// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
address constant CANONICAL_OPERATOR_FILTER_REGISTRY_ADDRESS = 0x000000000000AAeB6D7670E522A718067333cd4E;
address constant CANONICAL_CORI_SUBSCRIPTION = 0x3cc6CddA760b79bAfa08dF41ECFA224f810dCeB6;
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol";
import "@openzeppelin/contracts/token/ERC721/extensions/ERC721Burnable.sol";
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "operator-filter-registry/src/DefaultOperatorFilterer.sol";
contract DBXENFT is
ERC721Enumerable,
ERC721Burnable,
AccessControl,
ReentrancyGuard,
DefaultOperatorFilterer
{
using Strings for uint256;
address public immutable factory;
address public ADMIN_ADDRESS = 0x5A5D0AD85762979cAAe341274f0eba22dF8EcEdD;
/**
* @dev Prefix for tokens metadata URIs
*/
string public baseURI;
// Sufix for tokens metadata URIs
string public baseExtension = ".json";
constructor() ERC721("DBXEN NFT on Ethereum", "DBXENFT") {
factory = msg.sender;
}
function mintDBXENFT(
address _to
) external nonReentrant returns (uint256 tokenId) {
require(msg.sender == factory, "DBXENFT: Only factory can mint");
tokenId = totalSupply() +1;
_safeMint(_to, tokenId);
return tokenId;
}
/**
* @dev Returns the current base URI.
* @return The base URI of the contract.
*/
function _baseURI() internal view virtual override returns (string memory) {
return baseURI;
}
/**
* @dev This function sets the base URI of the NFT contract.
* @param uri The new base URI of the NFT contract.
* @notice Only the contract owner can call this function.
*/
function setBasedURI(string memory uri) external {
require(msg.sender == ADMIN_ADDRESS,"DBXENFT: Only admin can set baseURI!");
baseURI = uri;
}
/**
* @dev Returns the token URI for the given token ID. Throws if the token ID does not exist
* @param tokenId The token ID to retrieve the URI for
* @notice Retrieve the URI for the given token ID
* @return The token URI for the given token ID
*/
function tokenURI(
uint256 tokenId
) public view virtual override returns (string memory) {
require(
_exists(tokenId),
"ERC721Metadata: URI query for nonexistent token"
);
string memory currentBaseURI = _baseURI();
return
bytes(currentBaseURI).length > 0
? string(
abi.encodePacked(
currentBaseURI,
tokenId.toString(),
baseExtension
)
)
: "";
}
/**
* Changes the base extension for token metadata
*
* Access: only the admin account
*
* @param _newBaseExtension new value
*/
function setBaseExtension(
string memory _newBaseExtension
) public {
require(msg.sender == ADMIN_ADDRESS, "DBXENFT: Only admin can set baseExtension!");
baseExtension = _newBaseExtension;
}
/**
* Changes admin address
*
* Access: only the addmin account
*
* @param _newAdminAddress new value
*/
function setAdminAddress(
address _newAdminAddress
) public {
require(msg.sender == ADMIN_ADDRESS, "DBXENFT: Only addmin can set new address!");
ADMIN_ADDRESS = _newAdminAddress;
}
/**
* Returns the complete metadata URI for the given tokenId.
*/
function walletOfOwner(
address _owner
) public view returns (uint256[] memory) {
uint256 ownerTokenCount = balanceOf(_owner);
uint256[] memory tokenIds = new uint256[](ownerTokenCount);
for (uint256 i; i < ownerTokenCount; i++) {
tokenIds[i] = tokenOfOwnerByIndex(_owner, i);
}
return tokenIds;
}
function _burn(uint256 tokenId) internal virtual override(ERC721) {
super._burn(tokenId);
}
function _beforeTokenTransfer(
address from,
address to,
uint256 firstTokenId,
uint256 batchSize
) internal virtual override(ERC721, ERC721Enumerable) {
super._beforeTokenTransfer(from, to, firstTokenId, batchSize);
}
function supportsInterface(
bytes4 interfaceId
) public view virtual override(ERC721, ERC721Enumerable, AccessControl) returns (bool) {
return super.supportsInterface(interfaceId);
}
// OVERRIDING ERC-721 IMPLEMENTATION TO ALLOW OPENSEA ROYALTIES ENFORCEMENT PROTOCOL
function setApprovalForAll(
address operator,
bool approved
) public override(ERC721, IERC721) onlyAllowedOperatorApproval(operator) {
super.setApprovalForAll(operator, approved);
}
function approve(
address operator,
uint256 tokenId
) public override(ERC721, IERC721) onlyAllowedOperatorApproval(operator) {
super.approve(operator, tokenId);
}
function transferFrom(
address from,
address to,
uint256 tokenId
) public override(ERC721, IERC721) onlyAllowedOperator(from) {
super.transferFrom(from, to, tokenId);
}
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public override(ERC721, IERC721) onlyAllowedOperator(from) {
super.safeTransferFrom(from, to, tokenId);
}
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory data
) public override(ERC721, IERC721) onlyAllowedOperator(from) {
super.safeTransferFrom(from, to, tokenId, data);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/interfaces/IERC20.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "./interfaces/IXENCrypto.sol";
import "./interfaces/IXENFT.sol";
import "./libs/MintInfo.sol";
import "./DBXENFT.sol";
import "./XENFTStorage.sol";
contract DBXeNFTFactory is ReentrancyGuard {
using MintInfo for uint256;
using SafeERC20 for IERC20;
/**
* XENFT Token contract.
*/
IXENFT public immutable xenft;
/**
* DBXen Reward Token contract.
*/
IERC20 public immutable dxn;
/**
* Xen Token contract.
*/
IXENCrypto public immutable xenCrypto;
/**
* DBXeNFT Token contract.
*/
DBXENFT public immutable dbxenft;
/**
* Address receiving 2.5% of protocol fees.
*/
address public devAddress;
/**
* Index (0-based) of the current cycle.
*
* Updated upon cycle setup that is triggered by contract interaction
* (account burn tokens, claims fees, claims rewards, stakes or unstakes).
*/
uint256 public currentCycle;
/**
* Stores the index of the penultimate active cycle plus one.
*/
uint256 public previousStartedCycle;
/**
* Helper variable to store the index of the last active cycle.
*/
uint256 public currentStartedCycle;
/**
* Stores the index of the penultimate active cycle plus one.
*/
uint256 public lastStartedCycle;
/**
* Power reward amount allocated for the current cycle.
*/
uint256 public currentCycleReward;
/**
* Power reward amount allocated for the previous cycle.
*/
uint256 public lastCycleReward;
/**
* Amount of seconds in a day.
*/
uint256 public constant SECONDS_IN_DAY = 3_600 * 24;
/**
* Upper percentage limit that can be applied as penalty.
*/
uint256 public constant MAX_PENALTY_PCT = 99;
/**
* Basis points representation of 100 percent.
*/
uint256 public constant MAX_BPS = 10_000_000;
/**
* Helper constant used in calculating the fee for locking XENFT.
*/
uint256 public constant BASE_XEN = 5_000_000_000;
/**
* Used to minimize division remainder when earned fees are calculated.
*/
uint256 public constant SCALING_FACTOR = 1e40;
/**
* Length of a fee distribution cycle.
* Initialized in constructor to 1 day.
*/
uint256 public immutable i_periodDuration;
/**
* Contract creation timestamp.
* Initialized in constructor.
*/
uint256 public immutable i_initialTimestamp;
/**
* Pending power decrease applied at the start of the next active cycle.
*/
uint256 public pendingStakeWithdrawal;
/**
* Pending fees added into the pool of the next active cycle.
*/
uint256 public pendingFees;
/**
* Pending extra power from DXN staking added into the pool of the next active cycle.
*/
uint256 public pendingPower;
/**
* The total amount of accrued fees per cycle.
*/
mapping(uint256 => uint256) public cycleAccruedFees;
/**
* Total entry power(in est. Xen reward) in the given cycle.
