// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: Unlicense
// Version 0.0.1
pragma solidity ^0.8.17;
import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import "@openzeppelin/contracts/access/AccessControl.sol";
import "./IEve.sol";
import "./utils.sol";
contract GenesisStoneEveStaking is AccessControl {
// Using
using EnumerableSet for EnumerableSet.UintSet;
// Struct
struct StakedNFTInfo {
address stakedBy; // Address of the staker. Once set, never changes. If never staked, the value is zero address.
uint64 stakedTime; // Staked time. 0 if not currently staked
bool minted; // whether the nft has been used to min an Eve
}
struct StakerInfo {
EnumerableSet.UintSet stakedNFTs; // The CURRENTLY staked tokenIds
EnumerableSet.UintSet mintedNFTs; // minted tokenIds
bool fiveStonesMinted; // whether the staker has minted the five stones reward
bool tenStonesMinted; // whether the staker has minted the ten stones reward
}
// Events
event EveMinted(uint256 indexed tokenId, uint8 indexed mintType); // mintType defined in constants
// Constants
uint8 public constant MINT_TYPE_NORMAL = 0;
uint8 public constant MINT_TYPE_MYTHIC = 1;
uint8 public constant MINT_TYPE_FIVE = 2;
uint8 public constant MINT_TYPE_TEN = 3;
uint16 public constant MAX_GENESISSTONE_NFTS = 1000;
IERC721 public immutable GENESIS_STONE_CONTRACT;
IEve public immutable EVE_CONTRACT;
// Public variables
uint256 public stakingPeriod;
// Private variables
mapping(uint256 => StakedNFTInfo) private _stakedNFTInfos; // tokenId => StakedNFTInfo
mapping(address => StakerInfo) private _stakerInfos; // staker => StakerInfo
/// @notice Initializes a new instance of the GenesisStoneStaking contract.
/// @dev Grants the DEFAULT_ADMIN_ROLE to the defaultAdmin_ address
/// @param defaultAdmin_ The address to be granted the DEFAULT_ADMIN_ROLE.
/// @param genesisStoneContract_ The address of the deployed GenesisStone contract.
/// @param eveContract_ The address of the deployed Eve contract.
/// @param stakingPeriod_ The staking period in seconds.
constructor(
address defaultAdmin_,
address genesisStoneContract_,
address eveContract_,
uint256 stakingPeriod_
) {
if (defaultAdmin_ == address(0)) {
revert Utils.AdminIsZeroAddress();
}
_grantRole(DEFAULT_ADMIN_ROLE, defaultAdmin_);
if (!Utils.contractExists(genesisStoneContract_)) {
revert Utils.ContractDoesNotExist();
}
GENESIS_STONE_CONTRACT = IERC721(genesisStoneContract_);
if (!Utils.contractExists(eveContract_)) {
revert Utils.ContractDoesNotExist();
}
EVE_CONTRACT = IEve(eveContract_);
if (stakingPeriod_ == 0) {
revert Utils.StakingPeriodIsZero();
}
stakingPeriod = stakingPeriod_;
}
/// @notice Stakes multiple GenesisStone NFTs
/// @param tokenIds_ An array of GenesisStone NFT tokenIds that will be staked
function stake(uint256[] calldata tokenIds_) external {
for (uint256 i = 0; i < tokenIds_.length; ) {
uint256 tokenId = tokenIds_[i];
if (_stakedNFTInfos[tokenId].stakedBy != address(0)) {
revert Utils.TokenAlreadyStaked();
}
if (GENESIS_STONE_CONTRACT.ownerOf(tokenId) != msg.sender) {
revert Utils.NotTheOwnerOfTheToken();
}
_stakedNFTInfos[tokenId].stakedBy = msg.sender;
_stakedNFTInfos[tokenId].stakedTime = uint64(block.timestamp);
_stakerInfos[msg.sender].stakedNFTs.add(tokenId);
GENESIS_STONE_CONTRACT.transferFrom(
msg.sender,
address(this),
tokenId
);
unchecked {
++i;
}
}
}
/// @notice Sets the staking period
/// @param stakingPeriod_ The new staking period
function setStakingPeriod(
uint256 stakingPeriod_
) external onlyRole(DEFAULT_ADMIN_ROLE) {
stakingPeriod = stakingPeriod_;
}
/// @notice Checks if the given GenesisStone NFTs are already staked
/// @param tokenIds_ An array of GenesisStone NFT tokenIds
/// @return An array of bool values indicating the staking status of each tokenId
function isAlreadyStaked(
uint256[] calldata tokenIds_
) external view returns (bool[] memory) {
bool[] memory results = new bool[](tokenIds_.length);
for (uint256 i = 0; i < tokenIds_.length; ) {
results[i] = _stakedNFTInfos[tokenIds_[i]].stakedBy != address(0);
unchecked {
++i;
}
}
return results;
}
/// @notice Returns the staker of the given GenesisStone NFTs
/// @param tokenIds_ An array of GenesisStone NFT tokenIds
