// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
/*
* Copyright (c) 2022, Circle Internet Financial Limited.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.17;
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "../access/Ownable2Step.sol";
contract Attestable is Ownable2Step {
// ============ Events ============
/**
* @notice Emitted when an attester is enabled
* @param attester newly enabled attester
*/
event AttesterEnabled(address indexed attester);
/**
* @notice Emitted when an attester is disabled
* @param attester newly disabled attester
*/
event AttesterDisabled(address indexed attester);
/**
* @notice Emitted when threshold number of attestations (m in m/n multisig) is updated
* @param oldSignatureThreshold old signature threshold
* @param newSignatureThreshold new signature threshold
*/
event SignatureThresholdUpdated(
uint256 oldSignatureThreshold,
uint256 newSignatureThreshold
);
/**
* @dev Emitted when attester manager address is updated
* @param previousAttesterManager representing the address of the previous attester manager
* @param newAttesterManager representing the address of the new attester manager
*/
event AttesterManagerUpdated(
address indexed previousAttesterManager,
address indexed newAttesterManager
);
// ============ Libraries ============
using EnumerableSet for EnumerableSet.AddressSet;
// ============ State Variables ============
// number of signatures from distinct attesters required for a message to be received (m in m/n multisig)
uint256 public signatureThreshold;
// 65-byte ECDSA signature: v (32) + r (32) + s (1)
uint256 internal constant signatureLength = 65;
// enabled attesters (message signers)
// (length of enabledAttesters is n in m/n multisig of message signers)
EnumerableSet.AddressSet private enabledAttesters;
// Attester Manager of the contract
address private _attesterManager;
// ============ Modifiers ============
/**
* @dev Throws if called by any account other than the attester manager.
*/
modifier onlyAttesterManager() {
require(msg.sender == _attesterManager, "Caller not attester manager");
_;
}
// ============ Constructor ============
/**
* @dev The constructor sets the original attester manager of the contract to the sender account.
* @param attester attester to initialize
*/
constructor(address attester) {
_setAttesterManager(msg.sender);
// Initially 1 signature is required. Threshold can be increased by attesterManager.
signatureThreshold = 1;
enableAttester(attester);
}
// ============ Public/External Functions ============
/**
* @notice Enables an attester
* @dev Only callable by attesterManager. New attester must be nonzero, and currently disabled.
* @param newAttester attester to enable
*/
function enableAttester(address newAttester) public onlyAttesterManager {
require(newAttester != address(0), "New attester must be nonzero");
require(enabledAttesters.add(newAttester), "Attester already enabled");
emit AttesterEnabled(newAttester);
}
/**
* @notice returns true if given `attester` is enabled, else false
* @param attester attester to check enabled status of
* @return true if given `attester` is enabled, else false
*/
function isEnabledAttester(address attester) public view returns (bool) {
return enabledAttesters.contains(attester);
}
/**
* @notice returns the number of enabled attesters
* @return number of enabled attesters
*/
function getNumEnabledAttesters() public view returns (uint256) {
return enabledAttesters.length();
}
/**
* @dev Allows the current attester manager to transfer control of the contract to a newAttesterManager.
* @param newAttesterManager The address to update attester manager to.
*/
function updateAttesterManager(address newAttesterManager)
external
onlyOwner
{
require(
newAttesterManager != address(0),
"Invalid attester manager address"
);
address _oldAttesterManager = _attesterManager;
_setAttesterManager(newAttesterManager);
emit AttesterManagerUpdated(_oldAttesterManager, newAttesterManager);
}
/**
* @notice Disables an attester
* @dev Only callable by attesterManager. Disabling the attester is not allowed if there is only one attester
* enabled, or if it would cause the number of enabled attesters to become less than signatureThreshold.
* (Attester must be currently enabled.)
* @param attester attester to disable
*/
function disableAttester(address attester) external onlyAttesterManager {
// Disallow disabling attester if there is only 1 active attester
uint256 _numEnabledAttesters = getNumEnabledAttesters();
require(_numEnabledAttesters > 1, "Too few enabled attesters");
// Disallow disabling an attester if it would cause the n in m/n multisig to fall below m (threshold # of signers).
require(
_numEnabledAttesters > signatureThreshold,
"Signature threshold is too low"
);
require(enabledAttesters.remove(attester), "Attester already disabled");
emit AttesterDisabled(attester);
}
/**
* @notice Sets the threshold of signatures required to attest to a message.