*/
mapping(uint256 => uint256) public totalEntryPowerPerCycle;
/**
* Updated when staking DXN - used in the calculation of
* all the extra power that needs to be added to the total
* power of DBXENFTs.
*/
mapping(uint256 => uint256) public totalExtraEntryPower;
/**
* Entry power(in est. Xen reward) of the given DBXENFT.
*/
mapping(uint256 => uint256) public dbxenftEntryPower;
/**
* Cycle in which the given DBXENFT was minted.
*/
mapping(uint256 => uint256) public tokenEntryCycle;
/**
* Total entry power(in est. Xen reward) of all DBXENFTs
* that staked during entry cycle.
*/
mapping(uint256 => uint256) public dbxenftEntryPowerWithStake;
/**
* Power of DBXENFT counting towards the share of protocol fees.
* Equal to base DBXENFT power + (base DBXENFT power * DXN staked) / 100;
*/
mapping(uint256 => uint256) public dbxenftPower;
/**
* Base power of DBXENFT obtained from the share of
* power reward of its entry cycle.
*/
mapping(uint256 => uint256) public baseDBXeNFTPower;
/**
* Stores the sum of the total DBXENFT powers from all
* the previous cycles + the current power reward of the given cycle.
*/
mapping(uint256 => uint256) public summedCyclePowers;
/**
* Sum of previous total cycle accrued fees divided by total DBXENFT powers.
*/
mapping(uint256 => uint256) public cycleFeesPerPowerSummed;
/**
* Total power rewards allocated per cycle.
*/
mapping(uint256 => uint256) public rewardPerCycle;
/**
* Cycle in which a DBXENFT's staked DXN is locked and begins generating fees.
*/
mapping(uint256 => uint256) public dbxenftFirstStake;
/**
* Same as dbxenftFirstStake, but stores the second stake separately
* in case DXN is staked for the DBXENFT in two consecutive active cycles.
*/
mapping(uint256 => uint256) public dbxenftSecondStake;
/**
* DXN amount a DBXENFT has staked and is locked during given cycle.
*/
mapping(uint256 => mapping(uint256 => uint256)) public dbxenftStakeCycle;
/**
* Pending staked DXN helper variable used for
* updating DBXENFT with the corresponding power.
*/
mapping(uint256 => uint256) public pendingDXN;
/**
* Amount of unclaimed fees of given DBXENFT since last stats update.
*/
mapping(uint256 => uint256) public dbxenftAccruedFees;
/**
* Last cycle in which the total accrued fee amount of the DBXENFT was updated.
*/
mapping(uint256 => uint256) public lastFeeUpdateCycle;
/**
* Last cycle in which the power of the DBXENFT was updated.
*/
mapping(uint256 => uint256) public lastPowerUpdateCycle;
/**
* DXN amount a DBXENFT can currently withdraw.
*/
mapping(uint256 => uint256) public dbxenftWithdrawableStake;
/**
* DBXENFT's locked XENFT.
*/
mapping(uint256 => uint256) public dbxenftUnderlyingXENFT;
/**
* Contains the address of the storage contract holding the XENFT for given DBXENFT.
*/
mapping(uint256 => XENFTStorage) public dbxenftUnderlyingStorage;
/**
* @dev Emitted when calling {mintDBXENFT} marking the new current `cycle`,
* `calculatedCycleReward` and `summedCycleStakes`.
*/
event NewCycleStarted(
uint256 cycle,
uint256 calculatedCycleReward,
uint256 summedCyclePowers
);
/**
* @dev Emitted when calling {mintDBXENFT} function by
* `minter` in `cycle` which after paying `fee`amount native token
* it's minted a DBXENFT with id `DBXENFTId` and
* the XENFT with `XENFTID` gets locked.
*/
event DBXeNFTMinted(
uint256 indexed cycle,
uint256 DBXENFTId,
uint256 XENFTID,
uint256 fee,
address indexed minter
);
/**
* @dev Emitted when `account` claims an amount of `fees` in native token
* through {claimFees} in `cycle`.
*/
event FeesClaimed(
uint256 indexed cycle,
uint256 indexed tokenId,
uint256 fees,
address indexed owner
);
/**
* @dev Emitted when `owner` stakes `amount` DXN tokens through
* {stake} on DBXENFT with `tokenId` in `cycle`.
*/
event Staked(
uint256 indexed cycle,
uint256 indexed tokenId,
uint256 amount,
address indexed owner
);
/**
* @dev Emitted when `owner` unstakes `amount` DXN tokens through
* {unstake} on DBXENFT with `tokenId` in `cycle`.
*/
event Unstaked(
uint256 indexed cycle,
uint256 indexed tokenId,
uint256 amount,
address indexed owner
);
/**
* Emitted when `owner` of `dbxenftId` claims Xen
* through {claimXen} from `xenftId`.
*/
event XenRewardsClaimed(
uint256 indexed cycle,
uint256 dbxenftId,
uint256 xenftId,
address indexed owner
);
/**
* @dev Used to check if the user owns a certain DBXENFT/XENFT.
*/
modifier onlyNFTOwner(
IERC721 tokenAddress,
uint256 tokenId,
address user
) {
require(
tokenAddress.ownerOf(tokenId) == user,
"You do not own this NFT!"
);
_;
}
/**
* @param xenftAddress XENFT contract address.
* @param dbxAddress DXN contract address.
* @param _xenCrypto Xen contract address.
* @param _devAddress Dev address.
*/
constructor(
address dbxAddress,
address xenftAddress,
address _xenCrypto,
address _devAddress
) {
dxn = IERC20(dbxAddress);
xenft = IXENFT(xenftAddress);
xenCrypto = IXENCrypto(_xenCrypto);
devAddress = _devAddress;
i_periodDuration = 1 days;
i_initialTimestamp = block.timestamp;
dbxenft = new DBXENFT();
currentCycleReward = 10000 * 1e18;
summedCyclePowers[0] = 10000 * 1e18;
rewardPerCycle[0] = 10000 * 1e18;
}
/**
* @dev Locks an owned XENFT inside this contract and mints a DBXENFT.
* Must pay a protocol fee based on the estimated Xen rewards
* the XENFT yields at the time of locking. The estimated Xen
* also determines the entry power that will provide the DBXENFT
* a base power from the reward power pool split to all the
* DBXENFTs created during the cycle.
* If the XENFT is already redeemed, a DBXENFT that does not take
* part in the auction of the cycle's reward power nor does it
* start it is minted and is assigned the base power of 1.
*
* @param xenftId id of the XENFT to be locked.
*/
function mintDBXENFT(
uint256 xenftId
) external payable nonReentrant onlyNFTOwner(xenft, xenftId, msg.sender) {
calculateCycle();
updateCycleFeesPerStakeSummed();
uint256 mintInfo = xenft.mintInfo(xenftId);
bool redeemed = mintInfo.getRedeemed();
uint256 fee;
uint256 estimatedReward;
if(redeemed) {
fee = 1e15;
} else {
estimatedReward = _calculateUserMintReward(xenftId, mintInfo);
fee = _calculateFee(
estimatedReward,
mintInfo.getMaturityTs(),
mintInfo.getTerm()
);
}
require(msg.value >= fee, "Payment less than fee");
uint256 updatedFee = fee - calculateDevFee(fee);
uint256 dbxenftId = dbxenft.mintDBXENFT(msg.sender);
uint256 currentCycleMem = currentCycle;
if(redeemed) {
baseDBXeNFTPower[dbxenftId] = 1e18;
dbxenftPower[dbxenftId] = 1e18;
if(currentCycleMem != 0) {
lastFeeUpdateCycle[dbxenftId] = lastStartedCycle + 1;
}
if(currentCycleMem == currentStartedCycle) {
summedCyclePowers[currentCycleMem] += 1e18;
cycleAccruedFees[currentCycleMem] = cycleAccruedFees[currentCycleMem] + updatedFee;
} else {
pendingPower += 1e18;
pendingFees += updatedFee;
}
} else {
setUpNewCycle();
dbxenftEntryPower[dbxenftId] = estimatedReward;
tokenEntryCycle[dbxenftId] = currentCycleMem;
totalEntryPowerPerCycle[currentCycleMem] += estimatedReward;
cycleAccruedFees[currentCycleMem] = cycleAccruedFees[currentCycleMem] + updatedFee;
if(currentCycleMem != 0) {
lastFeeUpdateCycle[dbxenftId] = lastStartedCycle + 1;
}
}
dbxenftUnderlyingXENFT[dbxenftId] = xenftId;
XENFTStorage dbxenftStorage = new XENFTStorage();
dbxenftUnderlyingStorage[dbxenftId] = dbxenftStorage;
xenft.transferFrom(msg.sender, address(dbxenftStorage), xenftId);
sendViaCall(payable(msg.sender), msg.value - fee);
sendViaCall(payable(devAddress), calculateDevFee(fee));
emit DBXeNFTMinted(
currentCycleMem,
dbxenftId,
xenftId,
fee,
msg.sender
);
}
/**
* @dev Calculates the protocol fee when staking 'dxnAmount' of DXN.
