// SPDX-License-Identifier: MIT
pragma solidity 0.6.10;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
interface ILoanToken is IERC20 {
enum Status {Awaiting, Funded, Withdrawn, Settled, Defaulted}
function borrower() external view returns (address);
function amount() external view returns (uint256);
function term() external view returns (uint256);
function apy() external view returns (uint256);
function start() external view returns (uint256);
function lender() external view returns (address);
function debt() external view returns (uint256);
function profit() external view returns (uint256);
function status() external view returns (Status);
function borrowerFee() external view returns (uint256);
function receivedAmount() external view returns (uint256);
function isLoanToken() external pure returns (bool);
function getParameters()
external
view
returns (
uint256,
uint256,
uint256
);
function fund() external;
function withdraw(address _beneficiary) external;
function close() external;
function redeem(uint256 _amount) external;
function repay(address _sender, uint256 _amount) external;
function allowTransfer(address account, bool _status) external;
function repaid() external view returns (uint256);
function balance() external view returns (uint256);
function value(uint256 _balance) external view returns (uint256);
}
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
using Address for address;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name, string memory symbol) public {
_name = name;
_symbol = symbol;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
*
* This is internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}
/**
* @title LoanToken
* @dev A token which represents share of a debt obligation
*
* Each LoanToken has:
* - borrower address
* - borrow amount
* - loan term
* - loan APY
*
* Loan progresses through the following states:
* Awaiting: Waiting for funding to meet capital requirements
* Funded: Capital requireme`nts met, borrower can withdraw
* Withdrawn: Borrower withdraws money, loan waiting to be repaid
* Settled: Loan has been paid back in full with interest
* Defaulted: Loan has not been paid back in full
*
* - LoanTokens are non-transferrable except for whitelisted addresses
* - This version of LoanToken only supports a single funder
*/
contract LoanToken is ILoanToken, ERC20 {
using SafeMath for uint256;
address public override borrower;
uint256 public override amount;
uint256 public override term;
uint256 public override apy;
uint256 public override start;
address public override lender;
uint256 public override debt;
uint256 public redeemed;
// borrow fee -> 100 = 1%
uint256 public override borrowerFee = 25;
// whitelist for transfers
mapping(address => bool) public canTransfer;
Status public override status;
IERC20 public currencyToken;
/**
* @dev Emitted when the loan is funded
* @param lender Address which funded the loan
*/
event Funded(address lender);
/**
* @dev Emitted when transfer whitelist is updated
* @param account Account to whitelist for transfers
* @param status New whitelist status
*/
event TransferAllowanceChanged(address account, bool status);
/**
* @dev Emitted when borrower withdraws funds
* @param beneficiary Account which will receive funds
*/
event Withdrawn(address beneficiary);
/**
* @dev Emitted when term is over
* @param status Final loan status
* @param returnedAmount Amount that was retured before expiry
*/
event Closed(Status status, uint256 returnedAmount);
/**
* @dev Emitted when a LoanToken is redeemed for underlying currencyTokens
* @param receiver Receiver of currencyTokens
* @param burnedAmount Amount of LoanTokens burned
* @param redeemedAmound Amount of currencyToken received
*/
event Redeemed(address receiver, uint256 burnedAmount, uint256 redeemedAmound);
/**
* @dev Create a Loan
* @param _currencyToken Token to lend
* @param _borrower Borrwer addresss
* @param _amount Borrow amount of currency tokens
* @param _term Loan length
* @param _apy Loan APY
*/
constructor(
IERC20 _currencyToken,
address _borrower,
uint256 _amount,
uint256 _term,
uint256 _apy
) public ERC20("Loan Token", "LOAN") {
currencyToken = _currencyToken;
borrower = _borrower;
amount = _amount;
term = _term;
apy = _apy;
debt = interest(amount);
}
/**
* @dev Only borrwer can withdraw & repay loan
*/
modifier onlyBorrower() {
require(msg.sender == borrower, "LoanToken: Caller is not the borrower");
_;
}
/**
* @dev Only when loan is Settled
*/
modifier onlyClosed() {
require(status == Status.Settled || status == Status.Defaulted, "LoanToken: Current status should be Settled or Defaulted");
_;
}
/**
* @dev Only when loan is Funded
*/
modifier onlyOngoing() {
require(status == Status.Funded || status == Status.Withdrawn, "LoanToken: Current status should be Funded or Withdrawn");
_;
}
/**
* @dev Only when loan is Funded
*/
modifier onlyFunded() {
require(status == Status.Funded, "LoanToken: Current status should be Funded");
_;
}
/**
* @dev Only when loan is Withdrawn
*/
modifier onlyAfterWithdraw() {
require(status >= Status.Withdrawn, "LoanToken: Only after loan has been withdrawn");
_;
}
/**
* @dev Only when loan is Awaiting
*/
modifier onlyAwaiting() {
require(status == Status.Awaiting, "LoanToken: Current status should be Awaiting");
_;
}
/**
* @dev Only whitelisted accounts or lender
*/
modifier onlyWhoCanTransfer(address sender) {
require(
sender == lender || canTransfer[sender],
"LoanToken: This can be performed only by lender or accounts allowed to transfer"
);
_;
}
/**
* @dev Only lender can perform certain actions
*/
modifier onlyLender() {
require(msg.sender == lender, "LoanToken: This can be performed only by lender");
_;
}
/**
* @dev Return true if this contract is a LoanToken
* @return True if this contract is a LoanToken
*/
function isLoanToken() external override pure returns (bool) {
return true;
}
/**
* @dev Get loan parameters
* @return amount, term, apy
*/
function getParameters()
external
override
view
returns (
uint256,
uint256,
uint256
)
{
return (amount, apy, term);
}
/**
* @dev Get coupon value of this loan token in currencyToken
* This assumes the loan will be paid back on time, with interest
* @param _balance number of LoanTokens to get value for
* @return coupon value of _balance LoanTokens in currencyTokens
*/
function value(uint256 _balance) external override view returns (uint256) {
if (_balance == 0) {
return 0;
}
uint256 passed = block.timestamp.sub(start);
if (passed > term) {
passed = term;
}
uint256 helper = amount.mul(apy).mul(passed).mul(_balance);
// assume month is 30 days
uint256 interest = helper.div(360 days).div(10000).div(totalSupply());
return amount.add(interest);
}
/**
