// Modified for use with SYNC, modifications not made by Zapper
// Copyright (C) 2020 zapper, nodar, suhail, seb, sumit, apoorv
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
///@author Zapper
///@notice This contract adds liquidity to Uniswap V2 pools using ETH or any ERC20 Token.
// SPDX-License-Identifier: GPLv2
pragma solidity ^0.6.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see {ERC20Detailed}.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount)
external
returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender)
external
view
returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*
* _Available since v2.4.0._
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash
= 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly {
codehash := extcodehash(account)
}
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Converts an `address` into `address payable`. Note that this is
* simply a type cast: the actual underlying value is not changed.
*
* _Available since v2.4.0._
*/
function toPayable(address account)
internal
pure
returns (address payable)
{
return address(uint160(account));
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*
* _Available since v2.4.0._
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(
address(this).balance >= amount,
"Address: insufficient balance"
);
// solhint-disable-next-line avoid-call-value
(bool success, ) = recipient.call.value(amount)("");
require(
success,
"Address: unable to send value, recipient may have reverted"
);
}
}
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
callOptionalReturn(
token,
abi.encodeWithSelector(token.transfer.selector, to, value)
);
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
callOptionalReturn(
token,
abi.encodeWithSelector(token.transferFrom.selector, from, to, value)
);
}
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(
token,
abi.encodeWithSelector(token.approve.selector, spender, value)
);
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(
value
);
callOptionalReturn(
token,
abi.encodeWithSelector(
token.approve.selector,
spender,
newAllowance
)
);
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(
value,
"SafeERC20: decreased allowance below zero"
);
callOptionalReturn(
token,
abi.encodeWithSelector(
token.approve.selector,
spender,
newAllowance
)
);
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves.
// A Solidity high level call has three parts:
// 1. The target address is checked to verify it contains contract code
// 2. The call itself is made, and success asserted
// 3. The return value is decoded, which in turn checks the size of the returned data.
// solhint-disable-next-line max-line-length
require(address(token).isContract(), "SafeERC20: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
// solhint-disable-next-line max-line-length
require(
abi.decode(returndata, (bool)),
"SafeERC20: ERC20 operation did not succeed"
);
}
}
}
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* _Since v2.5.0:_ this module is now much more gas efficient, given net gas
* metering changes introduced in the Istanbul hardfork.
*/
contract ReentrancyGuard {
bool private _notEntered;
constructor() internal {
// Storing an initial non-zero value makes deployment a bit more
// expensive, but in exchange the refund on every call to nonReentrant
// will be lower in amount. Since refunds are capped to a percetange of
// the total transaction's gas, it is best to keep them low in cases
// like this one, to increase the likelihood of the full refund coming
// into effect.
_notEntered = true;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_notEntered, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_notEntered = false;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_notEntered = true;
}
}
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
contract Context {
// Empty internal constructor, to prevent people from mistakenly deploying
// an instance of this contract, which should be used via inheritance.
constructor() internal {}
// solhint-disable-previous-line no-empty-blocks
function _msgSender() internal view returns (address payable) {
return msg.sender;
}
function _msgData() internal view returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address payable public _owner;
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() internal {
address payable msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(isOwner(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Returns true if the caller is the current owner.
