编译器
0.8.17+commit.8df45f5f
文件 1 的 32:ABDKMath64x64.sol
pragma solidity ^0.8.0;
library ABDKMath64x64 {
int128 private constant MIN_64x64 = -0x80000000000000000000000000000000;
int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
function fromInt (int256 x) internal pure returns (int128) {
unchecked {
require (x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF);
return int128 (x << 64);
}
}
function toInt (int128 x) internal pure returns (int64) {
unchecked {
return int64 (x >> 64);
}
}
function fromUInt (uint256 x) internal pure returns (int128) {
unchecked {
require (x <= 0x7FFFFFFFFFFFFFFF);
return int128 (int256 (x << 64));
}
}
function toUInt (int128 x) internal pure returns (uint64) {
unchecked {
require (x >= 0);
return uint64 (uint128 (x >> 64));
}
}
function from128x128 (int256 x) internal pure returns (int128) {
unchecked {
int256 result = x >> 64;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
}
function to128x128 (int128 x) internal pure returns (int256) {
unchecked {
return int256 (x) << 64;
}
}
function add (int128 x, int128 y) internal pure returns (int128) {
unchecked {
int256 result = int256(x) + y;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
}
function sub (int128 x, int128 y) internal pure returns (int128) {
unchecked {
int256 result = int256(x) - y;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
}
function mul (int128 x, int128 y) internal pure returns (int128) {
unchecked {
int256 result = int256(x) * y >> 64;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
}
function muli (int128 x, int256 y) internal pure returns (int256) {
unchecked {
if (x == MIN_64x64) {
require (y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF &&
y <= 0x1000000000000000000000000000000000000000000000000);
return -y << 63;
} else {
bool negativeResult = false;
if (x < 0) {
x = -x;
negativeResult = true;
}
if (y < 0) {
y = -y;
negativeResult = !negativeResult;
}
uint256 absoluteResult = mulu (x, uint256 (y));
if (negativeResult) {
require (absoluteResult <=
0x8000000000000000000000000000000000000000000000000000000000000000);
return -int256 (absoluteResult);
} else {
require (absoluteResult <=
0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int256 (absoluteResult);
}
}
}
}
function mulu (int128 x, uint256 y) internal pure returns (uint256) {
unchecked {
if (y == 0) return 0;
require (x >= 0);
uint256 lo = (uint256 (int256 (x)) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64;
uint256 hi = uint256 (int256 (x)) * (y >> 128);
require (hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
hi <<= 64;
require (hi <=
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo);
return hi + lo;
}
}
function div (int128 x, int128 y) internal pure returns (int128) {
unchecked {
require (y != 0);
int256 result = (int256 (x) << 64) / y;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
}
function divi (int256 x, int256 y) internal pure returns (int128) {
unchecked {
require (y != 0);
bool negativeResult = false;
if (x < 0) {
x = -x;
negativeResult = true;
}
if (y < 0) {
y = -y;
negativeResult = !negativeResult;
}
uint128 absoluteResult = divuu (uint256 (x), uint256 (y));
if (negativeResult) {
require (absoluteResult <= 0x80000000000000000000000000000000);
return -int128 (absoluteResult);
} else {
require (absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int128 (absoluteResult);
}
}
}
function divu (uint256 x, uint256 y) internal pure returns (int128) {
unchecked {
require (y != 0);
uint128 result = divuu (x, y);
require (result <= uint128 (MAX_64x64));
return int128 (result);
}
}
function neg (int128 x) internal pure returns (int128) {
unchecked {
require (x != MIN_64x64);
return -x;
}
}
function abs (int128 x) internal pure returns (int128) {
unchecked {
require (x != MIN_64x64);
return x < 0 ? -x : x;
}
}
function inv (int128 x) internal pure returns (int128) {
unchecked {
require (x != 0);
int256 result = int256 (0x100000000000000000000000000000000) / x;
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