* @dev Fund a loan
* Set status, start time, lender
*/
function fund() external override onlyAwaiting {
status = Status.Funded;
start = block.timestamp;
lender = msg.sender;
_mint(msg.sender, debt);
require(currencyToken.transferFrom(msg.sender, address(this), receivedAmount()));
emit Funded(msg.sender);
}
/**
* @dev Whitelist accounts to transfer
* @param account address to allow transfers for
* @param _status true allows transfers, false disables transfers
*/
function allowTransfer(address account, bool _status) external override onlyLender {
canTransfer[account] = _status;
emit TransferAllowanceChanged(account, _status);
}
/**
* @dev Borrower calls this function to withdraw funds
* Sets the status of the loan to Withdrawn
* @param _beneficiary address to send funds to
*/
function withdraw(address _beneficiary) external override onlyBorrower onlyFunded {
status = Status.Withdrawn;
require(currencyToken.transfer(_beneficiary, receivedAmount()));
emit Withdrawn(_beneficiary);
}
/**
* @dev Close the loan and check if it has been repaid
*/
function close() external override onlyOngoing {
require(start.add(term) <= block.timestamp, "LoanToken: Loan cannot be closed yet");
if (_balance() >= debt) {
status = Status.Settled;
} else {
status = Status.Defaulted;
}
emit Closed(status, _balance());
}
/**
* @dev Redeem LoanToken balances for underlying currencyToken
* Can only call this function after the loan is Closed
* @param _amount amount to redeem
*/
function redeem(uint256 _amount) external override onlyClosed {
uint256 amountToReturn = _amount.mul(_balance()).div(totalSupply());
redeemed = redeemed.add(amountToReturn);
_burn(msg.sender, _amount);
require(currencyToken.transfer(msg.sender, amountToReturn));
emit Redeemed(msg.sender, _amount, amountToReturn);
}
/**
* @dev Function for borrower to repay the loan
* Borrower can repay at any time
* @param _sender account sending currencyToken to repay
* @param _amount amount of currencyToken to repay
*/
function repay(address _sender, uint256 _amount) external override onlyAfterWithdraw {
require(currencyToken.transferFrom(_sender, address(this), _amount));
}
/**
* @dev Check if loan has been repaid
* @return Boolean representing whether the loan has been repaid or not
*/
function repaid() external override view onlyAfterWithdraw returns (uint256) {
return _balance().add(redeemed);
}
/**
* @dev Public currency token balance function
* @return currencyToken balance of this contract
*/
function balance() external override view returns (uint256) {
return _balance();
}
/**
* @dev Get currency token balance for this contract
* @return currencyToken balance of this contract
*/
function _balance() internal view returns (uint256) {
return currencyToken.balanceOf(address(this));
}
/**
* @dev Calculate amount borrowed minus fee
* @return Amount minus fees
*/
function receivedAmount() public override view returns (uint256) {
return amount.sub(amount.mul(borrowerFee).div(10000));
}
/**
* @dev Calculate interest that will be paid by this loan for an amount
* (amount * apy * term) / (360 days / precision)
* @param _amount amount
* @return uint256 Amount of interest paid for _amount
*/
function interest(uint256 _amount) internal view returns (uint256) {
return _amount.add(_amount.mul(apy).mul(term).div(360 days).div(10000));
}
/**
* @dev get profit for this loan
* @return profit for this loan
*/
function profit() external override view returns (uint256) {
return debt.sub(amount);
}
/**
* @dev Override ERC20 _transfer so only whitelisted addresses can transfer
* @param sender sender of the transaction
* @param recipient recipient of the transaction
* @param _amount amount to send
*/
function _transfer(
address sender,
address recipient,
uint256 _amount
) internal override onlyWhoCanTransfer(sender) {
return super._transfer(sender, recipient, _amount);
}
}
{
"compilationTarget": {
"LoanToken.sol": "LoanToken"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 20000
},
"remappings": []
}
[{"inputs":[{"internalType":"contract IERC20","name":"_currencyToken","type":"address"},{"internalType":"address","name":"_borrower","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_term","type":"uint256"},{"internalType":"uint256","name":"_apy","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"enum ILoanToken.Status","name":"status","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"returnedAmount","type":"uint256"}],"name":"Closed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"lender","type":"address"}],"name":"Funded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"burnedAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"redeemedAmound","type":"uint256"}],"name":"Redeemed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"bool","name":"status","type":"bool"}],"name":"TransferAllowanceChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"beneficiary","type":"address"}],"name":"Withdrawn","type":"event"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bool","name":"_status","type":"bool"}],"name":"allowTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"amount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"apy","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"borrower","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"borrowerFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"canTransfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"close","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"currencyToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"debt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"fund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getParameters","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isLoanToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"lender","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"profit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"receivedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"redeem","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"redeemed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"repaid","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_sender","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"repay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"start","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"status","outputs":[{"internalType":"enum ILoanToken.Status","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"term","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_balance","type":"uint256"}],"name":"value","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beneficiary","type":"address"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]