSupply;
bytes32 dataSlot;
assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
dataSlot := data.slot
}
info.dataSlot = dataSlot;
}
/**
* @notice Retrieves the Data struct from an Info struct.
* @param self The Info struct.
* @return data The retrieved Data struct.
*/
function getData(Info memory self) internal pure returns(Data storage data) {
bytes32 dataSlot = self.dataSlot;
assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
data.slot := dataSlot
}
}
/**
* @notice Begins farming for a specified period.
* @param self The Info struct.
* @param amount The amount to farm.
* @param period The farming period.
* @return reward The farming reward.
*/
function startFarming(Info memory self, uint256 amount, uint256 period) internal returns(uint256 reward) {
Data storage data = self.getData();
data.userInfo.updateFarmedPerToken(_farmedPerToken(self));
reward = data.farmInfo.startFarming(amount, period);
}
/**
* @notice Stops farming immediately.
* @param self The FarmingLib.Info struct to retrieve data from storage.
* @return leftover Amount of reward tokens remaining after farming.
*/
function stopFarming(Info memory self) internal returns(uint256 leftover) {
Data storage data = self.getData();
data.userInfo.updateFarmedPerToken(_farmedPerToken(self));
leftover = data.farmInfo.stopFarming();
}
/**
* @notice Gets the farmed amount for an account.
* @param self The Info struct.
* @param account The account to check.
* @param balance The account balance.
* @return result The farmed amount.
*/
function farmed(Info memory self, address account, uint256 balance) internal view returns(uint256) {
return self.getData().userInfo.farmed(account, balance, _farmedPerToken(self));
}
/**
* @notice Claims the farmed amount for an account.
* @param self The Info struct.
* @param account The account to claim for.
* @param balance The account balance.
* @return amount The claimed amount.
*/
function claim(Info memory self, address account, uint256 balance) internal returns(uint256 amount) {
Data storage data = self.getData();
uint256 fpt = _farmedPerToken(self);
amount = data.userInfo.farmed(account, balance, fpt);
if (amount > 0) {
data.userInfo.eraseFarmed(account, balance, fpt);
data.farmInfo.claim(amount);
}
}
/**
* @notice Updates the balances of two accounts.
* @param self The Info struct.
* @param from The account to transfer from.
* @param to The account to transfer to.
* @param amount The amount to transfer.
*/
function updateBalances(Info memory self, address from, address to, uint256 amount) internal {
self.getData().userInfo.updateBalances(from, to, amount, _farmedPerToken(self));
}
function _farmedPerToken(Info memory self) private view returns (uint256) {
return self.getData().userInfo.farmedPerToken(_infoToContext(self), _lazyGetSupply, _lazyGetFarmed);
}
// UserAccounting bindings
function _lazyGetSupply(bytes32 context) private view returns(uint256) {
Info memory self = _contextToInfo(context);
return self.getTotalSupply();
}
function _lazyGetFarmed(bytes32 context, uint256 checkpoint) private view returns(uint256) {
Info memory self = _contextToInfo(context);
return self.getData().farmInfo.farmedSinceCheckpointScaled(checkpoint);
}
function _contextToInfo(bytes32 context) private pure returns(Info memory self) {
assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
self := context
}
}
function _infoToContext(Info memory self) private pure returns(bytes32 context) {
assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
context := self
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { IERC20, ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { SafeERC20 } from "@1inch/solidity-utils/contracts/libraries/SafeERC20.sol";
import { IFarmingPool } from "./interfaces/IFarmingPool.sol";
import { FarmAccounting, FarmingLib } from "./FarmingLib.sol";
contract FarmingPool is IFarmingPool, Ownable, ERC20 {
using SafeERC20 for IERC20;
using Address for address payable;