}
function avg (int128 x, int128 y) internal pure returns (int128) {
unchecked {
return int128 ((int256 (x) + int256 (y)) >> 1);
}
}
function gavg (int128 x, int128 y) internal pure returns (int128) {
unchecked {
int256 m = int256 (x) * int256 (y);
require (m >= 0);
require (m <
0x4000000000000000000000000000000000000000000000000000000000000000);
return int128 (sqrtu (uint256 (m)));
}
}
function pow (int128 x, uint256 y) internal pure returns (int128) {
unchecked {
bool negative = x < 0 && y & 1 == 1;
uint256 absX = uint128 (x < 0 ? -x : x);
uint256 absResult;
absResult = 0x100000000000000000000000000000000;
if (absX <= 0x10000000000000000) {
absX <<= 63;
while (y != 0) {
if (y & 0x1 != 0) {
absResult = absResult * absX >> 127;
}
absX = absX * absX >> 127;
if (y & 0x2 != 0) {
absResult = absResult * absX >> 127;
}
absX = absX * absX >> 127;
if (y & 0x4 != 0) {
absResult = absResult * absX >> 127;
}
absX = absX * absX >> 127;
if (y & 0x8 != 0) {
absResult = absResult * absX >> 127;
}
absX = absX * absX >> 127;
y >>= 4;
}
absResult >>= 64;
} else {
uint256 absXShift = 63;
if (absX < 0x1000000000000000000000000) { absX <<= 32; absXShift -= 32; }
if (absX < 0x10000000000000000000000000000) { absX <<= 16; absXShift -= 16; }
if (absX < 0x1000000000000000000000000000000) { absX <<= 8; absXShift -= 8; }
if (absX < 0x10000000000000000000000000000000) { absX <<= 4; absXShift -= 4; }
if (absX < 0x40000000000000000000000000000000) { absX <<= 2; absXShift -= 2; }
if (absX < 0x80000000000000000000000000000000) { absX <<= 1; absXShift -= 1; }
uint256 resultShift = 0;
while (y != 0) {
require (absXShift < 64);
if (y & 0x1 != 0) {
absResult = absResult * absX >> 127;
resultShift += absXShift;
if (absResult > 0x100000000000000000000000000000000) {
absResult >>= 1;
resultShift += 1;
}
}
absX = absX * absX >> 127;
absXShift <<= 1;
if (absX >= 0x100000000000000000000000000000000) {
absX >>= 1;
absXShift += 1;
}
y >>= 1;
}
require (resultShift < 64);
absResult >>= 64 - resultShift;
}
int256 result = negative ? -int256 (absResult) : int256 (absResult);
require (result >= MIN_64x64 && result <= MAX_64x64);
return int128 (result);
}
}
function sqrt (int128 x) internal pure returns (int128) {
unchecked {
require (x >= 0);
return int128 (sqrtu (uint256 (int256 (x)) << 64));
}
}
function log_2 (int128 x) internal pure returns (int128) {
unchecked {
require (x > 0);
int256 msb = 0;
int256 xc = x;
if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; }
if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
if (xc >= 0x10000) { xc >>= 16; msb += 16; }
if (xc >= 0x100) { xc >>= 8; msb += 8; }
if (xc >= 0x10) { xc >>= 4; msb += 4; }
if (xc >= 0x4) { xc >>= 2; msb += 2; }
if (xc >= 0x2) msb += 1;
int256 result = msb - 64 << 64;
uint256 ux = uint256 (int256 (x)) << uint256 (127 - msb);
for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) {
ux *= ux;
uint256 b = ux >> 255;
ux >>= 127 + b;
result += bit * int256 (b);
}
return int128 (result);
}
}
function ln (int128 x) internal pure returns (int128) {
unchecked {
require (x > 0);
return int128 (int256 (
uint256 (int256 (log_2 (x))) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF >> 128));
}
}
function exp_2 (int128 x) internal pure returns (int128) {
unchecked {
require (x < 0x400000000000000000);
if (x < -0x400000000000000000) return 0;
uint256 result = 0x80000000000000000000000000000000;
if (x & 0x8000000000000000 > 0)
result = result * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
if (x & 0x4000000000000000 > 0)
result = result * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
if (x & 0x2000000000000000 > 0)
result = result * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
if (x & 0x1000000000000000 > 0)
result = result * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
if (x & 0x800000000000000 > 0)
result = result * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
if (x & 0x400000000000000 > 0)
result = result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