*
* @param dxnAmount amount of DXN to calculate protocol fee for.
*/
function calcStakeFee(uint256 dxnAmount) internal pure returns(uint256 stakeFee){
stakeFee = dxnAmount / 1000;
require(stakeFee > 0, "DBXeNFT: stakeFee must be > 0");
}
/**
* @dev Used for calculating extra entry power in order to find out
* the extra total DBXENFT power of all the DBXENFTs that staked,
* respectively when adding the extra power to an individual DBXENFT.
*
* @param power base/entry power to be multiplied upon.
* @param dxnAmount amount of DXN to be multiplied with.
*/
function calcExtraPower(uint256 power, uint256 dxnAmount) internal pure returns(uint256 calcPower){
calcPower = Math.mulDiv(power, dxnAmount, 1e20);
}
/**
* @dev Stake an amount of DXN for the given DBXENFT to give it extra power.
* Must pay a protocol fee of 0.001 native coin for each DXN.
* The corresponding DXN is locked until the end of the next cycle.
*
* @param amount amount of DXN to be staked.
* @param tokenId DBXENFT id.
*/
function stake(uint256 amount, uint256 tokenId) external payable nonReentrant onlyNFTOwner(dbxenft, tokenId, msg.sender) {
require(amount > 0, "DBXeNFT: amount is zero");
calculateCycle();
updateCycleFeesPerStakeSummed();
updateDBXeNFT(tokenId);
uint256 currentCycleMem = currentCycle;
require(currentCycleMem == currentStartedCycle, "DBXeNFT: Only stake during active cycle");
uint256 tokenEntryPowerMem = dbxenftEntryPower[tokenId];
require(tokenEntryPowerMem != 0 || baseDBXeNFTPower[tokenId] != 0, "DBXeNFT does not exist");
uint256 stakeFee = calcStakeFee(amount);
require(msg.value >= stakeFee, "Value less than staking fee");
uint256 devFee = calculateDevFee(stakeFee);
uint256 updatedFee = stakeFee - devFee;
cycleAccruedFees[currentCycleMem] += updatedFee;
uint256 cycleToSet = currentCycleMem + 1;
if (
(cycleToSet != dbxenftFirstStake[tokenId] &&
cycleToSet != dbxenftSecondStake[tokenId])
) {
if (dbxenftFirstStake[tokenId] == 0) {
dbxenftFirstStake[tokenId] = cycleToSet;
} else if (dbxenftSecondStake[tokenId] == 0) {
dbxenftSecondStake[tokenId] = cycleToSet;
}
}
dbxenftStakeCycle[tokenId][cycleToSet] += amount;
pendingDXN[tokenId] += amount;
if(lastPowerUpdateCycle[tokenId] != currentCycle) {
lastPowerUpdateCycle[tokenId] = currentCycle;
}
if(baseDBXeNFTPower[tokenId] == 0){
uint256 extraPower = calcExtraPower(tokenEntryPowerMem, amount);
dbxenftEntryPowerWithStake[currentCycleMem] += tokenEntryPowerMem;
totalExtraEntryPower[currentCycleMem] += extraPower;
} else {
uint256 extraPower = calcExtraPower(baseDBXeNFTPower[tokenId], amount);
pendingPower += extraPower;
}
dxn.safeTransferFrom(msg.sender, address(this), amount);
sendViaCall(payable(msg.sender), msg.value - stakeFee);
sendViaCall(payable(devAddress), devFee);
emit Staked(
currentCycleMem,
tokenId,
amount,
msg.sender
);
}
/**
* @dev Unstake an amount of DXN for the given DBXENFT applying a power decrease
* to the current cycle if it's an active one or beginning with the next active one.
* Can only withdraw DXN that has completed the corresponding cycle lock-up.
*
* @param tokenId DBXENFT id.
* @param amount amount of DXN to be unstaked.
*/
function unstake(uint256 tokenId, uint256 amount) external nonReentrant onlyNFTOwner(dbxenft, tokenId, msg.sender) {
require(amount > 0, "DBXeNFT: Amount is zero");
calculateCycle();
updateCycleFeesPerStakeSummed();
updateDBXeNFT(tokenId);
require(
amount <= dbxenftWithdrawableStake[tokenId],
"DBXeNFT: Amount greater than withdrawable stake"
);
uint256 powerDecrease = calcExtraPower(baseDBXeNFTPower[tokenId], amount);
dbxenftWithdrawableStake[tokenId] -= amount;
dbxenftPower[tokenId] -= powerDecrease;
if (lastStartedCycle == currentStartedCycle) {
pendingStakeWithdrawal += powerDecrease;
} else {
summedCyclePowers[currentCycle] -= powerDecrease;
}
dxn.safeTransfer(msg.sender, amount);
emit Unstaked(
currentCycle,
tokenId,
amount,
msg.sender
);
}
/**
* @dev Transfers accrued fees of DBXENFT to its owner.
*
* @param tokenId DBXENFT id.
*/
function claimFees(uint256 tokenId) external nonReentrant() onlyNFTOwner(dbxenft, tokenId, msg.sender){
calculateCycle();
updateCycleFeesPerStakeSummed();
updateDBXeNFT(tokenId);
uint256 fees = dbxenftAccruedFees[tokenId];
require(fees > 0, "dbXENFT: amount is zero");
dbxenftAccruedFees[tokenId] = 0;
sendViaCall(payable(msg.sender), fees);
emit FeesClaimed(
currentCycle,
tokenId,
fees,
msg.sender
);
}
/**
* @dev MaturityDays = Days since XENFT was minted - Days until XENFT can be claimed.
*
* @param term term attribute of XENFT
* @param maturityTs maturity timestamp of XENFT
*/
function calcMaturityDays(uint256 term, uint256 maturityTs) internal view returns(uint256 maturityDays) {
uint256 daysTillClaim;
uint256 daysSinceMinted;
if(block.timestamp < maturityTs) {
daysTillClaim = ((maturityTs - block.timestamp) / SECONDS_IN_DAY);
daysSinceMinted = term - daysTillClaim;
} else {
daysTillClaim = 0;
daysSinceMinted =
((term * SECONDS_IN_DAY + (block.timestamp - maturityTs))) /
SECONDS_IN_DAY;
}
if (daysSinceMinted > daysTillClaim) {
maturityDays = daysSinceMinted - daysTillClaim;
}
}
/**
* @dev Given a DBXENFT, claim the Xen rewards of the underlying XENFT
* and direct them to its owner. Not permitted during entry cycle of DBXENFT.
* In doing so, the base power of the DBXENFT will become 1(unless it's already smaller)
* and the DBXENFT total power is updated according to the new base power
* and the existent DXN stake.
*
* @param tokenId DBXENFT id.
