EthereumEthereum
0x9f...6b55
MyCryptoview.com token

MyCryptoview.com token

MCV

代币
市值
$1.00
 
价格
2%
此合同的源代码已经过验证!
合同元数据
编译器
0.5.1+commit.c8a2cb62
语言
Solidity
合同源代码
文件 1 的 1:MyCryptoViewToken.sol
pragma solidity ^0.5.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP. Does not include
 * the optional functions; to access them see {ERC20Detailed}.
 */
interface IERC20 {
	/**
	 * @dev Returns the amount of tokens in existence.
	 */
	function totalSupply() external view returns (uint256);

	/**
	 * @dev Returns the amount of tokens owned by `account`.
	 */
	function balanceOf(address account) external view returns (uint256);

	/**
	 * @dev Moves `amount` tokens from the caller's account to `recipient`.
	 *
	 * Returns a boolean value indicating whether the operation succeeded.
	 *
	 * Emits a {Transfer} event.
	 */
	function transfer(address recipient, uint256 amount) external returns (bool);

	/**
	 * @dev Returns the remaining number of tokens that `spender` will be
	 * allowed to spend on behalf of `owner` through {transferFrom}. This is
	 * zero by default.
	 *
	 * This value changes when {approve} or {transferFrom} are called.
	 */
	function allowance(address owner, address spender) external view returns (uint256);

	/**
	 * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
	 *
	 * Returns a boolean value indicating whether the operation succeeded.
	 *
	 * IMPORTANT: Beware that changing an allowance with this method brings the risk
	 * that someone may use both the old and the new allowance by unfortunate
	 * transaction ordering. One possible solution to mitigate this race
	 * condition is to first reduce the spender's allowance to 0 and set the
	 * desired value afterwards:
	 * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
	 *
	 * Emits an {Approval} event.
	 */
	function approve(address spender, uint256 amount) external returns (bool);

	/**
	 * @dev Moves `amount` tokens from `sender` to `recipient` using the
	 * allowance mechanism. `amount` is then deducted from the caller's
	 * allowance.
	 *
	 * Returns a boolean value indicating whether the operation succeeded.
	 *
	 * Emits a {Transfer} event.
	 */
	function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

	/**
	 * @dev Emitted when `value` tokens are moved from one account (`from`) to
	 * another (`to`).
	 *
	 * Note that `value` may be zero.
	 */
	event Transfer(address indexed from, address indexed to, uint256 value);

	/**
	 * @dev Emitted when the allowance of a `spender` for an `owner` is set by
	 * a call to {approve}. `value` is the new allowance.
	 */
	event Approval(address indexed owner, address indexed spender, uint256 value);
}

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
contract Context {
	// Empty internal constructor, to prevent people from mistakenly deploying
	// an instance of this contract, which should be used via inheritance.
	constructor () internal { }
	// solhint-disable-previous-line no-empty-blocks

	function _msgSender() internal view returns (address payable) {
		return msg.sender;
	}

	function _msgData() internal view returns (bytes memory) {
		this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
		return msg.data;
	}
}

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
	/**
	 * @dev Returns the addition of two unsigned integers, reverting on
	 * overflow.
	 *
	 * Counterpart to Solidity's `+` operator.
	 *
	 * Requirements:
	 * - Addition cannot overflow.
	 */
	function add(uint256 a, uint256 b) internal pure returns (uint256) {
		uint256 c = a + b;
		require(c >= a, "SafeMath: addition overflow");

		return c;
	}

	/**
	 * @dev Returns the subtraction of two unsigned integers, reverting on
	 * overflow (when the result is negative).
	 *
	 * Counterpart to Solidity's `-` operator.
	 *
	 * Requirements:
	 * - Subtraction cannot overflow.
	 */
	function sub(uint256 a, uint256 b) internal pure returns (uint256) {
		return sub(a, b, "SafeMath: subtraction overflow");
	}

	/**
	 * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
	 * overflow (when the result is negative).
	 *
	 * Counterpart to Solidity's `-` operator.
	 *
	 * Requirements:
	 * - Subtraction cannot overflow.
	 *
	 * _Available since v2.4.0._
	 */
	function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
		require(b <= a, errorMessage);
		uint256 c = a - b;

		return c;
	}

	/**
	 * @dev Returns the multiplication of two unsigned integers, reverting on
	 * overflow.
	 *
	 * Counterpart to Solidity's `*` operator.
	 *
	 * Requirements:
	 * - Multiplication cannot overflow.
	 */
	function mul(uint256 a, uint256 b) internal pure returns (uint256) {
		// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
		// benefit is lost if 'b' is also tested.
		// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
		if (a == 0) {
			return 0;
		}

		uint256 c = a * b;
		require(c / a == b, "SafeMath: multiplication overflow");

		return c;
	}

	/**
	 * @dev Returns the integer division of two unsigned integers. Reverts on
	 * division by zero. The result is rounded towards zero.
	 *
	 * Counterpart to Solidity's `/` operator. Note: this function uses a
	 * `revert` opcode (which leaves remaining gas untouched) while Solidity
	 * uses an invalid opcode to revert (consuming all remaining gas).
	 *
	 * Requirements:
	 * - The divisor cannot be zero.
	 */
	function div(uint256 a, uint256 b) internal pure returns (uint256) {
		return div(a, b, "SafeMath: division by zero");
	}