if (x & 0x200000000000000 > 0)
result = result * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
if (x & 0x100000000000000 > 0)
result = result * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
if (x & 0x80000000000000 > 0)
result = result * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
if (x & 0x40000000000000 > 0)
result = result * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
if (x & 0x20000000000000 > 0)
result = result * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
if (x & 0x10000000000000 > 0)
result = result * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
if (x & 0x8000000000000 > 0)
result = result * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
if (x & 0x4000000000000 > 0)
result = result * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
if (x & 0x2000000000000 > 0)
result = result * 0x1000162E525EE054754457D5995292026 >> 128;
if (x & 0x1000000000000 > 0)
result = result * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
if (x & 0x800000000000 > 0)
result = result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
if (x & 0x400000000000 > 0)
result = result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
if (x & 0x200000000000 > 0)
result = result * 0x10000162E43F4F831060E02D839A9D16D >> 128;
if (x & 0x100000000000 > 0)
result = result * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
if (x & 0x80000000000 > 0)
result = result * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
if (x & 0x40000000000 > 0)
result = result * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
if (x & 0x20000000000 > 0)
result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
if (x & 0x10000000000 > 0)
result = result * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
if (x & 0x8000000000 > 0)
result = result * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
if (x & 0x4000000000 > 0)
result = result * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
if (x & 0x2000000000 > 0)
result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
if (x & 0x1000000000 > 0)
result = result * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
if (x & 0x800000000 > 0)
result = result * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
if (x & 0x400000000 > 0)
result = result * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
if (x & 0x200000000 > 0)
result = result * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
if (x & 0x100000000 > 0)
result = result * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
if (x & 0x80000000 > 0)
result = result * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
if (x & 0x40000000 > 0)
result = result * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
if (x & 0x20000000 > 0)
result = result * 0x100000000162E42FEFB2FED257559BDAA >> 128;
if (x & 0x10000000 > 0)
result = result * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
if (x & 0x8000000 > 0)
result = result * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
if (x & 0x4000000 > 0)
result = result * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
if (x & 0x2000000 > 0)
result = result * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
if (x & 0x1000000 > 0)
result = result * 0x10000000000B17217F7D20CF927C8E94C >> 128;
if (x & 0x800000 > 0)
result = result * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
if (x & 0x400000 > 0)
result = result * 0x100000000002C5C85FDF477B662B26945 >> 128;
if (x & 0x200000 > 0)
result = result * 0x10000000000162E42FEFA3AE53369388C >> 128;
if (x & 0x100000 > 0)
result = result * 0x100000000000B17217F7D1D351A389D40 >> 128;
if (x & 0x80000 > 0)
result = result * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
if (x & 0x40000 > 0)
result = result * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
if (x & 0x20000 > 0)
result = result * 0x100000000000162E42FEFA39FE95583C2 >> 128;
if (x & 0x10000 > 0)
result = result * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