*/
function claimXen(uint256 tokenId) external nonReentrant onlyNFTOwner(dbxenft, tokenId, msg.sender) {
calculateCycle();
updateCycleFeesPerStakeSummed();
updateDBXeNFT(tokenId);
uint256 xenftId = dbxenftUnderlyingXENFT[tokenId];
uint256 mintInfo = xenft.mintInfo(xenftId);
require(!mintInfo.getRedeemed(), "XENFT: Already redeemed");
require(currentCycle != tokenEntryCycle[tokenId], "Can not claim during entry cycle");
uint256 DBXenftPow = dbxenftPower[tokenId];
uint256 baseDBXeNFTPow = baseDBXeNFTPower[tokenId];
if(baseDBXeNFTPow > 1e18) {
uint256 newPow = Math.mulDiv(DBXenftPow, 1e18, baseDBXeNFTPow);
dbxenftPower[tokenId] = newPow;
DBXenftPow -= newPow;
baseDBXeNFTPower[tokenId] = 1e18;
if (lastStartedCycle == currentStartedCycle) {
pendingStakeWithdrawal += DBXenftPow;
} else {
summedCyclePowers[currentCycle] -= DBXenftPow;
}
}
XENFTStorage xenftStorage = dbxenftUnderlyingStorage[tokenId];
xenftStorage.claimXenFromStorage(address(xenft), msg.sender, xenftId);
emit XenRewardsClaimed(
currentCycle,
tokenId,
xenftId,
msg.sender
);
}
/**
* Allows the current dev address to set a new one.
*
* @param newDevAddress new dev address to be set.
*/
function setDevAddress(address newDevAddress) public {
require(msg.sender == devAddress, "Only dev can change address");
devAddress = newDevAddress;
}
/**
* Calculated according to the following formula:
* ProtocolFee = MAX( (Xen*MAX( 1-0.0011389 * MAX(MaturityDays,0) , 0.5) )/ BASE_XEN), MinCost).
* Xen = Estimated Xen to be claimed.
* BaseXen = The floor amount of Xen for 1 Native coin = 1_000_000_000.
* MinCost = Minimum amount of Native coin to be paid for minting = 0.001 native coin.
*
* @param userReward estimated Xen reward.
* @param term term attribute of XENFT
* @param maturityTs maturity timestamp of XENFT
*/
function _calculateFee(
uint256 userReward,
uint256 maturityTs,
uint256 term
) private view returns (uint256 burnFee) {
uint256 maturityDays = calcMaturityDays(term, maturityTs);
uint256 maxDays = maturityDays;
uint256 daysReduction = 11389 * maxDays;
uint256 maxSubtrahend = Math.min(daysReduction, 5_000_000);
uint256 difference = MAX_BPS - maxSubtrahend;
uint256 maxPctReduction = Math.max(difference, 5_000_000);
uint256 xenMulReduction = Math.mulDiv(userReward, maxPctReduction, MAX_BPS);
burnFee = Math.max(1e15, xenMulReduction / BASE_XEN);
}
/**
* @dev calculates withdrawal penalty of Xen rewards depending on lateness.
*
* @param secsLate second late since maturity timestamp of XENFT.
*/
function _penalty(uint256 secsLate) private pure returns (uint256) {
// =MIN(2^(daysLate+3)/window-1,99)
uint256 daysLate = secsLate / SECONDS_IN_DAY;
if (daysLate > 7 - 1) return MAX_PENALTY_PCT;
uint256 penalty = (uint256(1) << (daysLate + 3)) / 7 - 1;
return penalty < MAX_PENALTY_PCT ? penalty : MAX_PENALTY_PCT;
}
/**
* @dev calculates net Xen Reward (adjusted for Penalty).
*/
function _calculateMintReward(
uint256 cRank,
uint256 term,
uint256 maturityTs,
uint256 amplifier,
uint256 eeaRate
) private view returns (uint256) {
uint256 penalty;
if (block.timestamp > maturityTs) {
uint256 secsLate = block.timestamp - maturityTs;
penalty = _penalty(secsLate);
}
uint256 rankDiff = xenCrypto.globalRank() - cRank;
uint256 rankDelta = rankDiff > 2 ? rankDiff : 2;
uint256 EAA = (1000 + eeaRate);
uint256 reward = xenCrypto.getGrossReward(
rankDelta,
amplifier,
term,
EAA
);
return (reward * (100 - penalty)) / 100;
}
/**
* @dev calculates the estimated total Xen reward of the XENFT.
*
* @param tokenId XENFT id.
* @param mintInfo contains packed info about XENFT.
*/
function _calculateUserMintReward(
uint256 tokenId,
uint256 mintInfo
) internal view returns (uint256 userMintReward) {
uint256 vmuCount = xenft.vmuCount(tokenId);
(
uint256 term,
uint256 maturityTs,
uint256 rank,
uint256 amp,
uint256 eea,
,
,
,
) = mintInfo.decodeMintInfo();
uint256 mintReward = _calculateMintReward(
rank,
term,
maturityTs,
amp,
eea
);
return mintReward * vmuCount * 1 ether;
}
/**
* @dev calculates 2.5% of the paid protocol fee to be attributed to dev.
*
* @param inputValue protocol fee from which the dev fee is deducted.
*/
function calculateDevFee(uint256 inputValue) public pure returns (uint256) {
uint256 percentage = Math.mulDiv(inputValue, 25, 1000);
return percentage;
}
/**
* @dev Updates the global helper variables related to fee distribution.
*/
function updateCycleFeesPerStakeSummed() internal {
if (currentCycle != currentStartedCycle) {
previousStartedCycle = lastStartedCycle + 1;
lastStartedCycle = currentStartedCycle;
}
if (
currentCycle > lastStartedCycle &&
cycleFeesPerPowerSummed[lastStartedCycle + 1] == 0
) {
uint256 feePerStake =
(cycleAccruedFees[lastStartedCycle] * SCALING_FACTOR) /
summedCyclePowers[lastStartedCycle];
cycleFeesPerPowerSummed[lastStartedCycle + 1] =
cycleFeesPerPowerSummed[previousStartedCycle] +
feePerStake;
}
}
/**
* @dev Set up the new active cycle calculating the new
* reward power pool with an 1% increase.
* Introduce any pending fees in the cycle's fee pool.
* Calculate the new total power of DBXENFTs based on
* the ones that have staked DXN.
* Apply pending power decrease to the total DBXENFT power.
*/
function setUpNewCycle() internal {
uint256 currentCycleMemory = currentCycle;
if (rewardPerCycle[currentCycleMemory] == 0) {
lastCycleReward = currentCycleReward;
uint256 calculatedCycleReward = lastCycleReward +
(lastCycleReward / 100);
currentCycleReward = calculatedCycleReward;
rewardPerCycle[currentCycleMemory] = calculatedCycleReward;
if(pendingFees != 0) {
cycleAccruedFees[currentCycleMemory] += pendingFees;
pendingFees = 0;
}
uint256 lastStartedCycleMemory = lastStartedCycle;
if(dbxenftEntryPowerWithStake[lastStartedCycleMemory] != 0) {
uint256 extraPower = Math.mulDiv(totalExtraEntryPower[lastStartedCycleMemory],lastCycleReward,
totalEntryPowerPerCycle[lastStartedCycleMemory]);
summedCyclePowers[currentCycleMemory] += extraPower;
}
if(pendingPower != 0) {
summedCyclePowers[currentCycleMemory] += pendingPower;
pendingPower = 0;
}
currentStartedCycle = currentCycleMemory;
summedCyclePowers[currentCycleMemory] += summedCyclePowers[lastStartedCycleMemory] + calculatedCycleReward;
if (pendingStakeWithdrawal != 0) {
summedCyclePowers[
currentCycleMemory
] -= pendingStakeWithdrawal;
pendingStakeWithdrawal = 0;
}
emit NewCycleStarted(
currentCycle,
calculatedCycleReward,
summedCyclePowers[currentCycleMemory]
);
}
}
/**
* Update DBXENFT stats:
* Assign their respective base power if not yet set.