using FarmingLib for FarmingLib.Info;
error SameStakingAndRewardsTokens();
error ZeroStakingTokenAddress();
error ZeroRewardsTokenAddress();
error ZeroDistributorAddress();
error SameDistributor();
error AccessDenied();
error InsufficientFunds();
error MaxBalanceExceeded();
uint256 internal constant _MAX_BALANCE = 1e32;
IERC20 public immutable stakingToken;
IERC20 public immutable rewardsToken;
address private _distributor;
FarmingLib.Data private _farm;
modifier onlyDistributor {
if (msg.sender != _distributor) revert AccessDenied();
_;
}
constructor(IERC20Metadata stakingToken_, IERC20 rewardsToken_)
ERC20(
string(abi.encodePacked("Farming of ", stakingToken_.name())),
string(abi.encodePacked("farm", stakingToken_.symbol()))
)
{
if (stakingToken_ == rewardsToken_) revert SameStakingAndRewardsTokens();
if (address(stakingToken_) == address(0)) revert ZeroStakingTokenAddress();
if (address(rewardsToken_) == address(0)) revert ZeroRewardsTokenAddress();
stakingToken = stakingToken_;
rewardsToken = rewardsToken_;
}
function decimals() public view virtual override returns (uint8) {
return IERC20Metadata(address(stakingToken)).decimals();
}
function farmInfo() public view returns(FarmAccounting.Info memory) {
return _farm.farmInfo;
}
function distributor() public view virtual returns (address) {
return _distributor;
}
function setDistributor(address distributor_) public virtual onlyOwner {
if (distributor_ == address(0)) revert ZeroDistributorAddress();
address oldDistributor = _distributor;
if (distributor_ == oldDistributor) revert SameDistributor();
emit DistributorChanged(oldDistributor, distributor_);
_distributor = distributor_;
}
function startFarming(uint256 amount, uint256 period) public virtual onlyDistributor {
uint256 reward = _makeInfo().startFarming(amount, period);
emit RewardUpdated(reward, period);
rewardsToken.safeTransferFrom(msg.sender, address(this), amount);
}
function stopFarming() public virtual onlyDistributor {
uint256 leftover = _makeInfo().stopFarming();
emit RewardUpdated(0, 0);
if (leftover > 0) {
rewardsToken.safeTransfer(msg.sender, leftover);
}
}
function farmed(address account) public view virtual returns (uint256) {
return _makeInfo().farmed(account, balanceOf(account));
}
function deposit(uint256 amount) public virtual {
_mint(msg.sender, amount);
if (balanceOf(msg.sender) > _MAX_BALANCE) revert MaxBalanceExceeded();
stakingToken.safeTransferFrom(msg.sender, address(this), amount);
}
function withdraw(uint256 amount) public virtual {
_burn(msg.sender, amount);
stakingToken.safeTransfer(msg.sender, amount);
}
function claim() public virtual {
uint256 amount = _makeInfo().claim(msg.sender, balanceOf(msg.sender));
if (amount > 0) {
_transferReward(rewardsToken, msg.sender, amount);
}
}
function _transferReward(IERC20 reward, address to, uint256 amount) internal virtual {
reward.safeTransfer(to, amount);
}
function exit() public virtual {
withdraw(balanceOf(msg.sender));
claim();
}
function rescueFunds(IERC20 token, uint256 amount) public virtual onlyDistributor {
if (token == IERC20(address(0))) {
payable(_distributor).sendValue(amount);
} else {
if (token == stakingToken) {
if (stakingToken.balanceOf(address(this)) < totalSupply() + amount) revert InsufficientFunds();
} else if (token == rewardsToken) {
if (rewardsToken.balanceOf(address(this)) < _farm.farmInfo.balance + amount) revert InsufficientFunds();
}
token.safeTransfer(_distributor, amount);
}
}
function _makeInfo() private view returns(FarmingLib.Info memory) {
return FarmingLib.makeInfo(totalSupply, _farm);
}
// ERC20 overrides
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override {
super._beforeTokenTransfer(from, to, amount);
if (amount > 0 && from != to) {
_makeInfo().updateBalances(from, to, amount);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IDaiLikePermit {
function permit(
address holder,
address spender,
uint256 nonce,
uint256 expiry,
bool allowed,
uint8 v,
bytes32 r,