if (x & 0x8000 > 0)
result = result * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
if (x & 0x4000 > 0)
result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128;
if (x & 0x2000 > 0)
result = result * 0x1000000000000162E42FEFA39F02B772C >> 128;
if (x & 0x1000 > 0)
result = result * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
if (x & 0x800 > 0)
result = result * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
if (x & 0x400 > 0)
result = result * 0x100000000000002C5C85FDF473DEA871F >> 128;
if (x & 0x200 > 0)
result = result * 0x10000000000000162E42FEFA39EF44D91 >> 128;
if (x & 0x100 > 0)
result = result * 0x100000000000000B17217F7D1CF79E949 >> 128;
if (x & 0x80 > 0)
result = result * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
if (x & 0x40 > 0)
result = result * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
if (x & 0x20 > 0)
result = result * 0x100000000000000162E42FEFA39EF366F >> 128;
if (x & 0x10 > 0)
result = result * 0x1000000000000000B17217F7D1CF79AFA >> 128;
if (x & 0x8 > 0)
result = result * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
if (x & 0x4 > 0)
result = result * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
if (x & 0x2 > 0)
result = result * 0x1000000000000000162E42FEFA39EF358 >> 128;
if (x & 0x1 > 0)
result = result * 0x10000000000000000B17217F7D1CF79AB >> 128;
result >>= uint256 (int256 (63 - (x >> 64)));
require (result <= uint256 (int256 (MAX_64x64)));
return int128 (int256 (result));
}
}
function exp (int128 x) internal pure returns (int128) {
unchecked {
require (x < 0x400000000000000000);
if (x < -0x400000000000000000) return 0;
return exp_2 (
int128 (int256 (x) * 0x171547652B82FE1777D0FFDA0D23A7D12 >> 128));
}
}
function divuu (uint256 x, uint256 y) private pure returns (uint128) {
unchecked {
require (y != 0);
uint256 result;
if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
result = (x << 64) / y;
else {
uint256 msb = 192;
uint256 xc = x >> 192;
if (xc >= 0x100000000) { xc >>= 32; msb += 32; }
if (xc >= 0x10000) { xc >>= 16; msb += 16; }
if (xc >= 0x100) { xc >>= 8; msb += 8; }
if (xc >= 0x10) { xc >>= 4; msb += 4; }
if (xc >= 0x4) { xc >>= 2; msb += 2; }
if (xc >= 0x2) msb += 1;
result = (x << 255 - msb) / ((y - 1 >> msb - 191) + 1);
require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
uint256 hi = result * (y >> 128);
uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
uint256 xh = x >> 192;
uint256 xl = x << 64;
if (xl < lo) xh -= 1;
xl -= lo;
lo = hi << 128;
if (xl < lo) xh -= 1;
xl -= lo;
assert (xh == hi >> 128);
result += xl / y;
}
require (result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return uint128 (result);
}
}
function sqrtu (uint256 x) private pure returns (uint128) {
unchecked {
if (x == 0) return 0;
else {
uint256 xx = x;
uint256 r = 1;
if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; }
if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; }
if (xx >= 0x100000000) { xx >>= 32; r <<= 16; }
if (xx >= 0x10000) { xx >>= 16; r <<= 8; }
if (xx >= 0x100) { xx >>= 8; r <<= 4; }
if (xx >= 0x10) { xx >>= 4; r <<= 2; }
if (xx >= 0x4) { r <<= 1; }
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
uint256 r1 = x / r;
return uint128 (r < r1 ? r : r1);
}
}
}
}
文件 2 的 32:Address.sol
pragma solidity ^0.8.1;
library Address {
function isContract(address account) internal view returns (bool) {
return account.code.length > 0;
}
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
if (returndata.length > 0) {
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
文件 3 的 32:Context.sol
pragma solidity ^0.8.0;
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
文件 4 的 32:Counters.sol
pragma solidity ^0.8.0;
library Counters {
struct Counter {
uint256 _value;
}
function current(Counter storage counter) internal view returns (uint256) {
return counter._value;
}
function increment(Counter storage counter) internal {
unchecked {
counter._value += 1;
}
}
function decrement(Counter storage counter) internal {