* Calculate the new DBXENFT power if any new stake was made.
* Calculate the new fees it has accumulated since last update.
* Mark any stake that passed the lock-up cycle as withdrawable.
*
* @param tokenId DBXENFT id.
*/
function updateDBXeNFT(uint256 tokenId) internal {
uint256 entryCycle = tokenEntryCycle[tokenId];
if(baseDBXeNFTPower[tokenId] == 0 && currentCycle > entryCycle) {
baseDBXeNFTPower[tokenId] = Math.mulDiv(dbxenftEntryPower[tokenId],
rewardPerCycle[entryCycle], totalEntryPowerPerCycle[entryCycle]);
dbxenftPower[tokenId] += baseDBXeNFTPower[tokenId];
}
uint256 lastStartedCycleMem = lastStartedCycle;
uint256 stakedDXN = pendingDXN[tokenId];
uint256 extraPower;
uint256 dbxenftPowerBeforeExtraPower = dbxenftPower[tokenId];
if(currentCycle > lastPowerUpdateCycle[tokenId] && stakedDXN != 0) {
extraPower = calcExtraPower(baseDBXeNFTPower[tokenId], stakedDXN);
pendingDXN[tokenId] = 0;
dbxenftPower[tokenId] += extraPower;
}
if (
currentCycle > lastStartedCycleMem &&
lastFeeUpdateCycle[tokenId] != lastStartedCycleMem + 1
) {
dbxenftAccruedFees[tokenId] += (dbxenftPowerBeforeExtraPower
* (cycleFeesPerPowerSummed[lastStartedCycleMem + 1] - cycleFeesPerPowerSummed[lastFeeUpdateCycle[tokenId]])) / SCALING_FACTOR;
if(stakedDXN != 0) {
uint256 stakeCycle;
if(dbxenftSecondStake[tokenId] != 0) {
stakeCycle = dbxenftSecondStake[tokenId];
} else {
stakeCycle = dbxenftFirstStake[tokenId];
}
if(lastStartedCycleMem >= stakeCycle) {
dbxenftAccruedFees[tokenId] += (extraPower
* (cycleFeesPerPowerSummed[lastStartedCycleMem + 1] -
cycleFeesPerPowerSummed[stakeCycle])) / SCALING_FACTOR;
}
}
lastFeeUpdateCycle[tokenId] = lastStartedCycleMem + 1;
}
uint256 tokenFirstStakeMem = dbxenftFirstStake[tokenId];
if (
tokenFirstStakeMem != 0 &&
currentCycle > tokenFirstStakeMem
) {
uint256 unlockedFirstStake = dbxenftStakeCycle[tokenId][tokenFirstStakeMem];
dbxenftWithdrawableStake[tokenId] += unlockedFirstStake;
dbxenftStakeCycle[tokenId][tokenFirstStakeMem] = 0;
dbxenftFirstStake[tokenId] = 0;
uint256 tokenSecondStakeMem = dbxenftSecondStake[tokenId];
if (tokenSecondStakeMem != 0) {
if (currentCycle > tokenSecondStakeMem) {
uint256 unlockedSecondStake = dbxenftStakeCycle[tokenId][tokenSecondStakeMem];
dbxenftWithdrawableStake[tokenId] += unlockedSecondStake;
dbxenftStakeCycle[tokenId][tokenSecondStakeMem] = 0;
dbxenftSecondStake[tokenId] = 0;
} else {
dbxenftFirstStake[tokenId] = tokenSecondStakeMem;
dbxenftSecondStake[tokenId] = 0;
}
}
}
}
/**
* @dev Returns the index of the cycle at the current block time.
*/
function getCurrentCycle() public view returns (uint256) {
return (block.timestamp - i_initialTimestamp) / i_periodDuration;
}
/**
* @dev Updates the index of the cycle.
*/
function calculateCycle() internal {
uint256 calculatedCycle = getCurrentCycle();
if (calculatedCycle > currentCycle) {
currentCycle = calculatedCycle;
}
}
/**
* Recommended method to use to send native coins.
*
* @param to receiving address.
* @param amount in wei.
*/
function sendViaCall(address payable to, uint256 amount) internal {
(bool sent, ) = to.call{value: amount}("");
require(sent, "DBXen: failed to send amount");
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import {OperatorFilterer} from "./OperatorFilterer.sol";
import {CANONICAL_CORI_SUBSCRIPTION} from "./lib/Constants.sol";
/**
* @title DefaultOperatorFilterer
* @notice Inherits from OperatorFilterer and automatically subscribes to the default OpenSea subscription.
* @dev Please note that if your token contract does not provide an owner with EIP-173, it must provide
* administration methods on the contract itself to interact with the registry otherwise the subscription
* will be locked to the options set during construction.
*/
abstract contract DefaultOperatorFilterer is OperatorFilterer {
/// @dev The constructor that is called when the contract is being deployed.
constructor() OperatorFilterer(CANONICAL_CORI_SUBSCRIPTION, true) {}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.2) (token/ERC721/ERC721.sol)
pragma solidity ^0.8.0;
import "./IERC721.sol";
import "./IERC721Receiver.sol";
import "./extensions/IERC721Metadata.sol";
import "../../utils/Address.sol";
import "../../utils/Context.sol";
import "../../utils/Strings.sol";
import "../../utils/introspection/ERC165.sol";
/**
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
* the Metadata extension, but not including the Enumerable extension, which is available separately as
* {ERC721Enumerable}.
*/
contract ERC721 is Context, ERC165, IERC721, IERC721Metadata {
using Address for address;
using Strings for uint256;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Mapping from token ID to owner address
mapping(uint256 => address) private _owners;
// Mapping owner address to token count
mapping(address => uint256) private _balances;
// Mapping from token ID to approved address
mapping(uint256 => address) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC721).interfaceId ||
interfaceId == type(IERC721Metadata).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
require(owner != address(0), "ERC721: address zero is not a valid owner");
return _balances[owner];
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
address owner = _ownerOf(tokenId);
require(owner != address(0), "ERC721: invalid token ID");
return owner;
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
_requireMinted(tokenId);
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return "";
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual override {
address owner = ERC721.ownerOf(tokenId);
require(to != owner, "ERC721: approval to current owner");
require(
_msgSender() == owner || isApprovedForAll(owner, _msgSender()),
"ERC721: approve caller is not token owner or approved for all"
);
_approve(to, tokenId);
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
_requireMinted(tokenId);
return _tokenApprovals[tokenId];
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) public virtual override {
//solhint-disable-next-line max-line-length
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
_transfer(from, to, tokenId);
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public virtual override {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory data
) public virtual override {
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
_safeTransfer(from, to, tokenId, data);
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* `data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(
address from,
address to,
uint256 tokenId,
bytes memory data
) internal virtual {
_transfer(from, to, tokenId);
require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
}
/**
* @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
*/
function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
return _owners[tokenId];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted (`_mint`),
* and stop existing when they are burned (`_burn`).
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return _ownerOf(tokenId) != address(0);
}
/**
* @dev Returns whether `spender` is allowed to manage `tokenId`.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
address owner = ERC721.ownerOf(tokenId);
return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
}
/**
* @dev Safely mints `tokenId` and transfers it to `to`.
*
* Requirements:
*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 tokenId) internal virtual {
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeMint(
address to,
uint256 tokenId,
bytes memory data
) internal virtual {
_mint(to, tokenId);
require(
_checkOnERC721Received(address(0), to, tokenId, data),
"ERC721: transfer to non ERC721Receiver implementer"
);
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/
function _mint(address to, uint256 tokenId) internal virtual {
require(to != address(0), "ERC721: mint to the zero address");
require(!_exists(tokenId), "ERC721: token already minted");
_beforeTokenTransfer(address(0), to, tokenId, 1);
// Check that tokenId was not minted by `_beforeTokenTransfer` hook
require(!_exists(tokenId), "ERC721: token already minted");
unchecked {
// Will not overflow unless all 2**256 token ids are minted to the same owner.