bytes32 s
) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { FarmAccounting } from "../accounting/FarmAccounting.sol";
interface IFarmingPool is IERC20 {
event DistributorChanged(address oldDistributor, address newDistributor);
event RewardUpdated(uint256 reward, uint256 duration);
// View functions
function distributor() external view returns(address);
function farmInfo() external view returns(FarmAccounting.Info memory);
function farmed(address account) external view returns(uint256);
// User functions
function deposit(uint256 amount) external;
function withdraw(uint256 amount) external;
function claim() external;
function exit() external;
// Owner functions
function setDistributor(address distributor_) external;
// Distributor functions
function startFarming(uint256 amount, uint256 period) external;
function rescueFunds(IERC20 token, uint256 amount) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IPermit2 {
struct PermitDetails {
// ERC20 token address
address token;
// the maximum amount allowed to spend
uint160 amount;
// timestamp at which a spender's token allowances become invalid
uint48 expiration;
// an incrementing value indexed per owner,token,and spender for each signature
uint48 nonce;
}
/// @notice The permit message signed for a single token allownce
struct PermitSingle {
// the permit data for a single token alownce
PermitDetails details;
// address permissioned on the allowed tokens
address spender;
// deadline on the permit signature
uint256 sigDeadline;
}
/// @notice Packed allowance
struct PackedAllowance {
// amount allowed
uint160 amount;
// permission expiry
uint48 expiration;
// an incrementing value indexed per owner,token,and spender for each signature
uint48 nonce;
}
function transferFrom(address user, address spender, uint160 amount, address token) external;
function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;
function allowance(address user, address token, address spender) external view returns (PackedAllowance memory);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IWETH is IERC20 {
event Deposit(address indexed dst, uint wad);
event Withdrawal(address indexed src, uint wad);
function deposit() external payable;
function withdraw(uint256 amount) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Revert reason forwarder.
library RevertReasonForwarder {
/// @dev Forwards latest externall call revert.
function reRevert() internal pure {
// bubble up revert reason from latest external call
assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
import "../interfaces/IDaiLikePermit.sol";
import "../interfaces/IPermit2.sol";
import "../interfaces/IWETH.sol";
import "../libraries/RevertReasonForwarder.sol";
/**
* @title Implements efficient safe methods for ERC20 interface.
* @notice Compared to the standard ERC20, this implementation offers several enhancements:
* 1. more gas-efficient, providing significant savings in transaction costs.
* 2. support for different permit implementations
* 3. forceApprove functionality
* 4. support for WETH deposit and withdraw
*/
library SafeERC20 {
error SafeTransferFailed();
error SafeTransferFromFailed();
error ForceApproveFailed();
error SafeIncreaseAllowanceFailed();
error SafeDecreaseAllowanceFailed();
error SafePermitBadLength();
error Permit2TransferAmountTooHigh();
// Uniswap Permit2 address
address private constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
bytes4 private constant _PERMIT_LENGTH_ERROR = 0x68275857; // SafePermitBadLength.selector
uint256 private constant _RAW_CALL_GAS_LIMIT = 5000;
/**
* @notice Fetches the balance of a specific ERC20 token held by an account.
* Consumes less gas then regular `ERC20.balanceOf`.
* @param token The IERC20 token contract for which the balance will be fetched.
* @param account The address of the account whose token balance will be fetched.
* @return tokenBalance The balance of the specified ERC20 token held by the account.