* (This is the m in m/n multisig.)
* @dev new signature threshold must be nonzero, and must not exceed number
* of enabled attesters.
* @param newSignatureThreshold new signature threshold
*/
function setSignatureThreshold(uint256 newSignatureThreshold)
external
onlyAttesterManager
{
require(newSignatureThreshold != 0, "Invalid signature threshold");
// New signature threshold cannot exceed the number of enabled attesters
require(
newSignatureThreshold <= enabledAttesters.length(),
"New signature threshold too high"
);
require(
newSignatureThreshold != signatureThreshold,
"Signature threshold already set"
);
uint256 _oldSignatureThreshold = signatureThreshold;
signatureThreshold = newSignatureThreshold;
emit SignatureThresholdUpdated(
_oldSignatureThreshold,
signatureThreshold
);
}
/**
* @dev Returns the address of the attester manager
* @return address of the attester manager
*/
function attesterManager() external view returns (address) {
return _attesterManager;
}
/**
* @notice gets enabled attester at given `index`
* @param index index of attester to check
* @return enabled attester at given `index`
*/
function getEnabledAttester(uint256 index) external view returns (address) {
return enabledAttesters.at(index);
}
// ============ Internal Utils ============
/**
* @dev Sets a new attester manager address
* @param _newAttesterManager attester manager address to set
*/
function _setAttesterManager(address _newAttesterManager) internal {
_attesterManager = _newAttesterManager;
}
/**
* @notice reverts if the attestation, which is comprised of one or more concatenated 65-byte signatures, is invalid.
* @dev Rules for valid attestation:
* 1. length of `_attestation` == 65 (signature length) * signatureThreshold
* 2. addresses recovered from attestation must be in increasing order.
* For example, if signature A is signed by address 0x1..., and signature B
* is signed by address 0x2..., attestation must be passed as AB.
* 3. no duplicate signers
* 4. all signers must be enabled attesters
*
* Based on Christian Lundkvist's Simple Multisig
* (https://github.com/christianlundkvist/simple-multisig/tree/560c463c8651e0a4da331bd8f245ccd2a48ab63d)
* @param _message message to verify attestation of
* @param _attestation attestation of `_message`
*/
function _verifyAttestationSignatures(
bytes calldata _message,
bytes calldata _attestation
) internal view {
require(
_attestation.length == signatureLength * signatureThreshold,
"Invalid attestation length"
);
// (Attesters cannot be address(0))
address _latestAttesterAddress = address(0);
// Address recovered from signatures must be in increasing order, to prevent duplicates
bytes32 _digest = keccak256(_message);
for (uint256 i; i < signatureThreshold; ++i) {
bytes memory _signature = _attestation[i * signatureLength:i *
signatureLength +
signatureLength];
address _recoveredAttester = _recoverAttesterSignature(
_digest,
_signature
);
// Signatures must be in increasing order of address, and may not duplicate signatures from same address
require(
_recoveredAttester > _latestAttesterAddress,
"Invalid signature order or dupe"
);
require(
isEnabledAttester(_recoveredAttester),
"Invalid signature: not attester"
);
_latestAttesterAddress = _recoveredAttester;
}
}
/**
* @notice Checks that signature was signed by attester
* @param _digest message hash
* @param _signature message signature
* @return address of recovered signer
**/
function _recoverAttesterSignature(bytes32 _digest, bytes memory _signature)
internal
pure
returns (address)
{
return (ECDSA.recover(_digest, _signature));
}
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.17;
import "./libraries/Utils.sol";
import "./roles/Attestable.sol";
import "./interfaces/IBridge.sol";
import "./interfaces/IReceiver.sol";
import "./interfaces/ICallProxy.sol";
import "./interfaces/ITokenMessenger.sol";
import "@openzeppelin/contracts/security/Pausable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
contract Bridge is IBridge, Attestable, Pausable, ReentrancyGuard {
using SafeERC20 for IERC20;
address public feeCollector;
address public tokenMessenger;
address public callProxy;
// destination domain => destination bridge