// Given that tokens are minted one by one, it is impossible in practice that
// this ever happens. Might change if we allow batch minting.
// The ERC fails to describe this case.
_balances[to] += 1;
}
_owners[tokenId] = to;
emit Transfer(address(0), to, tokenId);
_afterTokenTransfer(address(0), to, tokenId, 1);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
* This is an internal function that does not check if the sender is authorized to operate on the token.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal virtual {
address owner = ERC721.ownerOf(tokenId);
_beforeTokenTransfer(owner, address(0), tokenId, 1);
// Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook
owner = ERC721.ownerOf(tokenId);
// Clear approvals
delete _tokenApprovals[tokenId];
unchecked {
// Cannot overflow, as that would require more tokens to be burned/transferred
// out than the owner initially received through minting and transferring in.
_balances[owner] -= 1;
}
delete _owners[tokenId];
emit Transfer(owner, address(0), tokenId);
_afterTokenTransfer(owner, address(0), tokenId, 1);
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(
address from,
address to,
uint256 tokenId
) internal virtual {
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
require(to != address(0), "ERC721: transfer to the zero address");
_beforeTokenTransfer(from, to, tokenId, 1);
// Check that tokenId was not transferred by `_beforeTokenTransfer` hook
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
// Clear approvals from the previous owner
delete _tokenApprovals[tokenId];
unchecked {
// `_balances[from]` cannot overflow for the same reason as described in `_burn`:
// `from`'s balance is the number of token held, which is at least one before the current
// transfer.
// `_balances[to]` could overflow in the conditions described in `_mint`. That would require
// all 2**256 token ids to be minted, which in practice is impossible.
_balances[from] -= 1;
_balances[to] += 1;
}
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
_afterTokenTransfer(from, to, tokenId, 1);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* Emits an {Approval} event.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_tokenApprovals[tokenId] = to;
emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(
address owner,
address operator,
bool approved
) internal virtual {
require(owner != operator, "ERC721: approve to caller");
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Reverts if the `tokenId` has not been minted yet.
*/
function _requireMinted(uint256 tokenId) internal view virtual {
require(_exists(tokenId), "ERC721: invalid token ID");
}
/**
* @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
* The call is not executed if the target address is not a contract.
*
* @param from address representing the previous owner of the given token ID
* @param to target address that will receive the tokens
* @param tokenId uint256 ID of the token to be transferred
* @param data bytes optional data to send along with the call
* @return bool whether the call correctly returned the expected magic value
*/
function _checkOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory data
) private returns (bool) {
if (to.isContract()) {
try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
return retval == IERC721Receiver.onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert("ERC721: transfer to non ERC721Receiver implementer");
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
} else {
return true;
}
}
/**
* @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is
* used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`.
* - When `from` is zero, the tokens will be minted for `to`.
* - When `to` is zero, ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
* - `batchSize` is non-zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 firstTokenId,
uint256 batchSize
) internal virtual {}
/**
* @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is
* used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`.
* - When `from` is zero, the tokens were minted for `to`.
* - When `to` is zero, ``from``'s tokens were burned.
* - `from` and `to` are never both zero.
* - `batchSize` is non-zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 firstTokenId,
uint256 batchSize
) internal virtual {}
/**
* @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
*
* WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant
* being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such
* that `ownerOf(tokenId)` is `a`.
*/
// solhint-disable-next-line func-name-mixedcase
function __unsafe_increaseBalance(address account, uint256 amount) internal {
_balances[account] += amount;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/extensions/ERC721Burnable.sol)
pragma solidity ^0.8.0;
import "../ERC721.sol";
import "../../../utils/Context.sol";
/**
* @title ERC721 Burnable Token
* @dev ERC721 Token that can be burned (destroyed).
*/
abstract contract ERC721Burnable is Context, ERC721 {
/**
* @dev Burns `tokenId`. See {ERC721-_burn}.
*
* Requirements:
*
* - The caller must own `tokenId` or be an approved operator.
*/
function burn(uint256 tokenId) public virtual {
//solhint-disable-next-line max-line-length
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
_burn(tokenId);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/extensions/ERC721Enumerable.sol)
pragma solidity ^0.8.0;
import "../ERC721.sol";
import "./IERC721Enumerable.sol";
/**
* @dev This implements an optional extension of {ERC721} defined in the EIP that adds
* enumerability of all the token ids in the contract as well as all token ids owned by each
* account.
*/
abstract contract ERC721Enumerable is ERC721, IERC721Enumerable {
// Mapping from owner to list of owned token IDs
mapping(address => mapping(uint256 => uint256)) private _ownedTokens;
// Mapping from token ID to index of the owner tokens list
mapping(uint256 => uint256) private _ownedTokensIndex;
// Array with all token ids, used for enumeration
uint256[] private _allTokens;
// Mapping from token id to position in the allTokens array
mapping(uint256 => uint256) private _allTokensIndex;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC721) returns (bool) {
return interfaceId == type(IERC721Enumerable).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721Enumerable-tokenOfOwnerByIndex}.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual override returns (uint256) {
require(index < ERC721.balanceOf(owner), "ERC721Enumerable: owner index out of bounds");
return _ownedTokens[owner][index];
}
/**
* @dev See {IERC721Enumerable-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _allTokens.length;
}
/**
* @dev See {IERC721Enumerable-tokenByIndex}.
*/
function tokenByIndex(uint256 index) public view virtual override returns (uint256) {
require(index < ERC721Enumerable.totalSupply(), "ERC721Enumerable: global index out of bounds");
return _allTokens[index];
}
/**
* @dev See {ERC721-_beforeTokenTransfer}.
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 firstTokenId,
uint256 batchSize
) internal virtual override {
super._beforeTokenTransfer(from, to, firstTokenId, batchSize);
if (batchSize > 1) {
// Will only trigger during construction. Batch transferring (minting) is not available afterwards.
revert("ERC721Enumerable: consecutive transfers not supported");
}
uint256 tokenId = firstTokenId;
if (from == address(0)) {
_addTokenToAllTokensEnumeration(tokenId);
} else if (from != to) {
_removeTokenFromOwnerEnumeration(from, tokenId);
}
if (to == address(0)) {
_removeTokenFromAllTokensEnumeration(tokenId);
} else if (to != from) {
_addTokenToOwnerEnumeration(to, tokenId);
}
}
/**
* @dev Private function to add a token to this extension's ownership-tracking data structures.
* @param to address representing the new owner of the given token ID
* @param tokenId uint256 ID of the token to be added to the tokens list of the given address
*/
function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private {
uint256 length = ERC721.balanceOf(to);
_ownedTokens[to][length] = tokenId;
_ownedTokensIndex[tokenId] = length;
}
/**
* @dev Private function to add a token to this extension's token tracking data structures.
* @param tokenId uint256 ID of the token to be added to the tokens list
*/
function _addTokenToAllTokensEnumeration(uint256 tokenId) private {
_allTokensIndex[tokenId] = _allTokens.length;
_allTokens.push(tokenId);
}
/**
* @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that
* while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for
* gas optimizations e.g. when performing a transfer operation (avoiding double writes).
* This has O(1) time complexity, but alters the order of the _ownedTokens array.
* @param from address representing the previous owner of the given token ID
* @param tokenId uint256 ID of the token to be removed from the tokens list of the given address
*/
function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private {
// To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and
// then delete the last slot (swap and pop).
uint256 lastTokenIndex = ERC721.balanceOf(from) - 1;
uint256 tokenIndex = _ownedTokensIndex[tokenId];
// When the token to delete is the last token, the swap operation is unnecessary
if (tokenIndex != lastTokenIndex) {
uint256 lastTokenId = _ownedTokens[from][lastTokenIndex];
_ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
_ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
}
// This also deletes the contents at the last position of the array
delete _ownedTokensIndex[tokenId];
delete _ownedTokens[from][lastTokenIndex];
}
/**
* @dev Private function to remove a token from this extension's token tracking data structures.