*/
function safeBalanceOf(
IERC20 token,
address account
) internal view returns(uint256 tokenBalance) {
bytes4 selector = IERC20.balanceOf.selector;
assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
mstore(0x00, selector)
mstore(0x04, account)
let success := staticcall(gas(), token, 0x00, 0x24, 0x00, 0x20)
tokenBalance := mload(0)
if or(iszero(success), lt(returndatasize(), 0x20)) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
}
}
/**
* @notice Attempts to safely transfer tokens from one address to another.
* @dev If permit2 is true, uses the Permit2 standard; otherwise uses the standard ERC20 transferFrom.
* Either requires `true` in return data, or requires target to be smart-contract and empty return data.
* @param token The IERC20 token contract from which the tokens will be transferred.
* @param from The address from which the tokens will be transferred.
* @param to The address to which the tokens will be transferred.
* @param amount The amount of tokens to transfer.
* @param permit2 If true, uses the Permit2 standard for the transfer; otherwise uses the standard ERC20 transferFrom.
*/
function safeTransferFromUniversal(
IERC20 token,
address from,
address to,
uint256 amount,
bool permit2
) internal {
if (permit2) {
safeTransferFromPermit2(token, from, to, amount);
} else {
safeTransferFrom(token, from, to, amount);
}
}
/**
* @notice Attempts to safely transfer tokens from one address to another using the ERC20 standard.
* @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
* @param token The IERC20 token contract from which the tokens will be transferred.
* @param from The address from which the tokens will be transferred.
* @param to The address to which the tokens will be transferred.
* @param amount The amount of tokens to transfer.
*/
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 amount
) internal {
bytes4 selector = token.transferFrom.selector;
bool success;
assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
let data := mload(0x40)
mstore(data, selector)
mstore(add(data, 0x04), from)
mstore(add(data, 0x24), to)
mstore(add(data, 0x44), amount)
success := call(gas(), token, 0, data, 100, 0x0, 0x20)
if success {
switch returndatasize()
case 0 {
success := gt(extcodesize(token), 0)
}
default {
success := and(gt(returndatasize(), 31), eq(mload(0), 1))
}
}
}
if (!success) revert SafeTransferFromFailed();
}
/**
* @notice Attempts to safely transfer tokens from one address to another using the Permit2 standard.
* @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
* @param token The IERC20 token contract from which the tokens will be transferred.
* @param from The address from which the tokens will be transferred.
* @param to The address to which the tokens will be transferred.
* @param amount The amount of tokens to transfer.
*/
function safeTransferFromPermit2(
IERC20 token,
address from,
address to,
uint256 amount
) internal {
if (amount > type(uint160).max) revert Permit2TransferAmountTooHigh();
bytes4 selector = IPermit2.transferFrom.selector;
bool success;
assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
let data := mload(0x40)
mstore(data, selector)
mstore(add(data, 0x04), from)
mstore(add(data, 0x24), to)
mstore(add(data, 0x44), amount)
mstore(add(data, 0x64), token)
success := call(gas(), _PERMIT2, 0, data, 0x84, 0x0, 0x0)
if success {
success := gt(extcodesize(_PERMIT2), 0)
}
}
if (!success) revert SafeTransferFromFailed();
}
/**
* @notice Attempts to safely transfer tokens to another address.
* @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
* @param token The IERC20 token contract from which the tokens will be transferred.
* @param to The address to which the tokens will be transferred.
* @param value The amount of tokens to transfer.
*/
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
if (!_makeCall(token, token.transfer.selector, to, value)) {
revert SafeTransferFailed();
}
}
/**
* @notice Attempts to approve a spender to spend a certain amount of tokens.
* @dev If `approve(from, to, amount)` fails, it tries to set the allowance to zero, and retries the `approve` call.
* @param token The IERC20 token contract on which the call will be made.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
*/
function forceApprove(
IERC20 token,
address spender,
uint256 value
) internal {
if (!_makeCall(token, token.approve.selector, spender, value)) {
if (
!_makeCall(token, token.approve.selector, spender, 0) ||
!_makeCall(token, token.approve.selector, spender, value)
) {
revert ForceApproveFailed();
}
}
}
/**
* @notice Safely increases the allowance of a spender.