mapping(uint32 => bytes32) public bridgeHashMap;
// token => disabled
mapping(address => bool) public disabledBridgeTokens;
// token, destination domain => disabled
mapping(address => mapping(uint32 => bool)) public disabledRoutes;
event SetTokenMessenger(address tokenMessenger);
event SetFeeCollector(address feeCollector);
event SetCallProxy(address callProxy);
event EnableBridgeToken(address token);
event DisableBridgeToken(address token);
event EnableRoute(address token, uint32 destinationDomain);
event DisableRoute(address token, uint32 destinationDomain);
event BindBridge(uint32 destinationDomain, bytes32 targetBridge);
event BindBridgeBatch(uint32[] destinationDomains, bytes32[] targetBridges);
event BridgeOut(
address sender,
address token,
uint32 destinationDomain,
uint256 amount,
uint64 nonce,
bytes32 recipient,
bytes callData,
uint256 fee
);
event BridgeIn(
address sender,
address recipient,
address token,
uint256 amount
);
struct TxArgs {
address token;
bytes message;
bytes mintAttestation;
bytes32 recipient;
bytes callData;
}
receive() external payable { }
constructor(
address _tokenMessenger,
address _attester,
address _feeCollector
) Attestable(_attester) {
require(_tokenMessenger != address(0), "tokenMessenger address cannot be zero");
require(_feeCollector != address(0), "feeCollector address cannot be zero");
tokenMessenger = _tokenMessenger;
feeCollector = _feeCollector;
}
function bridgeOut(
address token,
uint256 amount,
uint32 destinationDomain,
bytes32 recipient,
bytes calldata callData
) external payable nonReentrant whenNotPaused {
bytes32 targetBridge = bridgeHashMap[destinationDomain];
require(targetBridge != bytes32(0), "target bridge not enabled");
require(msg.sender != callProxy, "forbidden");
require(recipient != bytes32(0), "recipient address cannot be zero");
require(!disabledBridgeTokens[token], "token not enabled");
require(!disabledRoutes[token][destinationDomain], "route disabled");
IERC20(token).safeTransferFrom(msg.sender, address(this), amount);
IERC20(token).safeApprove(tokenMessenger, amount);
uint64 nonce = ITokenMessenger(tokenMessenger).depositForBurnWithCaller(
amount, destinationDomain, targetBridge, token, targetBridge
);
sendNative(feeCollector, msg.value);
emit BridgeOut(msg.sender, token, destinationDomain, amount, nonce, recipient, callData, msg.value);
}
function bridgeIn(
bytes calldata args,
bytes calldata attestation
) external nonReentrant whenNotPaused {
require(args.length > 0, "invalid bridgeIn args");
_verifyAttestationSignatures(args, attestation);
TxArgs memory txArgs = deserializeTxArgs(args);
address token = txArgs.token;
uint256 balanceBefore = IERC20(token).balanceOf(address(this));
bool success = _getMessageTransmitter().receiveMessage(txArgs.message, txArgs.mintAttestation);
require(success, "receive message failed");
uint256 amount = IERC20(token).balanceOf(address(this)) - balanceBefore;
require(amount > 0, "amount cannot be zero");
address recipient = bytes32ToAddress(txArgs.recipient);
require(recipient != address(0), "recipient address cannot be zero");
if (txArgs.callData.length == 0 || callProxy == address(0)) {
IERC20(token).safeTransfer(recipient, amount);
} else {
IERC20(token).safeTransfer(callProxy, amount);
require(ICallProxy(callProxy).proxyCall(token, amount, recipient, txArgs.callData), "proxy call failed");
}
emit BridgeIn(msg.sender, recipient, token, amount);
}
function getMessageTransmitter() external view returns (IReceiver) {
return _getMessageTransmitter();
}
function _getMessageTransmitter() internal view returns (IReceiver) {
return IReceiver(ITokenMessenger(tokenMessenger).localMessageTransmitter());
}
function setTokenMessenger(address newTokenMessenger) onlyOwner external {
require(newTokenMessenger != address(0), "tokenMessenger address cannot be zero");
tokenMessenger = newTokenMessenger;
emit SetTokenMessenger(newTokenMessenger);
}
function enableBridgeToken(address token) external onlyOwner {
require(token != address(0), "token address cannot be zero");
delete disabledBridgeTokens[token];
emit EnableBridgeToken(token);
}
function disableBridgeToken(address token) external onlyOwner {
require(token != address(0), "token address cannot be zero");