*/
function isOwner() public view returns (bool) {
return _msgSender() == _owner;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address payable newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
*/
function _transferOwnership(address payable newOwner) internal {
require(
newOwner != address(0),
"Ownable: new owner is the zero address"
);
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// import "@uniswap/lib/contracts/libraries/Babylonian.sol";
library Babylonian {
function sqrt(uint256 y) internal pure returns (uint256 z) {
if (y > 3) {
z = y;
uint256 x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
// else z = 0
}
}
interface IWETH {
function deposit() external payable;
function transfer(address to, uint256 value) external returns (bool);
function withdraw(uint256) external;
}
interface IUniswapV2Factory {
function getPair(address tokenA, address tokenB)
external
view
returns (address);
}
interface IUniswapV2Router02 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint256 amountADesired,
uint256 amountBDesired,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
)
external
returns (
uint256 amountA,
uint256 amountB,
uint256 liquidity
);
function addLiquidityETH(
address token,
uint256 amountTokenDesired,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
)
external
payable
returns (
uint256 amountToken,
uint256 amountETH,
uint256 liquidity
);
function removeLiquidity(
address tokenA,
address tokenB,
uint256 liquidity,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
) external returns (uint256 amountA, uint256 amountB);
function removeLiquidityETH(
address token,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external returns (uint256 amountToken, uint256 amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint256 liquidity,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline,
bool approveMax,
uint8 v,
bytes32 r,
bytes32 s
) external returns (uint256 amountA, uint256 amountB);
function removeLiquidityETHWithPermit(
address token,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline,
bool approveMax,
uint8 v,
bytes32 r,
bytes32 s
) external returns (uint256 amountToken, uint256 amountETH);
function swapExactTokensForTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapTokensForExactTokens(
uint256 amountOut,
uint256 amountInMax,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapExactETHForTokens(
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external payable returns (uint256[] memory amounts);
function swapTokensForExactETH(
uint256 amountOut,
uint256 amountInMax,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapExactTokensForETH(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapETHForExactTokens(
uint256 amountOut,
address[] calldata path,
address to,
uint256 deadline
) external payable returns (uint256[] memory amounts);
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external returns (uint256 amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline,
bool approveMax,
uint8 v,
bytes32 r,
bytes32 s
) external returns (uint256 amountETH);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external;
function quote(
uint256 amountA,
uint256 reserveA,
uint256 reserveB
) external pure returns (uint256 amountB);
function getAmountOut(
uint256 amountIn,
uint256 reserveIn,
uint256 reserveOut
) external pure returns (uint256 amountOut);
function getAmountIn(
uint256 amountOut,
uint256 reserveIn,
uint256 reserveOut
) external pure returns (uint256 amountIn);
function getAmountsOut(uint256 amountIn, address[] calldata path)
external
view
returns (uint256[] memory amounts);
function getAmountsIn(uint256 amountOut, address[] calldata path)
external
view
returns (uint256[] memory amounts);
}
interface IUniswapV2Pair {
function token0() external pure returns (address);
function token1() external pure returns (address);
function getReserves()
external
view
returns (
uint112 _reserve0,
uint112 _reserve1,
uint32 _blockTimestampLast
);
}
contract ZapInModified is ReentrancyGuard, Ownable {
using SafeMath for uint256;
using Address for address;
using SafeERC20 for IERC20;
bool public stopped = false;
IUniswapV2Router02 private constant uniswapRouter = IUniswapV2Router02(