* @dev Increases with safe math check. Checks if the increased allowance will overflow, if yes, then it reverts the transaction.
* Then uses `forceApprove` to increase the allowance.
* @param token The IERC20 token contract on which the call will be made.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to increase the allowance by.
*/
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 allowance = token.allowance(address(this), spender);
if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
forceApprove(token, spender, allowance + value);
}
/**
* @notice Safely decreases the allowance of a spender.
* @dev Decreases with safe math check. Checks if the decreased allowance will underflow, if yes, then it reverts the transaction.
* Then uses `forceApprove` to increase the allowance.
* @param token The IERC20 token contract on which the call will be made.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to decrease the allowance by.
*/
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 allowance = token.allowance(address(this), spender);
if (value > allowance) revert SafeDecreaseAllowanceFailed();
forceApprove(token, spender, allowance - value);
}
/**
* @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
* Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
* @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
* @param token The IERC20 token to execute the permit function on.
* @param permit The permit data to be used in the function call.
*/
function safePermit(IERC20 token, bytes calldata permit) internal {
if (!tryPermit(token, msg.sender, address(this), permit)) RevertReasonForwarder.reRevert();
}
/**
* @notice Attempts to execute the `permit` function on the provided token with custom owner and spender parameters.
* Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
* @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
* @param token The IERC20 token to execute the permit function on.
* @param owner The owner of the tokens for which the permit is made.
* @param spender The spender allowed to spend the tokens by the permit.
* @param permit The permit data to be used in the function call.
*/
function safePermit(IERC20 token, address owner, address spender, bytes calldata permit) internal {
if (!tryPermit(token, owner, spender, permit)) RevertReasonForwarder.reRevert();
}
/**
* @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
* @dev Invokes `tryPermit` with sender as owner and contract as spender.
* @param token The IERC20 token to execute the permit function on.
* @param permit The permit data to be used in the function call.
* @return success Returns true if the permit function was successfully executed, false otherwise.
*/
function tryPermit(IERC20 token, bytes calldata permit) internal returns(bool success) {
return tryPermit(token, msg.sender, address(this), permit);
}
/**
* @notice The function attempts to call the permit function on a given ERC20 token.
* @dev The function is designed to support a variety of permit functions, namely: IERC20Permit, IDaiLikePermit, and IPermit2.
* It accommodates both Compact and Full formats of these permit types.
* Please note, it is expected that the `expiration` parameter for the compact Permit2 and the `deadline` parameter
* for the compact Permit are to be incremented by one before invoking this function. This approach is motivated by
* gas efficiency considerations; as the unlimited expiration period is likely to be the most common scenario, and
* zeros are cheaper to pass in terms of gas cost. Thus, callers should increment the expiration or deadline by one
* before invocation for optimized performance.
* @param token The address of the ERC20 token on which to call the permit function.
* @param owner The owner of the tokens. This address should have signed the off-chain permit.
* @param spender The address which will be approved for transfer of tokens.
* @param permit The off-chain permit data, containing different fields depending on the type of permit function.
* @return success A boolean indicating whether the permit call was successful.