disabledBridgeTokens[token] = true;
emit DisableBridgeToken(token);
}
function enableRouter(address token, uint32 destinationDomain) external onlyOwner {
require(token != address(0), "token address cannot be zero");
delete disabledRoutes[token][destinationDomain];
emit EnableRoute(token, destinationDomain);
}
function disableRoute(address token, uint32 destinationDomain) external onlyOwner {
require(token != address(0), "token address cannot be zero");
disabledRoutes[token][destinationDomain] = true;
emit DisableRoute(token, destinationDomain);
}
function setCallProxy(address newCallProxy) onlyOwner external {
callProxy = newCallProxy;
emit SetCallProxy(newCallProxy);
}
function setFeeCollector(address newFeeCollector) external onlyOwner {
require(newFeeCollector != address(0), "feeCollector address cannot be zero");
feeCollector = newFeeCollector;
emit SetFeeCollector(newFeeCollector);
}
function bindBridge(uint32 destinationDomain, bytes32 targetBridge) onlyOwner external returns (bool) {
bridgeHashMap[destinationDomain] = targetBridge;
emit BindBridge(destinationDomain, targetBridge);
return true;
}
function bindBridgeBatch(uint32[] calldata destinationDomains, bytes32[] calldata targetBridgeHashes) onlyOwner external returns (bool) {
require(destinationDomains.length == targetBridgeHashes.length, "Inconsistent parameter lengths");
for (uint i = 0; i < destinationDomains.length; i++) {
bridgeHashMap[destinationDomains[i]] = targetBridgeHashes[i];
}
emit BindBridgeBatch(destinationDomains, targetBridgeHashes);
return true;
}
function externalCall(address callee, bytes calldata data) external onlyOwner {
(bool success, ) = callee.call(data);
require(success, "external call failed");
}
function rescueFund(address tokenAddress) external onlyOwner {
IERC20 token = IERC20(tokenAddress);
token.safeTransfer(_msgSender(), token.balanceOf(address(this)));
}
function rescueNative(address receiver) external onlyOwner {
sendNative(receiver, address(this).balance);
}
function pause() external onlyOwner {
_pause();
}
function unpause() external onlyOwner {
_unpause();
}
function sendNative(address receiver, uint256 amount) internal {
(bool success, ) = receiver.call{ value: amount }("");
require(success, "unable to send value, recipient may have reverted");
}
function deserializeTxArgs(bytes calldata rawArgs) internal pure returns (TxArgs memory) {
TxArgs memory txArgs;
uint256 offset = 0;
bytes memory tokenBytes;
(tokenBytes, offset) = Utils.NextVarBytes(rawArgs, offset);
txArgs.token = Utils.bytesToAddress(tokenBytes);
(txArgs.message, offset) = Utils.NextVarBytes(rawArgs, offset);
(txArgs.mintAttestation, offset) = Utils.NextVarBytes(rawArgs, offset);
bytes memory recipientBytes;
(recipientBytes, offset) = Utils.NextVarBytes(rawArgs, offset);
txArgs.recipient = addressToBytes32(Utils.bytesToAddress(recipientBytes));
(txArgs.callData, offset) = Utils.NextVarBytes(rawArgs, offset);
return txArgs;
}
// May revert if current chain does not implement the `BASEFEE` opcode
function getBasefee() external view returns (uint256 basefee) {
basefee = block.basefee;
}
function addressToBytes32(address addr) internal pure returns (bytes32) {
return bytes32(uint256(uint160(addr)));
}
function bytes32ToAddress(bytes32 _buf) internal pure returns (address) {
return address(uint160(uint256(_buf)));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.0;
interface IBridge {
function callProxy() external returns (address);
function bridgeOut(
address token,
uint256 amount,
uint32 destinationDomain,
bytes32 recipient,
bytes calldata callData
) external payable;
function bridgeIn(
bytes calldata args,
bytes calldata attestation
) external;
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.17;
interface ICallProxy {
function proxyCall(
address token,
uint256 amount,
address receiver,
bytes memory callData
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
/*
* Copyright (c) 2022, Circle Internet Financial Limited.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.17;
import "./IReceiver.sol";
/**
* @title IMessageTransmitter
* @notice Interface for message transmitters, which both relay and receive messages.