/// @return An array of addresses, where each address is the staker of the corresponding tokenId
function stakerOf(
uint256[] calldata tokenIds_
) external view returns (address[] memory) {
address[] memory results = new address[](tokenIds_.length);
for (uint256 i = 0; i < tokenIds_.length; ) {
results[i] = _stakedNFTInfos[tokenIds_[i]].stakedBy;
unchecked {
++i;
}
}
return results;
}
/// @notice Returns the staked GenesisStone NFTs of the given user
/// @param user_ The address of the user
/// @return An array of GenesisStone NFT tokenIds staked by the user
function stakedNFTOf(
address user_
) external view returns (uint256[] memory) {
EnumerableSet.UintSet storage stakedTokens = _stakerInfos[user_]
.stakedNFTs;
uint256 stakedCount = stakedTokens.length();
uint256[] memory results = new uint256[](stakedCount);
for (uint256 i = 0; i < stakedCount; ) {
results[i] = stakedTokens.at(i);
unchecked {
++i;
}
}
return results;
}
/// @notice Returns all staked GenesisStone NFTs.
/// This function should only be called off-chain. An on-chain call to this function will be extremely expensive.
/// @return An array of staked GenesisStone NFT tokenIds
function getAllStakedNFTs() external view returns (uint256[] memory) {
// Figure out how many NFTs are currently staked and create the results array
uint256[] memory results = new uint256[](
GENESIS_STONE_CONTRACT.balanceOf(address(this))
);
// Scan through all the NFT ids of GenesisStone
uint256 count = 0;
for (uint256 i = 0; i < MAX_GENESISSTONE_NFTS; ) {
unchecked {
if (_stakedNFTInfos[i].stakedTime != 0) {
results[count++] = i;
}
++i;
}
}
return results;
}
/// @dev Checks if staking is complete for each tokenId in the provided array.
/// @param tokenIds_ An array of tokenIds for which the staking completion status will be checked.
/// @return results An array of bool values indicating staking completion status for each corresponding tokenId.
/// Each value in the results array is 'true' if staking is complete for the tokenId, and 'false' otherwise.
function isStakingComplete(
uint256[] calldata tokenIds_
) external view returns (bool[] memory) {
bool[] memory results = new bool[](tokenIds_.length);
for (uint256 i = 0; i < tokenIds_.length; ) {
results[i] = _stakingComplete(tokenIds_[i]);
unchecked {
++i;
}
}
return results;
}
/// @dev Checks if staking is complete for the given tokenId.
/// @param tokenId_ The tokenId for which the staking completion status will be checked.
/// @return True if staking is complete for the tokenId
function _stakingComplete(uint256 tokenId_) private view returns (bool) {
unchecked {
return
_stakedNFTInfos[tokenId_].stakedTime != 0 &&
block.timestamp >=
_stakedNFTInfos[tokenId_].stakedTime + stakingPeriod;
}
}
/// @notice Returns the staking timestamps of the given GenesisStone NFTs
/// @param tokenIds_ An array of GenesisStone NFT tokenIds
/// @return results An array of timestamps, where each timestamp corresponds to the staking time of the tokenId
function stakedNFTTime(
uint256[] calldata tokenIds_
) external view returns (uint64[] memory) {
uint64[] memory results = new uint64[](tokenIds_.length);
for (uint256 i = 0; i < tokenIds_.length; ) {
results[i] = _stakedNFTInfos[tokenIds_[i]].stakedTime;
unchecked {
++i;
}
}
return results;
}
/// @dev Returns the number of currently staked GenesisStone NFTs
/// @return result The number of currently staked GenesisStone NFTs
function _completedStakes(
address user_
) private view returns (uint256 result) {
EnumerableSet.UintSet storage stakedTokens = _stakerInfos[user_]
.stakedNFTs;
uint256 stakedCount = stakedTokens.length();
for (uint256 i = 0; i < stakedCount; ) {
uint256 tokenId = stakedTokens.at(i);
unchecked {
if (_stakingComplete(tokenId)) {
++result;
}
++i;
}
}
return result;
}
/// @notice Returns the number of currently completed stakes for a user
/// @param user_ The address of the user
/// @return result The number of completed stakes for the user
function completedStakes(address user_) external view returns (uint256) {
return _completedStakes(user_);
}
/// @dev Checks if the given tokenId is a mythic GenesisStone NFT
/// @param tokenId_ The tokenId of the GenesisStone NFT