*/
function tryPermit(IERC20 token, address owner, address spender, bytes calldata permit) internal returns(bool success) {
// load function selectors for different permit standards
bytes4 permitSelector = IERC20Permit.permit.selector;
bytes4 daiPermitSelector = IDaiLikePermit.permit.selector;
bytes4 permit2Selector = IPermit2.permit.selector;
assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
let ptr := mload(0x40)
// Switch case for different permit lengths, indicating different permit standards
switch permit.length
// Compact IERC20Permit
case 100 {
mstore(ptr, permitSelector) // store selector
mstore(add(ptr, 0x04), owner) // store owner
mstore(add(ptr, 0x24), spender) // store spender
// Compact IERC20Permit.permit(uint256 value, uint32 deadline, uint256 r, uint256 vs)
{ // stack too deep
let deadline := shr(224, calldataload(add(permit.offset, 0x20))) // loads permit.offset 0x20..0x23
let vs := calldataload(add(permit.offset, 0x44)) // loads permit.offset 0x44..0x63
calldatacopy(add(ptr, 0x44), permit.offset, 0x20) // store value = copy permit.offset 0x00..0x19
mstore(add(ptr, 0x64), sub(deadline, 1)) // store deadline = deadline - 1
mstore(add(ptr, 0x84), add(27, shr(255, vs))) // store v = most significant bit of vs + 27 (27 or 28)
calldatacopy(add(ptr, 0xa4), add(permit.offset, 0x24), 0x20) // store r = copy permit.offset 0x24..0x43
mstore(add(ptr, 0xc4), shr(1, shl(1, vs))) // store s = vs without most significant bit
}
// IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
}
// Compact IDaiLikePermit
case 72 {
mstore(ptr, daiPermitSelector) // store selector
mstore(add(ptr, 0x04), owner) // store owner
mstore(add(ptr, 0x24), spender) // store spender
// Compact IDaiLikePermit.permit(uint32 nonce, uint32 expiry, uint256 r, uint256 vs)
{ // stack too deep
let expiry := shr(224, calldataload(add(permit.offset, 0x04))) // loads permit.offset 0x04..0x07
let vs := calldataload(add(permit.offset, 0x28)) // loads permit.offset 0x28..0x47
mstore(add(ptr, 0x44), shr(224, calldataload(permit.offset))) // store nonce = copy permit.offset 0x00..0x03
mstore(add(ptr, 0x64), sub(expiry, 1)) // store expiry = expiry - 1
mstore(add(ptr, 0x84), true) // store allowed = true
mstore(add(ptr, 0xa4), add(27, shr(255, vs))) // store v = most significant bit of vs + 27 (27 or 28)
calldatacopy(add(ptr, 0xc4), add(permit.offset, 0x08), 0x20) // store r = copy permit.offset 0x08..0x27
mstore(add(ptr, 0xe4), shr(1, shl(1, vs))) // store s = vs without most significant bit
}
// IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
success := call(gas(), token, 0, ptr, 0x104, 0, 0)
}
// IERC20Permit
case 224 {
mstore(ptr, permitSelector)
calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
// IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
}
// IDaiLikePermit
case 256 {
mstore(ptr, daiPermitSelector)
calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
// IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
success := call(gas(), token, 0, ptr, 0x104, 0, 0)
}
// Compact IPermit2
case 96 {
// Compact IPermit2.permit(uint160 amount, uint32 expiration, uint32 nonce, uint32 sigDeadline, uint256 r, uint256 vs)
mstore(ptr, permit2Selector) // store selector
mstore(add(ptr, 0x04), owner) // store owner
mstore(add(ptr, 0x24), token) // store token
calldatacopy(add(ptr, 0x50), permit.offset, 0x14) // store amount = copy permit.offset 0x00..0x13
// and(0xffffffffffff, ...) - conversion to uint48
mstore(add(ptr, 0x64), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x14))), 1))) // store expiration = ((permit.offset 0x14..0x17 - 1) & 0xffffffffffff)
mstore(add(ptr, 0x84), shr(224, calldataload(add(permit.offset, 0x18)))) // store nonce = copy permit.offset 0x18..0x1b
mstore(add(ptr, 0xa4), spender) // store spender
// and(0xffffffffffff, ...) - conversion to uint48
mstore(add(ptr, 0xc4), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x1c))), 1))) // store sigDeadline = ((permit.offset 0x1c..0x1f - 1) & 0xffffffffffff)
mstore(add(ptr, 0xe4), 0x100) // store offset = 256
mstore(add(ptr, 0x104), 0x40) // store length = 64
calldatacopy(add(ptr, 0x124), add(permit.offset, 0x20), 0x20) // store r = copy permit.offset 0x20..0x3f
calldatacopy(add(ptr, 0x144), add(permit.offset, 0x40), 0x20) // store vs = copy permit.offset 0x40..0x5f
// IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
success := call(gas(), _PERMIT2, 0, ptr, 0x164, 0, 0)
}
// IPermit2
case 352 {
mstore(ptr, permit2Selector)
calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
// IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
success := call(gas(), _PERMIT2, 0, ptr, 0x164, 0, 0)
}
// Unknown
default {
mstore(ptr, _PERMIT_LENGTH_ERROR)
revert(ptr, 4)
}
}
}
/**
* @dev Executes a low level call to a token contract, making it resistant to reversion and erroneous boolean returns.