*/
interface IMessageTransmitter is IReceiver {
function localDomain() external view returns (uint32);
}
/*
* Copyright (c) 2022, Circle Internet Financial Limited.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.17;
/**
* @title IReceiver
* @notice Receives messages on destination chain and forwards them to IMessageDestinationHandler
*/
interface IReceiver {
/**
* @notice Receives an incoming message, validating the header and passing
* the body to application-specific handler.
* @param message The message raw bytes
* @param signature The message signature
* @return success bool, true if successful
*/
function receiveMessage(bytes calldata message, bytes calldata signature)
external
returns (bool success);
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.17;
import "./IMessageTransmitter.sol";
interface ITokenMessenger {
function depositForBurn(
uint256 amount,
uint32 destinationDomain,
bytes32 mintRecipient,
address burnToken
) external returns (uint64 _nonce);
function depositForBurnWithCaller(
uint256 amount,
uint32 destinationDomain,
bytes32 mintRecipient,
address burnToken,
bytes32 destinationCaller
) external returns (uint64 nonce);
function localMessageTransmitter() external view returns (IMessageTransmitter);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.17;
import "@openzeppelin/contracts/utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
/*
* Copyright (c) 2022, Circle Internet Financial Limited.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.17;
import "./Ownable.sol";
/**
* @dev forked from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/7c5f6bc2c8743d83443fa46395d75f2f3f99054a/contracts/access/Ownable2Step.sol
* Modifications:
* 1. Update Solidity version from 0.8.0 to 0.7.6. Version 0.8.0 was used
* as base because this contract was added to OZ repo after version 0.8.0.
*
* Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner)
public
virtual
override
onlyOwner
{
require(newOwner != address(0), "new owner address cannot be zero");
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() external {
address sender = _msgSender();
require(
pendingOwner() == sender,
"Ownable2Step: caller is not the new owner"
);
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.0;
library Utils {
function WriteByte(bytes1 b) internal pure returns (bytes memory) {
return WriteUint8(uint8(b));
}
function WriteUint8(uint8 v) internal pure returns (bytes memory) {
bytes memory buff;
assembly{
buff := mload(0x40)
mstore(buff, 1)
mstore(add(buff, 0x20), shl(248, v))
// mstore(add(buff, 0x20), byte(0x1f, v))
mstore(0x40, add(buff, 0x21))
}
return buff;
}
function WriteUint16(uint16 v) internal pure returns (bytes memory) {
bytes memory buff;
assembly{
buff := mload(0x40)
let byteLen := 0x02
mstore(buff, byteLen)
for {
let mindex := 0x00
let vindex := 0x1f
} lt(mindex, byteLen) {
mindex := add(mindex, 0x01)
vindex := sub(vindex, 0x01)
}{
mstore8(add(add(buff, 0x20), mindex), byte(vindex, v))
}
mstore(0x40, add(buff, 0x22))
}
return buff;
}
function WriteUint32(uint32 v) internal pure returns(bytes memory) {
bytes memory buff;
assembly{
buff := mload(0x40)
let byteLen := 0x04
mstore(buff, byteLen)
for {
let mindex := 0x00
let vindex := 0x1f
} lt(mindex, byteLen) {
mindex := add(mindex, 0x01)
vindex := sub(vindex, 0x01)
}{
mstore8(add(add(buff, 0x20), mindex), byte(vindex, v))
}
mstore(0x40, add(buff, 0x24))
}
return buff;
}
function WriteUint64(uint64 v) internal pure returns(bytes memory) {