* This has O(1) time complexity, but alters the order of the _allTokens array.
* @param tokenId uint256 ID of the token to be removed from the tokens list
*/
function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private {
// To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and
// then delete the last slot (swap and pop).
uint256 lastTokenIndex = _allTokens.length - 1;
uint256 tokenIndex = _allTokensIndex[tokenId];
// When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so
// rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding
// an 'if' statement (like in _removeTokenFromOwnerEnumeration)
uint256 lastTokenId = _allTokens[lastTokenIndex];
_allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
_allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
// This also deletes the contents at the last position of the array
delete _allTokensIndex[tokenId];
_allTokens.pop();
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC721.sol)
pragma solidity ^0.8.0;
import "../token/ERC721/IERC721.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
interface IOperatorFilterRegistry {
/**
* @notice Returns true if operator is not filtered for a given token, either by address or codeHash. Also returns
* true if supplied registrant address is not registered.
*/
function isOperatorAllowed(address registrant, address operator) external view returns (bool);
/**
* @notice Registers an address with the registry. May be called by address itself or by EIP-173 owner.
*/
function register(address registrant) external;
/**
* @notice Registers an address with the registry and "subscribes" to another address's filtered operators and codeHashes.
*/
function registerAndSubscribe(address registrant, address subscription) external;
/**
* @notice Registers an address with the registry and copies the filtered operators and codeHashes from another
* address without subscribing.
*/
function registerAndCopyEntries(address registrant, address registrantToCopy) external;
/**
* @notice Unregisters an address with the registry and removes its subscription. May be called by address itself or by EIP-173 owner.
* Note that this does not remove any filtered addresses or codeHashes.
* Also note that any subscriptions to this registrant will still be active and follow the existing filtered addresses and codehashes.
*/
function unregister(address addr) external;
/**
* @notice Update an operator address for a registered address - when filtered is true, the operator is filtered.
*/
function updateOperator(address registrant, address operator, bool filtered) external;
/**
* @notice Update multiple operators for a registered address - when filtered is true, the operators will be filtered. Reverts on duplicates.
*/
function updateOperators(address registrant, address[] calldata operators, bool filtered) external;
/**
* @notice Update a codeHash for a registered address - when filtered is true, the codeHash is filtered.
*/
function updateCodeHash(address registrant, bytes32 codehash, bool filtered) external;
/**
* @notice Update multiple codeHashes for a registered address - when filtered is true, the codeHashes will be filtered. Reverts on duplicates.
*/
function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external;
/**
* @notice Subscribe an address to another registrant's filtered operators and codeHashes. Will remove previous
* subscription if present.
* Note that accounts with subscriptions may go on to subscribe to other accounts - in this case,
* subscriptions will not be forwarded. Instead the former subscription's existing entries will still be
* used.
*/
function subscribe(address registrant, address registrantToSubscribe) external;
/**
* @notice Unsubscribe an address from its current subscribed registrant, and optionally copy its filtered operators and codeHashes.
*/
function unsubscribe(address registrant, bool copyExistingEntries) external;
/**
* @notice Get the subscription address of a given registrant, if any.
*/
function subscriptionOf(address addr) external returns (address registrant);
/**
* @notice Get the set of addresses subscribed to a given registrant.
* Note that order is not guaranteed as updates are made.
*/
function subscribers(address registrant) external returns (address[] memory);
/**
* @notice Get the subscriber at a given index in the set of addresses subscribed to a given registrant.
* Note that order is not guaranteed as updates are made.
*/
function subscriberAt(address registrant, uint256 index) external returns (address);
/**
* @notice Copy filtered operators and codeHashes from a different registrantToCopy to addr.
*/
function copyEntriesOf(address registrant, address registrantToCopy) external;
/**
* @notice Returns true if operator is filtered by a given address or its subscription.
*/
function isOperatorFiltered(address registrant, address operator) external returns (bool);
/**
* @notice Returns true if the hash of an address's code is filtered by a given address or its subscription.
*/
function isCodeHashOfFiltered(address registrant, address operatorWithCode) external returns (bool);
/**
* @notice Returns true if a codeHash is filtered by a given address or its subscription.
*/
function isCodeHashFiltered(address registrant, bytes32 codeHash) external returns (bool);
/**
* @notice Returns a list of filtered operators for a given address or its subscription.
*/
function filteredOperators(address addr) external returns (address[] memory);
/**
* @notice Returns the set of filtered codeHashes for a given address or its subscription.
* Note that order is not guaranteed as updates are made.
*/
function filteredCodeHashes(address addr) external returns (bytes32[] memory);
/**
* @notice Returns the filtered operator at the given index of the set of filtered operators for a given address or
* its subscription.
* Note that order is not guaranteed as updates are made.
*/
function filteredOperatorAt(address registrant, uint256 index) external returns (address);
/**
* @notice Returns the filtered codeHash at the given index of the list of filtered codeHashes for a given address or
* its subscription.
* Note that order is not guaranteed as updates are made.
*/
function filteredCodeHashAt(address registrant, uint256 index) external returns (bytes32);
/**
* @notice Returns true if an address has registered
*/
function isRegistered(address addr) external returns (bool);
/**
* @dev Convenience method to compute the code hash of an arbitrary contract
*/
function codeHashOf(address addr) external returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
interface IXENCrypto {
function globalRank() external view returns (uint256);
function getGrossReward(
uint256 rankDelta,
uint256 amplifier,
uint256 term,
uint256 EAA
) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import "@openzeppelin/contracts/interfaces/IERC721.sol";
interface IXENFT is IERC721{
function vmuCount(uint256 tokenId) external view returns (uint256);
function mintInfo(uint256 tokenId) external view returns (uint256);
function bulkClaimMintReward(uint256 tokenId, address dest) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
interface IXENFTMinimal {
function bulkClaimMintReward(uint256 tokenId, address dest) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
// mapping: NFT tokenId => MintInfo (used in tokenURI generation)
// MintInfo encoded as:
// term (uint16)
// | maturityTs (uint64)
// | rank (uint128)
// | amp (uint16)
// | eaa (uint16)
// | class (uint8):
// [7] isApex
// [6] isLimited
// [0-5] powerGroupIdx
// | redeemed (uint8)
library MintInfo {
/**
@dev helper to convert Bool to U256 type and make compiler happy
*/
function toU256(bool x) internal pure returns (uint256 r) {
assembly {
r := x
}
}
/**
@dev encodes MintInfo record from its props
*/
function encodeMintInfo(
uint256 term,
uint256 maturityTs,
uint256 rank,
uint256 amp,
uint256 eaa,
uint256 class_,
bool redeemed
) public pure returns (uint256 info) {
info = info | (toU256(redeemed) & 0xFF);
info = info | ((class_ & 0xFF) << 8);
info = info | ((eaa & 0xFFFF) << 16);
info = info | ((amp & 0xFFFF) << 32);
info = info | ((rank & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) << 48);
info = info | ((maturityTs & 0xFFFFFFFFFFFFFFFF) << 176);
info = info | ((term & 0xFFFF) << 240);
}
/**
@dev decodes MintInfo record and extracts all of its props
*/
function decodeMintInfo(uint256 info)
public
pure
returns (
uint256 term,
uint256 maturityTs,
uint256 rank,
uint256 amp,
uint256 eaa,
uint256 class,
bool apex,
bool limited,
bool redeemed
)
{
term = uint16(info >> 240);
maturityTs = uint64(info >> 176);
rank = uint128(info >> 48);
amp = uint16(info >> 32);
eaa = uint16(info >> 16);
class = uint8(info >> 8) & 0x3F;
apex = (uint8(info >> 8) & 0x80) > 0;
limited = (uint8(info >> 8) & 0x40) > 0;
redeemed = uint8(info) == 1;
}
/**
@dev extracts `term` prop from encoded MintInfo
*/
function getTerm(uint256 info) public pure returns (uint256 term) {
(term, , , , , , , , ) = decodeMintInfo(info);
}
/**
@dev extracts `maturityTs` prop from encoded MintInfo
*/
function getMaturityTs(uint256 info) public pure returns (uint256 maturityTs) {
(, maturityTs, , , , , , , ) = decodeMintInfo(info);
}
/**
@dev extracts `rank` prop from encoded MintInfo
*/
function getRank(uint256 info) public pure returns (uint256 rank) {
(, , rank, , , , , , ) = decodeMintInfo(info);
}
/**
@dev extracts `AMP` prop from encoded MintInfo
*/
function getAMP(uint256 info) public pure returns (uint256 amp) {
(, , , amp, , , , , ) = decodeMintInfo(info);
}
/**
@dev extracts `EAA` prop from encoded MintInfo
*/
function getEAA(uint256 info) public pure returns (uint256 eaa) {
(, , , , eaa, , , , ) = decodeMintInfo(info);
}
/**
@dev extracts `redeemed` prop from encoded MintInfo
*/
function getClass(uint256 info)
public
pure
returns (
uint256 class_,
bool apex,
bool limited
)
{
(, , , , , class_, apex, limited, ) = decodeMintInfo(info);
}
/**
@dev extracts `redeemed` prop from encoded MintInfo
*/
function getRedeemed(uint256 info) public pure returns (bool redeemed) {
(, , , , , , , , redeemed) = decodeMintInfo(info);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
import {IOperatorFilterRegistry} from "./IOperatorFilterRegistry.sol";
import {CANONICAL_OPERATOR_FILTER_REGISTRY_ADDRESS} from "./lib/Constants.sol";
/**
* @title OperatorFilterer
* @notice Abstract contract whose constructor automatically registers and optionally subscribes to or copies another
* registrant's entries in the OperatorFilterRegistry.