function _isMythicStone(uint256 tokenId_) private pure returns (bool) {
return tokenId_ < 9 || tokenId_ == 999;
}
/// @dev Checks if the given tokenId has been used to mint a Eve
/// @param tokenId_ The tokenId of the GenesisStone NFT
function _isMinted(uint256 tokenId_) internal view returns (bool) {
return _stakedNFTInfos[tokenId_].minted;
}
/// @notice Checks if the given tokenIds have been used for Eve minting
/// @param tokenIds_ An array of GenesisStone NFT tokenIds
/// @return results An array of bool values indicating whether each tokenId has been used for Eve minting
function hasBeenUsedForMinting(
uint256[] calldata tokenIds_
) external view returns (bool[] memory) {
bool[] memory usedForMinting = new bool[](tokenIds_.length);
for (uint256 i = 0; i < tokenIds_.length; ) {
usedForMinting[i] = _isMinted(tokenIds_[i]);
unchecked {
++i;
}
}
return usedForMinting;
}
/// @notice Returns the minted Eve NFTs for the given user
/// @param user_ The address of the user
/// @return results An array of Eve NFT tokenIds
function getMintedNFTs(
address user_
) external view returns (uint256[] memory) {
EnumerableSet.UintSet storage mintedTokens = _stakerInfos[user_]
.mintedNFTs;
uint256 mintedCount = mintedTokens.length();
uint256[] memory results = new uint256[](mintedCount);
for (uint256 i = 0; i < mintedCount; ) {
results[i] = mintedTokens.at(i);
unchecked {
++i;
}
}
return results;
}
/// @notice Returns the number of normal Eve NFTs that can be minted for the given user
/// @param user_ The address of the user
/// @return result The number of normal Eve NFTs that can be minted for the user
function numOfNormalEveMintable(
address user_
) external view returns (uint256 result) {
EnumerableSet.UintSet storage stakedTokens = _stakerInfos[user_]
.stakedNFTs;
uint256 stakedCount = stakedTokens.length();
for (uint256 i = 0; i < stakedCount; ) {
uint256 tokenId = stakedTokens.at(i);
unchecked {
if (
!_isMythicStone(tokenId) &&
_stakingComplete(tokenId) &&
!_isMinted(tokenId)
) {
++result;
}
++i;
}
}
return result;
}
/// @notice Returns the number of mythic Eve NFTs that can be minted for the given user
/// @param user_ The address of the user
/// @return result The number of mythic Eve NFTs that can be minted for the user
function numOfMythicEveMintable(
address user_
) external view returns (uint256 result) {
EnumerableSet.UintSet storage stakedTokens = _stakerInfos[user_]
.stakedNFTs;
uint256 stakedCount = stakedTokens.length();
for (uint256 i = 0; i < stakedCount; ) {
uint256 tokenId = stakedTokens.at(i);
unchecked {
if (
_isMythicStone(tokenId) &&
_stakingComplete(tokenId) &&
!_isMinted(tokenId)
) {
++result;
}
++i;
}
}
return result;
}
/// @notice Mints a number of Eve NFTs for the caller
/// @param tokenIds_ An array of GenesisStone NFT tokenIds
function mintEve(uint256[] calldata tokenIds_) external {
for (uint256 i = 0; i < tokenIds_.length; ) {
if (_stakedNFTInfos[tokenIds_[i]].stakedBy != msg.sender) {
revert Utils.NotTheOwnerOfTheToken();
}
if (_isMinted(tokenIds_[i])) {
revert Utils.AlreadyMinted();
}
if (!_stakingComplete(tokenIds_[i])) {
revert Utils.StakingNotCompleted();
}
bool isMythic = _isMythicStone(tokenIds_[i]);
// Transfer the staked NFT back to the user
_stakedNFTInfos[tokenIds_[i]].stakedTime = 0;
_stakerInfos[msg.sender].stakedNFTs.remove(tokenIds_[i]);
GENESIS_STONE_CONTRACT.transferFrom(
address(this),
msg.sender,
tokenIds_[i]
);
// Mint the NFT
_stakedNFTInfos[tokenIds_[i]].minted = true;
uint256[] memory tokenIds = isMythic
? EVE_CONTRACT.mintMythic(msg.sender, 1)
: EVE_CONTRACT.mintNormal(msg.sender, 1);
// Emit event for the minted Eve tokenId
_stakerInfos[msg.sender].mintedNFTs.add(tokenIds[0]);
emit EveMinted(
tokenIds[0],
isMythic ? MINT_TYPE_MYTHIC : MINT_TYPE_NORMAL
);
unchecked {
++i;
}
}
}
/// @notice Returns if the user can mint a normal Eve using five staked Genesis Stones
/// @param user_ The address of the user
/// @return True if the user can mint a normal Eve using five staked Genesis Stones
function fiveStonesMintable(address user_) external view returns (bool) {
return
!_stakerInfos[user_].fiveStonesMinted &&
_completedStakes(user_) > 4;
}
/// @notice Checks whether the specified user has minted Eve with five stones.