bytes memory buff;
assembly{
buff := mload(0x40)
let byteLen := 0x08
mstore(buff, byteLen)
for {
let mindex := 0x00
let vindex := 0x1f
} lt(mindex, byteLen) {
mindex := add(mindex, 0x01)
vindex := sub(vindex, 0x01)
}{
mstore8(add(add(buff, 0x20), mindex), byte(vindex, v))
}
mstore(0x40, add(buff, 0x28))
}
return buff;
}
function WriteUint255(uint256 v) internal pure returns (bytes memory) {
require(v <= 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, "Value exceeds uint255 range");
bytes memory buff;
assembly{
buff := mload(0x40)
let byteLen := 0x20
mstore(buff, byteLen)
for {
let mindex := 0x00
let vindex := 0x1f
} lt(mindex, byteLen) {
mindex := add(mindex, 0x01)
vindex := sub(vindex, 0x01)
}{
mstore8(add(add(buff, 0x20), mindex), byte(vindex, v))
}
mstore(0x40, add(buff, 0x40))
}
return buff;
}
function WriteVarBytes(bytes memory data) internal pure returns (bytes memory) {
uint64 l = uint64(data.length);
return abi.encodePacked(WriteVarUint(l), data);
}
function WriteVarUint(uint64 v) internal pure returns (bytes memory) {
if (v < 0xFD){
return WriteUint8(uint8(v));
} else if (v <= 0xFFFF) {
return abi.encodePacked(WriteByte(0xFD), WriteUint16(uint16(v)));
} else if (v <= 0xFFFFFFFF) {
return abi.encodePacked(WriteByte(0xFE), WriteUint32(uint32(v)));
} else {
return abi.encodePacked(WriteByte(0xFF), WriteUint64(uint64(v)));
}
}
function NextByte(bytes memory buff, uint256 offset) internal pure returns (bytes1, uint256) {
require(offset + 1 <= buff.length && offset < offset + 1, "NextByte, Offset exceeds maximum");
bytes1 v;
assembly{
v := mload(add(add(buff, 0x20), offset))
}
return (v, offset + 1);
}
function NextUint8(bytes memory buff, uint256 offset) internal pure returns (uint8, uint256) {
require(offset + 1 <= buff.length && offset < offset + 1, "NextUint8, Offset exceeds maximum");
uint8 v;
assembly{
let tmpbytes := mload(0x40)
let bvalue := mload(add(add(buff, 0x20), offset))
mstore8(tmpbytes, byte(0, bvalue))
mstore(0x40, add(tmpbytes, 0x01))
v := mload(sub(tmpbytes, 0x1f))
}
return (v, offset + 1);
}
function NextUint16(bytes memory buff, uint256 offset) internal pure returns (uint16, uint256) {
require(offset + 2 <= buff.length && offset < offset + 2, "NextUint16, offset exceeds maximum");
uint16 v;
assembly {
let tmpbytes := mload(0x40)
let bvalue := mload(add(add(buff, 0x20), offset))
mstore8(tmpbytes, byte(0x01, bvalue))
mstore8(add(tmpbytes, 0x01), byte(0, bvalue))
mstore(0x40, add(tmpbytes, 0x02))
v := mload(sub(tmpbytes, 0x1e))
}
return (v, offset + 2);
}
function NextUint32(bytes memory buff, uint256 offset) internal pure returns (uint32, uint256) {
require(offset + 4 <= buff.length && offset < offset + 4, "NextUint32, offset exceeds maximum");
uint32 v;
assembly {
let tmpbytes := mload(0x40)
let byteLen := 0x04
for {
let tindex := 0x00
let bindex := sub(byteLen, 0x01)
let bvalue := mload(add(add(buff, 0x20), offset))
} lt(tindex, byteLen) {
tindex := add(tindex, 0x01)
bindex := sub(bindex, 0x01)
}{
mstore8(add(tmpbytes, tindex), byte(bindex, bvalue))
}
mstore(0x40, add(tmpbytes, byteLen))
v := mload(sub(tmpbytes, sub(0x20, byteLen)))
}
return (v, offset + 4);
}
function NextUint64(bytes memory buff, uint256 offset) internal pure returns (uint64, uint256) {
require(offset + 8 <= buff.length && offset < offset + 8, "NextUint64, offset exceeds maximum");
uint64 v;
assembly {
let tmpbytes := mload(0x40)
let byteLen := 0x08