	/**
	 * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
	 * division by zero. The result is rounded towards zero.
	 *
	 * Counterpart to Solidity's `/` operator. Note: this function uses a
	 * `revert` opcode (which leaves remaining gas untouched) while Solidity
	 * uses an invalid opcode to revert (consuming all remaining gas).
	 *
	 * Requirements:
	 * - The divisor cannot be zero.
	 *
	 * _Available since v2.4.0._
	 */
	function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
		// Solidity only automatically asserts when dividing by 0
		require(b > 0, errorMessage);
		uint256 c = a / b;
		// assert(a == b * c + a % b); // There is no case in which this doesn't hold

		return c;
	}

	/**
	 * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
	 * Reverts when dividing by zero.
	 *
	 * Counterpart to Solidity's `%` operator. This function uses a `revert`
	 * opcode (which leaves remaining gas untouched) while Solidity uses an
	 * invalid opcode to revert (consuming all remaining gas).
	 *
	 * Requirements:
	 * - The divisor cannot be zero.
	 */
	function mod(uint256 a, uint256 b) internal pure returns (uint256) {
		return mod(a, b, "SafeMath: modulo by zero");
	}

	/**
	 * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
	 * Reverts with custom message when dividing by zero.
	 *
	 * Counterpart to Solidity's `%` operator. This function uses a `revert`
	 * opcode (which leaves remaining gas untouched) while Solidity uses an
	 * invalid opcode to revert (consuming all remaining gas).
	 *
	 * Requirements:
	 * - The divisor cannot be zero.
	 *
	 * _Available since v2.4.0._
	 */
	function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
		require(b != 0, errorMessage);
		return a % b;
	}
}

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20Mintable}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20 {
    using SafeMath for uint256;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20};
     *
     * Requirements:
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for `sender`'s tokens of at least
     * `amount`.
     */
    function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal {
        require(account != address(0), "ERC20: mint to the zero address");

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal {
        require(account != address(0), "ERC20: burn from the zero address");

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
     *
     * This is internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`.`amount` is then deducted
     * from the caller's allowance.
     *
     * See {_burn} and {_approve}.
     */
    function _burnFrom(address account, uint256 amount) internal {
        _burn(account, amount);
        _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance"));
    }
}

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
contract ERC20Burnable is Context, ERC20 {
    /**
     * @dev Destroys `amount` tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 amount) public {
        _burn(_msgSender(), amount);
    }

    /**
     * @dev See {ERC20-_burnFrom}.
     */
    function burnFrom(address account, uint256 amount) public {
        _burnFrom(account, amount);
    }
}

/**
 * @dev Optional functions from the ERC20 standard.
 */
contract ERC20Detailed is ERC20 {
	string private _name;
	string private _symbol;
	uint8 private _decimals;

	/**
	 * @dev Sets the values for `name`, `symbol`, and `decimals`. All three of
	 * these values are immutable: they can only be set once during
	 * construction.
	 */
	constructor (string memory name, string memory symbol, uint8 decimals) internal {
		_name = name;
		_symbol = symbol;
		_decimals = decimals;
	}

	/**
	 * @dev Returns the name of the token.
	 */
	function name() public view returns (string memory) {
		return _name;
	}

	/**
	 * @dev Returns the symbol of the token, usually a shorter version of the
	 * name.
	 */
	function symbol() public view returns (string memory) {
		return _symbol;
	}

	/**
	 * @dev Returns the number of decimals used to get its user representation.
	 * For example, if `decimals` equals `2`, a balance of `505` tokens should
	 * be displayed to a user as `5,05` (`505 / 10 ** 2`).
	 *
	 * Tokens usually opt for a value of 18, imitating the relationship between
	 * Ether and Wei.
	 *
	 * NOTE: This information is only used for _display_ purposes: it in
	 * no way affects any of the arithmetic of the contract, including
	 * {IERC20-balanceOf} and {IERC20-transfer}.
	 */
	function decimals() public view returns (uint8) {
		return _decimals;
	}
}

/**
 * @dev Digital crypto asset of MyCryptoViewToken (MCV) token
 */
contract MyCryptoViewToken is ERC20Burnable, ERC20Detailed {
	constructor () public ERC20Detailed("MyCryptoview.com token", "MCV", 18) {
		_mint(_msgSender(), 1000000000 ether); // 1 billion MCV tokens
	}
}
设置
{
  "compilationTarget": {
    "MyCryptoViewToken.sol": "MyCryptoViewToken"
  },
  "evmVersion": "byzantium",
  "libraries": {},
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "remappings": []
}
ABI
[{"constant":true,"inputs":[],"name":"name","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"spender","type":"address"},{"name":"amount","type":"uint256"}],"name":"approve","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"totalSupply","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"sender","type":"address"},{"name":"recipient","type":"address"},{"name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"decimals","outputs":[{"name":"","type":"uint8"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"spender","type":"address"},{"name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"amount","type":"uint256"}],"name":"burn","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"name":"account","type":"address"}],"name":"balanceOf","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"account","type":"address"},{"name":"amount","type":"uint256"}],"name":"burnFrom","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"symbol","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"spender","type":"address"},{"name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"recipient","type":"address"},{"name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"name":"owner","type":"address"},{"name":"spender","type":"address"}],"name":"allowance","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"name":"from","type":"address"},{"indexed":true,"name":"to","type":"address"},{"indexed":false,"name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"owner","type":"address"},{"indexed":true,"name":"spender","type":"address"},{"indexed":false,"name":"value","type":"uint256"}],"name":"Approval","type":"event"}]