uint256 value = counter._value;
require(value > 0, "Counter: decrement overflow");
unchecked {
counter._value = value - 1;
}
}
function reset(Counter storage counter) internal {
counter._value = 0;
}
}
文件 5 的 32:ECDSA.sol
pragma solidity ^0.8.0;
import "../Strings.sol";
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return;
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
文件 6 的 32:EIP712.sol
pragma solidity ^0.8.8;
import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant _TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
}
function eip712Domain()
public
view
virtual
override
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f",
_name.toStringWithFallback(_nameFallback),
_version.toStringWithFallback(_versionFallback),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
}
文件 7 的 32:ERC20.sol
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
function name() public view virtual override returns (string memory) {
return _name;
}
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
function decimals() public view virtual override returns (uint8) {
return 18;
}
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
文件 8 的 32:ERC20Permit.sol
pragma solidity ^0.8.0;
import "./IERC20Permit.sol";
import "../ERC20.sol";
import "../../../utils/cryptography/ECDSA.sol";
import "../../../utils/cryptography/EIP712.sol";
import "../../../utils/Counters.sol";
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
using Counters for Counters.Counter;
mapping(address => Counters.Counter) private _nonces;
bytes32 private constant _PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;
constructor(string memory name) EIP712(name, "1") {}
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual override {
require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
require(signer == owner, "ERC20Permit: invalid signature");
_approve(owner, spender, value);
}
function nonces(address owner) public view virtual override returns (uint256) {
return _nonces[owner].current();
}
function DOMAIN_SEPARATOR() external view override returns (bytes32) {
return _domainSeparatorV4();
}
function _useNonce(address owner) internal virtual returns (uint256 current) {
Counters.Counter storage nonce = _nonces[owner];
current = nonce.current();
nonce.increment();
}
}
文件 9 的 32:GDXen.sol
pragma solidity ^0.8.17;
import "@openzeppelin/contracts/utils/Context.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "abdk-libraries-solidity/ABDKMath64x64.sol";
import "./interfaces/IBurnRedeemable.sol";
import "./GDXenERC20.sol";
import "./XecERC20.sol";
import "./XENCrypto.sol";
import "./Xec.sol";
contract GDXen is Context, ReentrancyGuard, IBurnRedeemable {
using SafeERC20 for GDXenERC20;
using SafeERC20 for XecERC20;
using Math for uint256;
using ABDKMath64x64 for int128;
using ABDKMath64x64 for uint256;
GDXenERC20 public gdxen;
XecERC20 public xecToken;
Xec public xec;
XENCrypto public xen;
address public teamAddress;
uint256 public constant MAX_BPS = 100_000;
uint256 public constant XEN_BATCH_AMOUNT = 2_000_000 ether;
uint256 public constant PROTOCOL_FEE_AMPLIFIER = 2;
uint256 public constant PROTOCOL_FEE_BASE = 1e15;
uint256 public constant SCALING_FACTOR = 1e40;
uint256 public constant SCALING_FACTOR_5 = 1e5;
uint256 public constant HEALTH_E = 102;
uint256 public constant HEALTH_K = 2;
uint256 public constant HEALTH_A = 1;
uint256 public constant HEALTH_INIT = 100;
uint256 public immutable i_initialTimestamp;
uint256 public immutable i_periodDuration;
uint256 public currentCycleReward;
uint256 public lastCycleReward;
uint256 public pendingStake;
uint256 public currentCycle;
uint256 public lastStartedCycle;
uint256 public previousStartedCycle;
uint256 public currentStartedCycle;
uint256 public pendingStakeWithdrawal;
uint256 public pendingFees;
uint256 public totalNumberOfBatchesBurned;
mapping(address => uint256) public accCycleBatchesBurned;
mapping(uint256 => uint256) public cycleTotalBatchesBurned;
mapping(address => mapping(uint256 => uint256)) public accBurnedBatches;