for {
let tindex := 0x00
let bindex := sub(byteLen, 0x01)
let bvalue := mload(add(add(buff, 0x20), offset))
} lt(tindex, byteLen) {
tindex := add(tindex, 0x01)
bindex := sub(bindex, 0x01)
}{
mstore8(add(tmpbytes, tindex), byte(bindex, bvalue))
}
mstore(0x40, add(tmpbytes, byteLen))
v := mload(sub(tmpbytes, sub(0x20, byteLen)))
}
return (v, offset + 8);
}
function NextUint255(bytes memory buff, uint256 offset) internal pure returns (uint256, uint256) {
require(offset + 32 <= buff.length && offset < offset + 32, "NextUint255, offset exceeds maximum");
uint256 v;
assembly {
let tmpbytes := mload(0x40)
let byteLen := 0x20
for {
let tindex := 0x00
let bindex := sub(byteLen, 0x01)
let bvalue := mload(add(add(buff, 0x20), offset))
} lt(tindex, byteLen) {
tindex := add(tindex, 0x01)
bindex := sub(bindex, 0x01)
}{
mstore8(add(tmpbytes, tindex), byte(bindex, bvalue))
}
mstore(0x40, add(tmpbytes, byteLen))
v := mload(tmpbytes)
}
require(v <= 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, "Value exceeds the range");
return (v, offset + 32);
}
function NextVarBytes(bytes memory buff, uint256 offset) internal pure returns(bytes memory, uint256) {
uint len;
(len, offset) = NextVarUint(buff, offset);
require(offset + len <= buff.length && offset <= offset + len, "NextVarBytes, offset exceeds maximum");
bytes memory tempBytes;
assembly{
switch iszero(len)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(len, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, len)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(buff, lengthmod), mul(0x20, iszero(lengthmod))), offset)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, len)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
mstore(0x40, add(tempBytes, 0x20))
}
}
return (tempBytes, offset + len);
}
function NextVarUint(bytes memory buff, uint256 offset) internal pure returns(uint, uint256) {
bytes1 v;
(v, offset) = NextByte(buff, offset);
uint value;
if (v == 0xFD) {
// return NextUint16(buff, offset);
(value, offset) = NextUint16(buff, offset);
require(value >= 0xFD && value <= 0xFFFF, "NextUint16, value outside range");
return (value, offset);
} else if (v == 0xFE) {
// return NextUint32(buff, offset);
(value, offset) = NextUint32(buff, offset);
require(value > 0xFFFF && value <= 0xFFFFFFFF, "NextVarUint, value outside range");
return (value, offset);
} else if (v == 0xFF) {
// return NextUint64(buff, offset);
(value, offset) = NextUint64(buff, offset);
require(value > 0xFFFFFFFF, "NextVarUint, value outside range");
return (value, offset);
} else{
// return (uint8(v), offset);
value = uint8(v);
require(value < 0xFD, "NextVarUint, value outside range");
return (value, offset);
}
}
function bytesToAddress(bytes memory _bs) internal pure returns (address addr) {
require(_bs.length == 20, "bytes length does not match address");
assembly {
// for _bs, first word store _bs.length, second word store _bs.value
// load 32 bytes from mem[_bs+20], convert it into Uint160, meaning we take last 20 bytes as addr (address).
addr := mload(add(_bs, 0x14))
}
}
function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
bool success = true;
assembly {
// we know _preBytes_offset is 0
let fslot := sload(_preBytes.slot)
// Arrays of 31 bytes or less have an even value in their slot,
// while longer arrays have an odd value. The actual length is
// the slot divided by two for odd values, and the lowest order
// byte divided by two for even values.