0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
);
IUniswapV2Factory
private constant UniSwapV2FactoryAddress = IUniswapV2Factory(
0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f
);
address
private wethTokenAddress;
uint256
private constant deadline = 0xf000000000000000000000000000000000000000000000000000000000000000;
constructor() public {
wethTokenAddress=uniswapRouter.WETH();
}
// circuit breaker modifiers
modifier stopInEmergency {
if (stopped) {
revert("Temporarily Paused");
} else {
_;
}
}
/**
@notice This function is used to invest in given Uniswap V2 pair through ETH/ERC20 Tokens
@param _FromTokenContractAddress The ERC20 token used for investment (address(0x00) if ether)
@param _ToUnipoolToken0 The Uniswap V2 pair token0 address
@param _ToUnipoolToken1 The Uniswap V2 pair token1 address
@param _amount The amount of fromToken to invest
@param _minPoolTokens Reverts if less tokens received than this
@return Amount of LP bought
*/
function ZapIn(
address _toWhomToIssue,
address _FromTokenContractAddress,
address _ToUnipoolToken0,
address _ToUnipoolToken1,
uint256 _amount,
uint256 _minPoolTokens
) public payable nonReentrant stopInEmergency returns (uint256) {
uint256 toInvest;
if (_FromTokenContractAddress == address(0)) {
require(msg.value > 0, "Error: ETH not sent");
toInvest = msg.value;
} else {
require(msg.value == 0, "Error: ETH sent");
require(_amount > 0, "Error: Invalid ERC amount");
IERC20(_FromTokenContractAddress).safeTransferFrom(
msg.sender,
address(this),
_amount
);
toInvest = _amount;
}
uint256 LPBought = _performZapIn(
_toWhomToIssue,
_FromTokenContractAddress,
_ToUnipoolToken0,
_ToUnipoolToken1,
toInvest
);
require(LPBought >= _minPoolTokens, "ERR: High Slippage");
//get pair address
address _ToUniPoolAddress = UniSwapV2FactoryAddress.getPair(
_ToUnipoolToken0,
_ToUnipoolToken1
);
IERC20(_ToUniPoolAddress).safeTransfer(
_toWhomToIssue,
LPBought
);
return LPBought;
}
event DebugZap(uint256 ethToTrade,uint256 tokens0,uint256 tokens1,uint256 liquidityObtained);
function _performZapIn(
address _toWhomToIssue,
address _FromTokenContractAddress,
address _ToUnipoolToken0,
address _ToUnipoolToken1,
uint256 _amount
) internal returns (uint256) {
address intermediate = _getIntermediate(
_FromTokenContractAddress,
_amount,
_ToUnipoolToken0,
_ToUnipoolToken1
);
// swap to intermediate
uint256 interAmt = _token2Token(
_FromTokenContractAddress,
intermediate,
_amount
);
// divide to swap in amounts
uint256 token0Bought;
uint256 token1Bought;
IUniswapV2Pair pair = IUniswapV2Pair(
UniSwapV2FactoryAddress.getPair(_ToUnipoolToken0, _ToUnipoolToken1)
);
(uint256 res0, uint256 res1, ) = pair.getReserves();
uint256 amountToSwap;
if (intermediate == _ToUnipoolToken0) {
amountToSwap = calculateSwapInAmount(res0, interAmt);
//if no reserve or a new pair is created
if (amountToSwap <= 0) amountToSwap = interAmt.div(2);
token1Bought = _token2Token(
intermediate,
_ToUnipoolToken1,
amountToSwap
);
token0Bought = interAmt.sub(amountToSwap);
} else {
amountToSwap = calculateSwapInAmount(res1, interAmt);
//if no reserve or a new pair is created
if (amountToSwap <= 0) amountToSwap = interAmt.div(2);
token0Bought = _token2Token(
intermediate,
_ToUnipoolToken0,
amountToSwap
);
token1Bought = interAmt.sub(amountToSwap);
}
uint256 lobt=_uniDeposit(
_toWhomToIssue,
_ToUnipoolToken0,
_ToUnipoolToken1,
token0Bought,
token1Bought
);
emit DebugZap(amountToSwap,token0Bought,token1Bought,lobt);
return
lobt;
}
function _uniDeposit(
address _toWhomToIssue,
address _ToUnipoolToken0,
address _ToUnipoolToken1,
uint256 token0Bought,
uint256 token1Bought
) internal returns (uint256) {
IERC20(_ToUnipoolToken0).safeApprove(
address(uniswapRouter),
token0Bought
);
IERC20(_ToUnipoolToken1).safeApprove(
address(uniswapRouter),
token1Bought
);
(uint256 amountA, uint256 amountB, uint256 LP) = uniswapRouter
.addLiquidity(
_ToUnipoolToken0,
_ToUnipoolToken1,
token0Bought,
token1Bought,
1,
1,
address(this),
deadline
);
IERC20(_ToUnipoolToken0).safeApprove(
address(uniswapRouter),
0
);
IERC20(_ToUnipoolToken1).safeApprove(
address(uniswapRouter),
0
);
//Returning Residue in token0, if any.