mapping(address => uint256) public lastActiveCycle;
mapping(address => uint256) public accRewards;
mapping(address => uint256) public accAccruedFees;
mapping(uint256 => uint256) public rewardPerCycle;
mapping(uint256 => uint256) public summedCycleStakes;
mapping(address => uint256) public lastFeeUpdateCycle;
mapping(uint256 => uint256) public cycleAccruedFees;
mapping(uint256 => uint256) public cycleFeesPerStakeSummed;
mapping(address => mapping(uint256 => uint256)) public accStakeCycle;
mapping(address => uint256) public accWithdrawableStake;
mapping(address => uint256) public accFirstStake;
mapping(address => uint256) public accSecondStake;
mapping(address => uint256) public firstBurnCycle;
mapping(address => bool) public isOldUser;
event FeesClaimed(
uint256 indexed cycle,
address indexed account,
uint256 fees
);
event Staked(
uint256 indexed cycle,
address indexed account,
uint256 amount
);
event Unstaked(
uint256 indexed cycle,
address indexed account,
uint256 amount
);
event RewardsClaimed(
uint256 indexed cycle,
address indexed account,
uint256 reward
);
event NewCycleStarted(
uint256 indexed cycle,
uint256 calculatedCycleReward,
uint256 summedCycleStakes
);
event Burn(address indexed userAddress, uint256 batchNumber);
event RecoverHealth(address indexed userAddress, uint256 health);
event InviteNewUser(
address indexed userAddress,
address indexed referrerAddress
);
modifier gasWrapper(uint256 batchNumber) {
uint256 startGas = gasleft();
_;
uint256 discount = (batchNumber * (MAX_BPS - 5 * batchNumber));
uint256 healthDiscount = (HEALTH_INIT +
HEALTH_INIT -
getHealth(_msgSender()));
uint256 transferXecAmount = (batchNumber * XEN_BATCH_AMOUNT) / 1000;
uint256 xecAmount = xec.getBurnedXec(address(xen), transferXecAmount);
uint256 xecProtocolFee = xec.getXecFee(xecAmount);
uint256 protocolFee = (((PROTOCOL_FEE_BASE * discount) / MAX_BPS) *
PROTOCOL_FEE_AMPLIFIER *
healthDiscount) / HEALTH_INIT;
require(
msg.value >= protocolFee + xecProtocolFee,
"GDXen: value less than protocol fee"
);
xec.burnXenFromGdxen{value: xecProtocolFee}(
transferXecAmount,
msg.sender
);
totalNumberOfBatchesBurned += batchNumber;
cycleTotalBatchesBurned[currentCycle] += batchNumber;
accBurnedBatches[_msgSender()][currentCycle] += batchNumber;
accCycleBatchesBurned[_msgSender()] += batchNumber;
cycleAccruedFees[currentCycle] += protocolFee;
sendViaCall(
payable(msg.sender),
msg.value - protocolFee - xecProtocolFee
);
}
constructor(
address xenAddress,
address xecTokenAddress,
address xecAddress
) {
gdxen = new GDXenERC20();
xecToken = XecERC20(xecTokenAddress);
xec = Xec(xecAddress);
i_initialTimestamp = block.timestamp;
i_periodDuration = 1 days;
currentCycleReward = 20000 * 1e18;
summedCycleStakes[0] = 20000 * 1e18;
rewardPerCycle[0] = 20000 * 1e18;
xen = XENCrypto(xenAddress);
teamAddress = msg.sender;
}
function onTokenBurned(address user, uint256 amount) external {
require(msg.sender == address(xen), "GDXen: illegal callback caller");
calculateCycle();
updateCycleFeesPerStakeSummed();
setUpNewCycle();
updateStats(user);
lastActiveCycle[user] = currentCycle;
emit Burn(user, amount);
}
function burnBatch(
address referrerAddress,
uint256 batchNumber
) external payable nonReentrant gasWrapper(batchNumber) {
require(batchNumber <= 10000, "GDXen: maxim batch number is 10000");
require(batchNumber > 0, "GDXen: min batch number is 1");
require(
xen.balanceOf(msg.sender) >= batchNumber * XEN_BATCH_AMOUNT,
"GDXen: not enough tokens for burn"
);
require(referrerAddress != msg.sender, "GDXen: referrer is self");
if (!isOldUser[msg.sender]) {
if (batchNumber >= 100) {
xec.awardXec(referrerAddress);
emit InviteNewUser(msg.sender, referrerAddress);
}
isOldUser[msg.sender] = true;
firstBurnCycle[msg.sender] = getCurrentCycle();
}
IBurnableToken(xen).burn(msg.sender, batchNumber * XEN_BATCH_AMOUNT);
}
function recoverHealth() public nonReentrant {
require(
getHealth(msg.sender) < HEALTH_INIT,
"GDXen: health greater than 100"
);