* @param token The IERC20 token contract on which the call will be made.
* @param selector The function signature that is to be called on the token contract.
* @param to The address to which the token amount will be transferred.
* @param amount The token amount to be transferred.
* @return success A boolean indicating if the call was successful. Returns 'true' on success and 'false' on failure.
* In case of success but no returned data, validates that the contract code exists.
* In case of returned data, ensures that it's a boolean `true`.
*/
function _makeCall(
IERC20 token,
bytes4 selector,
address to,
uint256 amount
) private returns (bool success) {
assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
let data := mload(0x40)
mstore(data, selector)
mstore(add(data, 0x04), to)
mstore(add(data, 0x24), amount)
success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
if success {
switch returndatasize()
case 0 {
success := gt(extcodesize(token), 0)
}
default {
success := and(gt(returndatasize(), 31), eq(mload(0), 1))
}
}
}
}
/**
* @notice Safely deposits a specified amount of Ether into the IWETH contract. Consumes less gas then regular `IWETH.deposit`.
* @param weth The IWETH token contract.
* @param amount The amount of Ether to deposit into the IWETH contract.
*/
function safeDeposit(IWETH weth, uint256 amount) internal {
if (amount > 0) {
bytes4 selector = IWETH.deposit.selector;
assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
mstore(0, selector)
if iszero(call(gas(), weth, amount, 0, 4, 0, 0)) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
}
}
/**
* @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract. Consumes less gas then regular `IWETH.withdraw`.
* @dev Uses inline assembly to interact with the IWETH contract.
* @param weth The IWETH token contract.
* @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
*/
function safeWithdraw(IWETH weth, uint256 amount) internal {
bytes4 selector = IWETH.withdraw.selector;
assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
mstore(0, selector)
mstore(4, amount)
if iszero(call(gas(), weth, 0, 0, 0x24, 0, 0)) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
}
}
/**
* @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract to a specified recipient.
* Consumes less gas then regular `IWETH.withdraw`.
* @param weth The IWETH token contract.
* @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
* @param to The recipient of the withdrawn Ether.