if (token0Bought.sub(amountA) > 0) {
IERC20(_ToUnipoolToken0).safeTransfer(
_toWhomToIssue,
token0Bought.sub(amountA)
);
}
//Returning Residue in token1, if any
if (token1Bought.sub(amountB) > 0) {
IERC20(_ToUnipoolToken1).safeTransfer(
_toWhomToIssue,
token1Bought.sub(amountB)
);
}
return LP;
}
function _getIntermediate(
address _FromTokenContractAddress,
uint256 _amount,
address _ToUnipoolToken0,
address _ToUnipoolToken1
) internal view returns (address) {
// set from to weth for eth input
if (_FromTokenContractAddress == address(0)) {
_FromTokenContractAddress = wethTokenAddress;
}
if (_FromTokenContractAddress == _ToUnipoolToken0) {
return _ToUnipoolToken0;
} else if (_FromTokenContractAddress == _ToUnipoolToken1) {
return _ToUnipoolToken1;
} else if(_ToUnipoolToken0 == wethTokenAddress || _ToUnipoolToken1 == wethTokenAddress) {
return wethTokenAddress;
} else {
IUniswapV2Pair pair = IUniswapV2Pair(
UniSwapV2FactoryAddress.getPair(
_ToUnipoolToken0,
_ToUnipoolToken1
)
);
(uint256 res0, uint256 res1, ) = pair.getReserves();
uint256 ratio;
bool isToken0Numerator;
if (res0 >= res1) {
ratio = res0 / res1;
isToken0Numerator = true;
} else {
ratio = res1 / res0;
}
//find outputs on swap
uint256 output0 = _calculateSwapOutput(
_FromTokenContractAddress,
_amount,
_ToUnipoolToken0
);
uint256 output1 = _calculateSwapOutput(
_FromTokenContractAddress,
_amount,
_ToUnipoolToken1
);
if (isToken0Numerator) {
if (output1 * ratio >= output0) return _ToUnipoolToken1;
else return _ToUnipoolToken0;
} else {
if (output0 * ratio >= output1) return _ToUnipoolToken0;
else return _ToUnipoolToken1;
}
}
}
function _calculateSwapOutput(
address _from,
uint256 _amt,
address _to
) internal view returns (uint256) {
// check output via tokenA -> tokenB
address pairA = UniSwapV2FactoryAddress.getPair(_from, _to);
uint256 amtA;
if (pairA != address(0)) {
address[] memory pathA = new address[](2);
pathA[0] = _from;
pathA[1] = _to;
amtA = uniswapRouter.getAmountsOut(_amt, pathA)[1];
}
uint256 amtB;
// check output via tokenA -> weth -> tokenB
if ((_from != wethTokenAddress) && _to != wethTokenAddress) {
address[] memory pathB = new address[](3);
pathB[0] = _from;
pathB[1] = wethTokenAddress;
pathB[2] = _to;
amtB = uniswapRouter.getAmountsOut(_amt, pathB)[2];
}
if (amtA >= amtB) {
return amtA;
} else {
return amtB;
}
}
/*
*/
function zapInSimple(
address _lptaddress,
uint256 _minPoolTokens
) public payable{
IUniswapV2Pair pair = IUniswapV2Pair(_lptaddress);
ZapIn(
msg.sender,
address(0),
pair.token0(),
pair.token1(),
0,
_minPoolTokens
);
}
/*
Calculates the value to put in for minpooltokens. Should not be used in the same transaction as zapIn. Slippage as a fraction of 10000 (1% -> 100, 15% -> 1500, etc.).