/// @param user_ The address of the user to check.
/// @return A boolean value indicating whether the user has minted Eve with five stones.
function hasMintedEveWithFiveStones(
address user_
) external view returns (bool) {
return _stakerInfos[user_].fiveStonesMinted;
}
/// @notice Mint a normal Eve using five staked Genesis Stones
function mintEveWithFiveStones() external {
if (_stakerInfos[msg.sender].fiveStonesMinted) {
revert Utils.AlreadyMinted();
}
if (_completedStakes(msg.sender) < 5) {
revert Utils.NotEnoughStakedGenesisStones();
}
// Mint the NFT
_stakerInfos[msg.sender].fiveStonesMinted = true;
uint256[] memory tokenIds = EVE_CONTRACT.mintNormal(msg.sender, 1);
// Record and Emit events for each of the tokenIds
_stakerInfos[msg.sender].mintedNFTs.add(tokenIds[0]);
emit EveMinted(tokenIds[0], MINT_TYPE_FIVE);
}
/// @notice Returns if the user can mint a mythic Eve using ten staked Genesis Stones
/// @param user_ The address of the user
/// @return True if the user can mint a mythic Eve using ten staked Genesis Stones
function tenStonesMintable(address user_) external view returns (bool) {
return
!_stakerInfos[user_].tenStonesMinted && _completedStakes(user_) > 9;
}
/// @notice Checks whether the specified user has minted Eve with ten stones.
/// @param user_ The address of the user to check.
/// @return A boolean value indicating whether the user has minted Eve with ten stones.
function hasMintedEveWithTenStones(
address user_
) external view returns (bool) {
return _stakerInfos[user_].tenStonesMinted;
}
/// @notice Mint a mythic Eve using ten staked Genesis Stones
function mintEveWithTenStones() external {
if (_stakerInfos[msg.sender].tenStonesMinted) {
revert Utils.AlreadyMinted();
}
if (_completedStakes(msg.sender) < 10) {
revert Utils.NotEnoughStakedGenesisStones();
}
// Mint the NFT
_stakerInfos[msg.sender].tenStonesMinted = true;
uint256[] memory tokenIds = EVE_CONTRACT.mintMythic(msg.sender, 1);
// Record and Emit events for each of the tokenIds
_stakerInfos[msg.sender].mintedNFTs.add(tokenIds[0]);
emit EveMinted(tokenIds[0], MINT_TYPE_TEN);
}
/// @dev Performs an emergency transfer of the specified token to the specified address.
/// Only the account with the DEFAULT_ADMIN_ROLE can invoke this function.
/// @param tokenId_ The ID of the token to be transferred.
/// @param to_ The address to which the token will be transferred.
function emergencyTransfer(
uint256 tokenId_,
address to_
) external onlyRole(DEFAULT_ADMIN_ROLE) {
if (_stakedNFTInfos[tokenId_].stakedTime != 0) {
revert Utils.TokenIsStaked();
}
GENESIS_STONE_CONTRACT.transferFrom(address(this), to_, tokenId_);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: Unlicense
// Version 0.0.1
pragma solidity ^0.8.17;
interface IEve {
function mintNormal(
address to_,
uint256 quantity_
) external returns (uint256[] memory);
function mintMythic(
address to_,
uint256 quantity_
) external returns (uint256[] memory);
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
function exists(uint256 tokenId) external view returns (bool);
function nextTokenId() external view returns (uint256);
function nextMythicTokenId() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// SPDX-License-Identifier: Unlicense
// Version 0.0.1
pragma solidity ^0.8.17;
/**
* @dev Collection of utility functions
*/
library Utils {
/**
* Default admin is zero address
*/
error AdminIsZeroAddress();
/**
* Default owner is zero address
*/
error OwnerIsZeroAddress();
/**
* Royalty is zero
*/
error RoyaltyIsZero();
/**
* The signature is invalid
*/
error InvalidSignature();
/**
* The number of NFTs exceeds the limit
*/
error NFTQuantityExceedsLimit();
/**
* Transfer ownership to zero address
*/
error TransferOwnershipToZeroAddress();
/**
* Unmatched Array lengths
*/
error UnmatchedArrayLengths();
/**
* Contract does not exist at the address
*/
error ContractDoesNotExist();
/**
* Staking Period Is Zero
*/
error StakingPeriodIsZero();
/**
* Quantity Is Zero
*/
error QuantityIsZero();
/**
* Allowed Quantity Is Zero
*/
error AllowedQuantityIsZero();
/**
* Input quantity exceeds allowed quantity
*/
error ExceedsAllowedQuantity();
/**
* The person is not whitelisted
*/
error NotWhitelisted();
/**
* Token Already Staked
*/
error TokenAlreadyStaked();
/**
* Not The Owner Of The Token
*/
error NotTheOwnerOfTheToken();
/**
* Not enough staked Genesis Stones
*/
error NotEnoughStakedGenesisStones();
/**
* Already Minted with the method
*/
error AlreadyMinted();
/**
* Not Staked
*/
error NotStaked();
/**
* Staking Not Completed
*/
error StakingNotCompleted();
/**
* Invalid addrses
*/