*/
function safeWithdrawTo(IWETH weth, uint256 amount, address to) internal {
safeWithdraw(weth, amount);
if (to != address(this)) {
assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
if iszero(call(_RAW_CALL_GAS_LIMIT, to, amount, 0, 0, 0, 0)) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { FarmAccounting } from "./FarmAccounting.sol";
library UserAccounting {
struct Info {
uint40 checkpoint;
uint216 farmedPerTokenStored;
mapping(address => int256) corrections;
}
function farmedPerToken(
Info storage info,
bytes32 context,
function(bytes32) internal view returns(uint256) lazyGetSupply,
function(bytes32, uint256) internal view returns(uint256) lazyGetFarmed
) internal view returns(uint256) {
(uint256 checkpoint, uint256 fpt) = (info.checkpoint, info.farmedPerTokenStored);
if (block.timestamp != checkpoint) {
uint256 supply = lazyGetSupply(context);
if (supply > 0) {
// fpt increases by 168 bit / supply
unchecked { fpt += lazyGetFarmed(context, checkpoint) / supply; }
}
}
return fpt;
}
function farmed(Info storage info, address account, uint256 balance, uint256 fpt) internal view returns(uint256) {
// balance * fpt is less than 168 bit
return uint256(int256(balance * fpt) - info.corrections[account]) / FarmAccounting._SCALE;
}
function eraseFarmed(Info storage info, address account, uint256 balance, uint256 fpt) internal {
// balance * fpt is less than 168 bit
info.corrections[account] = int256(balance * fpt);
}
function updateFarmedPerToken(Info storage info, uint256 fpt) internal {
(info.checkpoint, info.farmedPerTokenStored) = (uint40(block.timestamp), uint216(fpt));
}
function updateBalances(Info storage info, address from, address to, uint256 amount, uint256 fpt) internal {
bool fromZero = (from == address(0));
bool toZero = (to == address(0));
if (amount > 0 && from != to) {
if (fromZero || toZero) {
updateFarmedPerToken(info, fpt);
}
// fpt is less than 168 bit, so amount should be less 98 bit
int256 diff = int256(amount * fpt);
if (!fromZero) {
info.corrections[from] -= diff;
}
if (!toZero) {
info.corrections[to] += diff;
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
// EIP-2612 is Final as of 2022-11-01. This file is deprecated.
import "./IERC20Permit.sol";
{
"compilationTarget": {
"contracts/FarmingPool.sol": "FarmingPool"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 1000
},
"remappings": [
":@1inch/=node_modules/@1inch/",
":@chainlink/=node_modules/@chainlink/",
":@eth-optimism/=node_modules/@eth-optimism/",
":@gearbox-protocol/=node_modules/@gearbox-protocol/",
":@openzeppelin/=node_modules/@openzeppelin/",
":@redstone-finance/=node_modules/@redstone-finance/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":eth-gas-reporter/=node_modules/eth-gas-reporter/",
":forge-std/=lib/forge-std/src/"
],
"viaIR": true
}
[{"inputs":[{"internalType":"contract IERC20Metadata","name":"stakingToken_","type":"address"},{"internalType":"contract IERC20","name":"rewardsToken_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessDenied","type":"error"},{"inputs":[],"name":"AmountTooLarge","type":"error"},{"inputs":[],"name":"DurationTooLarge","type":"error"},{"inputs":[],"name":"InsufficientFunds","type":"error"},{"inputs":[],"name":"MaxBalanceExceeded","type":"error"},{"inputs":[],"name":"SafeTransferFailed","type":"error"},{"inputs":[],"name":"SafeTransferFromFailed","type":"error"},{"inputs":[],"name":"SameDistributor","type":"error"},{"inputs":[],"name":"SameStakingAndRewardsTokens","type":"error"},{"inputs":[],"name":"ZeroDistributorAddress","type":"error"},{"inputs":[],"name":"ZeroDuration","type":"error"},{"inputs":[],"name":"ZeroRewardsTokenAddress","type":"error"},{"inputs":[],"name":"ZeroStakingTokenAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldDistributor","type":"address"},{"indexed":false,"internalType":"address","name":"newDistributor","type":"address"}],"name":"DistributorChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"duration","type":"uint256"}],"name":"RewardUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"distributor","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"exit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"farmInfo","outputs":[{"components":[{"internalType":"uint40","name":"finished","type":"uint40"},{"internalType":"uint32","name":"duration","type":"uint32"},{"internalType":"uint184","name":"reward","type":"uint184"},{"internalType":"uint256","name":"balance","type":"uint256"}],"internalType":"struct FarmAccounting.Info","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"farmed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"rescueFunds","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardsToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"distributor_","type":"address"}],"name":"setDistributor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stakingToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"period","type":"uint256"}],"name":"startFarming","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stopFarming","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]