*/
function calculateMinPoolTokens(
address _pair,
uint256 _amount,
uint256 _slippage) external view returns(uint256){
uint256 numTokens=getResultingTokens(_pair,_amount);
return numTokens.sub(numTokens.mul(_slippage).div(10000));
}
function getResultingTokens(
address _pair,
uint256 _amount) public view returns(uint256){
IUniswapV2Pair pair = IUniswapV2Pair(
_pair//UniSwapV2FactoryAddress.getPair(_ToUnipoolToken0, _ToUnipoolToken1)
);
address intermediate = _getIntermediate(
address(0),
_amount,
pair.token0(),
pair.token1()
);
uint256 interAmount=_amount;
if(intermediate != wethTokenAddress){
IUniswapV2Pair pairUpstream = IUniswapV2Pair(
UniSwapV2FactoryAddress.getPair(wethTokenAddress, intermediate)
);
(uint256 resu0, uint256 resu1, ) = pairUpstream.getReserves();
interAmount=uniswapRouter.getAmountOut(
_amount,
pairUpstream.token0()==wethTokenAddress ? resu0 : resu1,
pairUpstream.token0()==wethTokenAddress ? resu1 : resu0
);
}
(uint256 res0, uint256 res1, ) = pair.getReserves();
if(pair.token0()==intermediate){
uint256 toSwapAmount=calculateSwapInAmount(res0, interAmount);
return getTokensAcquired(res0,IERC20(address(pair)).totalSupply(),interAmount.sub(toSwapAmount));
}
else{
uint256 toSwapAmount=calculateSwapInAmount(res1, interAmount);
return getTokensAcquired(res1,IERC20(address(pair)).totalSupply(),interAmount.sub(toSwapAmount));
}
}
function getTokensAcquired(uint256 reserve,uint256 totalSupply,uint256 amount) public view returns(uint256){
return totalSupply.mul(amount).div(reserve.add(amount));
}
function calculateSwapInAmount(uint256 reserveIn, uint256 userIn)
public
pure
returns (uint256)
{
return
Babylonian
.sqrt(
reserveIn.mul(userIn.mul(3988000) + reserveIn.mul(3988009))
)
.sub(reserveIn.mul(1997)) / 1994;
}
event DebugTokenSwap(address from, address to,uint256 totrade,uint256 bought);
/**
@notice This function is used to swap ETH/ERC20 <> ETH/ERC20
@param _FromTokenContractAddress The token address to swap from. (0x00 for ETH)
@param _ToTokenContractAddress The token address to swap to. (0x00 for ETH)
@param tokens2Trade The amount of tokens to swap
@return tokenBought The quantity of tokens bought
*/
function _token2Token(
address _FromTokenContractAddress,
address _ToTokenContractAddress,
uint256 tokens2Trade
) internal returns (uint256 tokenBought) {
if (_FromTokenContractAddress == _ToTokenContractAddress) {
return tokens2Trade;
}
if (_FromTokenContractAddress == address(0)) {
if (_ToTokenContractAddress == wethTokenAddress) {
IWETH(wethTokenAddress).deposit.value(tokens2Trade)();
return tokens2Trade;
}
address[] memory path = new address[](2);
path[0] = wethTokenAddress;
path[1] = _ToTokenContractAddress;
tokenBought = uniswapRouter.swapExactETHForTokens.value(
tokens2Trade
)(1, path, address(this), deadline)[path.length - 1];
} else if (_ToTokenContractAddress == address(0)) {
if (_FromTokenContractAddress == wethTokenAddress) {
IWETH(wethTokenAddress).withdraw(tokens2Trade);
return tokens2Trade;
}
IERC20(_FromTokenContractAddress).safeApprove(
address(uniswapRouter),
tokens2Trade
);
address[] memory path = new address[](2);
path[0] = _FromTokenContractAddress;
path[1] = wethTokenAddress;
tokenBought = uniswapRouter.swapExactTokensForETH(
tokens2Trade,
1,
path,
address(this),
deadline
)[path.length - 1];
} else {
IERC20(_FromTokenContractAddress).safeApprove(
address(uniswapRouter),
tokens2Trade
);
if (_FromTokenContractAddress != wethTokenAddress) {
if (_ToTokenContractAddress != wethTokenAddress) {
// check output via tokenA -> tokenB
address pairA = UniSwapV2FactoryAddress.getPair(
_FromTokenContractAddress,
_ToTokenContractAddress
);
address[] memory pathA = new address[](2);
pathA[0] = _FromTokenContractAddress;
pathA[1] = _ToTokenContractAddress;
uint256 amtA;
if (pairA != address(0)) {
amtA = uniswapRouter.getAmountsOut(
tokens2Trade,
pathA
)[1];
}
// check output via tokenA -> weth -> tokenB