// If the slot is even, bitwise and the slot with 255 and divide by
// two to get the length. If the slot is odd, bitwise and the slot
// with -1 and divide by two.
let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
let mlength := mload(_postBytes)
// if lengths don't match the arrays are not equal
switch eq(slength, mlength)
case 1 {
// fslot can contain both the length and contents of the array
// if slength < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
// slength != 0
if iszero(iszero(slength)) {
switch lt(slength, 32)
case 1 {
// blank the last byte which is the length
fslot := mul(div(fslot, 0x100), 0x100)
if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
// unsuccess:
success := 0
}
}
default {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := keccak256(0x0, 0x20)
let mc := add(_postBytes, 0x20)
let end := add(mc, mlength)
// the next line is the loop condition:
// while(uint(mc < end) + cb == 2)
for {} eq(add(lt(mc, end), cb), 2) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
if iszero(eq(sload(sc), mload(mc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
{
"compilationTarget": {
"contracts/Bridge.sol": "Bridge"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_tokenMessenger","type":"address"},{"internalType":"address","name":"_attester","type":"address"},{"internalType":"address","name":"_feeCollector","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"attester","type":"address"}],"name":"AttesterDisabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"attester","type":"address"}],"name":"AttesterEnabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousAttesterManager","type":"address"},{"indexed":true,"internalType":"address","name":"newAttesterManager","type":"address"}],"name":"AttesterManagerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint32","name":"destinationDomain","type":"uint32"},{"indexed":false,"internalType":"bytes32","name":"targetBridge","type":"bytes32"}],"name":"BindBridge","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint32[]","name":"destinationDomains","type":"uint32[]"},{"indexed":false,"internalType":"bytes32[]","name":"targetBridges","type":"bytes32[]"}],"name":"BindBridgeBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"BridgeIn","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint32","name":"destinationDomain","type":"uint32"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint64","name":"nonce","type":"uint64"},{"indexed":false,"internalType":"bytes32","name":"recipient","type":"bytes32"},{"indexed":false,"internalType":"bytes","name":"callData","type":"bytes"},{"indexed":false,"internalType":"uint256","name":"fee","type":"uint256"}],"name":"BridgeOut","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"}],"name":"DisableBridgeToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint32","name":"destinationDomain","type":"uint32"}],"name":"DisableRoute","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"}],"name":"EnableBridgeToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint32","name":"destinationDomain","type":"uint32"}],"name":"EnableRoute","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"callProxy","type":"address"}],"name":"SetCallProxy","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"feeCollector","type":"address"}],"name":"SetFeeCollector","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"tokenMessenger","type":"address"}],"name":"SetTokenMessenger","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldSignatureThreshold","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newSignatureThreshold","type":"uint256"}],"name":"SignatureThresholdUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"attesterManager","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"destinationDomain","type":"uint32"},{"internalType":"bytes32","name":"targetBridge","type":"bytes32"}],"name":"bindBridge","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32[]","name":"destinationDomains","type":"uint32[]"},{"internalType":"bytes32[]","name":"targetBridgeHashes","type":"bytes32[]"}],"name":"bindBridgeBatch","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"","type":"uint32"}],"name":"bridgeHashMap","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"args","type":"bytes"},{"internalType":"bytes","name":"attestation","type":"bytes"}],"name":"bridgeIn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint32","name":"destinationDomain","type":"uint32"},{"internalType":"bytes32","name":"recipient","type":"bytes32"},{"internalType":"bytes","name":"callData","type":"bytes"}],"name":"bridgeOut","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"callProxy","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"attester","type":"address"}],"name":"disableAttester","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"disableBridgeToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint32","name":"destinationDomain","type":"uint32"}],"name":"disableRoute","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"disabledBridgeTokens","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint32","name":"","type":"uint32"}],"name":"disabledRoutes","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newAttester","type":"address"}],"name":"enableAttester","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"enableBridgeToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint32","name":"destinationDomain","type":"uint32"}],"name":"enableRouter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"callee","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"externalCall","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"feeCollector","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBasefee","outputs":[{"internalType":"uint256","name":"basefee","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getEnabledAttester","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMessageTransmitter","outputs":[{"internalType":"contract IReceiver","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getNumEnabledAttesters","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"attester","type":"address"}],"name":"isEnabledAttester","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"}],"name":"rescueFund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"rescueNative","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newCallProxy","type":"address"}],"name":"setCallProxy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newFeeCollector","type":"address"}],"name":"setFeeCollector","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newSignatureThreshold","type":"uint256"}],"name":"setSignatureThreshold","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newTokenMessenger","type":"address"}],"name":"setTokenMessenger","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signatureThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenMessenger","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newAttesterManager","type":"address"}],"name":"updateAttesterManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]