* @dev This smart contract is meant to be inherited by token contracts so they can use the following:
* - `onlyAllowedOperator` modifier for `transferFrom` and `safeTransferFrom` methods.
* - `onlyAllowedOperatorApproval` modifier for `approve` and `setApprovalForAll` methods.
* Please note that if your token contract does not provide an owner with EIP-173, it must provide
* administration methods on the contract itself to interact with the registry otherwise the subscription
* will be locked to the options set during construction.
*/
abstract contract OperatorFilterer {
/// @dev Emitted when an operator is not allowed.
error OperatorNotAllowed(address operator);
IOperatorFilterRegistry public constant OPERATOR_FILTER_REGISTRY =
IOperatorFilterRegistry(CANONICAL_OPERATOR_FILTER_REGISTRY_ADDRESS);
/// @dev The constructor that is called when the contract is being deployed.
constructor(address subscriptionOrRegistrantToCopy, bool subscribe) {
// If an inheriting token contract is deployed to a network without the registry deployed, the modifier
// will not revert, but the contract will need to be registered with the registry once it is deployed in
// order for the modifier to filter addresses.
if (address(OPERATOR_FILTER_REGISTRY).code.length > 0) {
if (subscribe) {
OPERATOR_FILTER_REGISTRY.registerAndSubscribe(address(this), subscriptionOrRegistrantToCopy);
} else {
if (subscriptionOrRegistrantToCopy != address(0)) {
OPERATOR_FILTER_REGISTRY.registerAndCopyEntries(address(this), subscriptionOrRegistrantToCopy);
} else {
OPERATOR_FILTER_REGISTRY.register(address(this));
}
}
}
}
/**
* @dev A helper function to check if an operator is allowed.
*/
modifier onlyAllowedOperator(address from) virtual {
// Allow spending tokens from addresses with balance
// Note that this still allows listings and marketplaces with escrow to transfer tokens if transferred
// from an EOA.
if (from != msg.sender) {
_checkFilterOperator(msg.sender);
}
_;
}
/**
* @dev A helper function to check if an operator approval is allowed.
*/
modifier onlyAllowedOperatorApproval(address operator) virtual {
_checkFilterOperator(operator);
_;
}
/**
* @dev A helper function to check if an operator is allowed.
*/
function _checkFilterOperator(address operator) internal view virtual {
// Check registry code length to facilitate testing in environments without a deployed registry.
if (address(OPERATOR_FILTER_REGISTRY).code.length > 0) {
// under normal circumstances, this function will revert rather than return false, but inheriting contracts
// may specify their own OperatorFilterRegistry implementations, which may behave differently
if (!OPERATOR_FILTER_REGISTRY.isOperatorAllowed(address(this), operator)) {
revert OperatorNotAllowed(operator);
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
pragma solidity ^0.8.19;
import "./interfaces/IXENFTMinimal.sol";
contract XENFTStorage {
address factory;
constructor(){
factory = msg.sender;
}
function claimXenFromStorage(address xenft, address dest, uint256 tokenId) public {
require(msg.sender == factory, "Caller is not factory");
IXENFTMinimal(xenft).bulkClaimMintReward(tokenId, dest);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
{
"compilationTarget": {
"contracts/DBXeNFTFactory.sol": "DBXeNFTFactory"
},
"evmVersion": "shanghai",
"libraries": {
"contracts/libs/MintInfo.sol:MintInfo": "0xc739d01beb34e380461bba9ef8ed1a44874382be"
},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"dbxAddress","type":"address"},{"internalType":"address","name":"xenftAddress","type":"address"},{"internalType":"address","name":"_xenCrypto","type":"address"},{"internalType":"address","name":"_devAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"cycle","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"DBXENFTId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"XENFTID","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"fee","type":"uint256"},{"indexed":true,"internalType":"address","name":"minter","type":"address"}],"name":"DBXeNFTMinted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"cycle","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"fees","type":"uint256"},{"indexed":true,"internalType":"address","name":"owner","type":"address"}],"name":"FeesClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"cycle","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"calculatedCycleReward","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"summedCyclePowers","type":"uint256"}],"name":"NewCycleStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"cycle","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"address","name":"owner","type":"address"}],"name":"Staked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"cycle","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":true,"internalType":"address","name":"owner","type":"address"}],"name":"Unstaked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"cycle","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"dbxenftId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"xenftId","type":"uint256"},{"indexed":true,"internalType":"address","name":"owner","type":"address"}],"name":"XenRewardsClaimed","type":"event"},{"inputs":[],"name":"BASE_XEN","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_BPS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_PENALTY_PCT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SCALING_FACTOR","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SECONDS_IN_DAY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"baseDBXeNFTPower","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"inputValue","type":"uint256"}],"name":"calculateDevFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"claimFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"claimXen","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"currentCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentCycleReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentStartedCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"cycleAccruedFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"cycleFeesPerPowerSummed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dbxenft","outputs":[{"internalType":"contract DBXENFT","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"dbxenftAccruedFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"dbxenftEntryPower","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"dbxenftEntryPowerWithStake","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"dbxenftFirstStake","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"dbxenftPower","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"dbxenftSecondStake","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"dbxenftStakeCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"dbxenftUnderlyingStorage","outputs":[{"internalType":"contract XENFTStorage","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"dbxenftUnderlyingXENFT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"dbxenftWithdrawableStake","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"devAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dxn","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"i_initialTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"i_periodDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastCycleReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"lastFeeUpdateCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"lastPowerUpdateCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastStartedCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"xenftId","type":"uint256"}],"name":"mintDBXENFT","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"pendingDXN","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingPower","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingStakeWithdrawal","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"previousStartedCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewardPerCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newDevAddress","type":"address"}],"name":"setDevAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"summedCyclePowers","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokenEntryCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"totalEntryPowerPerCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"totalExtraEntryPower","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"unstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"xenCrypto","outputs":[{"internalType":"contract IXENCrypto","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"xenft","outputs":[{"internalType":"contract IXENFT","name":"","type":"address"}],"stateMutability":"view","type":"function"}]