address[] memory pathB = new address[](3);
pathB[0] = _FromTokenContractAddress;
pathB[1] = wethTokenAddress;
pathB[2] = _ToTokenContractAddress;
uint256 amtB = uniswapRouter.getAmountsOut(
tokens2Trade,
pathB
)[2];
if (amtA >= amtB) {
tokenBought = uniswapRouter.swapExactTokensForTokens(
tokens2Trade,
1,
pathA,
address(this),
deadline
)[pathA.length - 1];
} else {
tokenBought = uniswapRouter.swapExactTokensForTokens(
tokens2Trade,
1,
pathB,
address(this),
deadline
)[pathB.length - 1];
}
} else {
address[] memory path = new address[](2);
path[0] = _FromTokenContractAddress;
path[1] = wethTokenAddress;
tokenBought = uniswapRouter.swapExactTokensForTokens(
tokens2Trade,
1,
path,
address(this),
deadline
)[path.length - 1];
}
} else {
address[] memory path = new address[](2);
path[0] = wethTokenAddress;
path[1] = _ToTokenContractAddress;
tokenBought = uniswapRouter.swapExactTokensForTokens(
tokens2Trade,
1,
path,
address(this),
deadline
)[path.length - 1];
}
}
require(tokenBought > 0, "Error Swapping Tokens");
emit DebugTokenSwap(_FromTokenContractAddress, _ToTokenContractAddress,tokens2Trade,tokenBought);
}
function inCaseTokengetsStuck(IERC20 _TokenAddress) public onlyOwner {
uint256 qty = _TokenAddress.balanceOf(address(this));
_TokenAddress.safeTransfer(owner(), qty);
}
// - to Pause the contract
function toggleContractActive() public onlyOwner {
stopped = !stopped;
}
// - to withdraw any ETH balance sitting in the contract
function withdraw() public onlyOwner {
uint256 contractBalance = address(this).balance;
address payable _to = owner().toPayable();
_to.transfer(contractBalance);
}
}
{
"compilationTarget": {
"ZapInModified.sol": "ZapInModified"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"totrade","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"bought","type":"uint256"}],"name":"DebugTokenSwap","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"ethToTrade","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokens0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokens1","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"liquidityObtained","type":"uint256"}],"name":"DebugZap","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[{"internalType":"address","name":"_toWhomToIssue","type":"address"},{"internalType":"address","name":"_FromTokenContractAddress","type":"address"},{"internalType":"address","name":"_ToUnipoolToken0","type":"address"},{"internalType":"address","name":"_ToUnipoolToken1","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_minPoolTokens","type":"uint256"}],"name":"ZapIn","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"_owner","outputs":[{"internalType":"address payable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_pair","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_slippage","type":"uint256"}],"name":"calculateMinPoolTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"reserveIn","type":"uint256"},{"internalType":"uint256","name":"userIn","type":"uint256"}],"name":"calculateSwapInAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"_pair","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"getResultingTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"reserve","type":"uint256"},{"internalType":"uint256","name":"totalSupply","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"getTokensAcquired","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"_TokenAddress","type":"address"}],"name":"inCaseTokengetsStuck","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isOwner","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stopped","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"toggleContractActive","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_lptaddress","type":"address"},{"internalType":"uint256","name":"_minPoolTokens","type":"uint256"}],"name":"zapInSimple","outputs":[],"stateMutability":"payable","type":"function"}]