error InvalidAddress();
/**
* Token Is Staked
*/
error TokenIsStaked();
/**
* Not A Mythic Stone
*/
error NotAMythicStone();
/**
* Not A Normal Stone
*/
error NotANormalStone();
/**
* Incorrect NFT Id
*/
error IncorrectNFTId();
/**
* Incorrect Data
*/
error IncorrectData();
function contractExists(address addr) internal view returns (bool) {
uint size;
assembly {
size := extcodesize(addr)
}
return (size > 0);
}
}
{
"compilationTarget": {
"contracts/GenesisStoneEveStaking.sol": "GenesisStoneEveStaking"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 800
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"defaultAdmin_","type":"address"},{"internalType":"address","name":"genesisStoneContract_","type":"address"},{"internalType":"address","name":"eveContract_","type":"address"},{"internalType":"uint256","name":"stakingPeriod_","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AdminIsZeroAddress","type":"error"},{"inputs":[],"name":"AlreadyMinted","type":"error"},{"inputs":[],"name":"ContractDoesNotExist","type":"error"},{"inputs":[],"name":"NotEnoughStakedGenesisStones","type":"error"},{"inputs":[],"name":"NotTheOwnerOfTheToken","type":"error"},{"inputs":[],"name":"StakingNotCompleted","type":"error"},{"inputs":[],"name":"StakingPeriodIsZero","type":"error"},{"inputs":[],"name":"TokenAlreadyStaked","type":"error"},{"inputs":[],"name":"TokenIsStaked","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":true,"internalType":"uint8","name":"mintType","type":"uint8"}],"name":"EveMinted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"EVE_CONTRACT","outputs":[{"internalType":"contract IEve","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"GENESIS_STONE_CONTRACT","outputs":[{"internalType":"contract IERC721","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_GENESISSTONE_NFTS","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINT_TYPE_FIVE","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINT_TYPE_MYTHIC","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINT_TYPE_NORMAL","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINT_TYPE_TEN","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user_","type":"address"}],"name":"completedStakes","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId_","type":"uint256"},{"internalType":"address","name":"to_","type":"address"}],"name":"emergencyTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user_","type":"address"}],"name":"fiveStonesMintable","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllStakedNFTs","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user_","type":"address"}],"name":"getMintedNFTs","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds_","type":"uint256[]"}],"name":"hasBeenUsedForMinting","outputs":[{"internalType":"bool[]","name":"","type":"bool[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user_","type":"address"}],"name":"hasMintedEveWithFiveStones","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user_","type":"address"}],"name":"hasMintedEveWithTenStones","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds_","type":"uint256[]"}],"name":"isAlreadyStaked","outputs":[{"internalType":"bool[]","name":"","type":"bool[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds_","type":"uint256[]"}],"name":"isStakingComplete","outputs":[{"internalType":"bool[]","name":"","type":"bool[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds_","type":"uint256[]"}],"name":"mintEve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"mintEveWithFiveStones","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"mintEveWithTenStones","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user_","type":"address"}],"name":"numOfMythicEveMintable","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user_","type":"address"}],"name":"numOfNormalEveMintable","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"stakingPeriod_","type":"uint256"}],"name":"setStakingPeriod","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds_","type":"uint256[]"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user_","type":"address"}],"name":"stakedNFTOf","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds_","type":"uint256[]"}],"name":"stakedNFTTime","outputs":[{"internalType":"uint64[]","name":"","type":"uint64[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds_","type":"uint256[]"}],"name":"stakerOf","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakingPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user_","type":"address"}],"name":"tenStonesMintable","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]