calculateCycle();
require(isOldUser[msg.sender], "GDXenViews: not old user");
uint256 health = getHealth(msg.sender);
uint256 recoverHealthAmount = HEALTH_INIT - health;
uint256 burnXec = calculateBurnXec(recoverHealthAmount);
require(
xecToken.balanceOf(msg.sender) >= burnXec,
"GDXen: not enough tokens for burn"
);
xecToken.safeTransferFrom(msg.sender, address(this), burnXec);
firstBurnCycle[msg.sender] = getCurrentCycle();
xecToken.burn(burnXec);
emit RecoverHealth(msg.sender, recoverHealthAmount);
}
function claimRewards() external nonReentrant {
calculateCycle();
updateCycleFeesPerStakeSummed();
updateStats(_msgSender());
uint256 reward = accRewards[_msgSender()] -
accWithdrawableStake[_msgSender()];
require(reward > 0, "GDXen: account has no rewards");
require(getHealth(_msgSender()) >= 100, "GDXen: health less than 100");
accRewards[_msgSender()] -= reward;
if (lastStartedCycle == currentStartedCycle) {
pendingStakeWithdrawal += reward;
} else {
summedCycleStakes[currentCycle] =
summedCycleStakes[currentCycle] -
reward;
}
gdxen.mintReward(_msgSender(), reward);
emit RewardsClaimed(currentCycle, _msgSender(), reward);
}
function claimFees() external nonReentrant {
calculateCycle();
updateCycleFeesPerStakeSummed();
updateStats(_msgSender());
require(getHealth(_msgSender()) >= 100, "GDXen: health less than 100");
uint256 fees = accAccruedFees[_msgSender()];
require(fees > 0, "GDXen: amount is zero");
accAccruedFees[_msgSender()] = 0;
sendViaCall(payable(_msgSender()), fees);
emit FeesClaimed(getCurrentCycle(), _msgSender(), fees);
}
function stake(uint256 amount) external nonReentrant {
calculateCycle();
updateCycleFeesPerStakeSummed();
updateStats(_msgSender());
require(amount > 0, "GDXen: amount is zero");
if (!isOldUser[msg.sender]) {
isOldUser[msg.sender] = true;
firstBurnCycle[msg.sender] = getCurrentCycle();
}
pendingStake += amount;
uint256 cycleToSet = currentCycle + 1;
if (lastStartedCycle == currentStartedCycle) {
cycleToSet = lastStartedCycle + 1;
}
if (
(cycleToSet != accFirstStake[_msgSender()] &&
cycleToSet != accSecondStake[_msgSender()])
) {
if (accFirstStake[_msgSender()] == 0) {
accFirstStake[_msgSender()] = cycleToSet;
} else if (accSecondStake[_msgSender()] == 0) {
accSecondStake[_msgSender()] = cycleToSet;
}
}
accStakeCycle[_msgSender()][cycleToSet] += amount;
gdxen.safeTransferFrom(_msgSender(), address(this), amount);
emit Staked(cycleToSet, _msgSender(), amount);
}
function unstake(uint256 amount) external nonReentrant {
calculateCycle();
updateCycleFeesPerStakeSummed();
updateStats(_msgSender());
require(amount > 0, "GDXen: amount is zero");
require(getHealth(_msgSender()) >= 100, "GDXen: health less than 100");
require(
amount <= accWithdrawableStake[_msgSender()],
"GDXen: amount greater than withdrawable stake"
);
if (lastStartedCycle == currentStartedCycle) {
pendingStakeWithdrawal += amount;
} else {
summedCycleStakes[currentCycle] -= amount;
}
accWithdrawableStake[_msgSender()] -= amount;
accRewards[_msgSender()] -= amount;
gdxen.safeTransfer(_msgSender(), amount);
emit Unstaked(currentCycle, _msgSender(), amount);
}
function getCurrentCycle() public view returns (uint256) {
return (block.timestamp - i_initialTimestamp) / i_periodDuration;
}
function calculateBurnXec(
uint256 _recoverHealth
) public view returns (uint256) {
uint256 T = getCurrentCycle();
uint256 E = 107;
uint256 burnXec = ((T + 1)
.fromUInt()
.log_2()
.mul(E.fromUInt())
.toUInt() *
10 ** xecToken.decimals() *
_recoverHealth) / 1e2;
return burnXec;
}
function getHealth(address account) public view returns (uint256) {
uint256 HEALTH_X = getCurrentCycle() - firstBurnCycle[msg.sender];
if (HEALTH_X == 0 || !isOldUser[account]) {
return 100;
}
uint256 health = 0;
if (HEALTH_X > 116) {
return health;
}
uint256 HEALTH_KXA = HEALTH_K * (HEALTH_X ** HEALTH_A);
uint256 HEALTH_KXA_30_QUOT = HEALTH_KXA / 30;
uint256 HEALTH_KXA_30_REM = HEALTH_KXA % 30;
if (HEALTH_KXA_30_QUOT > 0) {
health =
HEALTH_INIT *
((1 * SCALING_FACTOR_5 ** (2 + HEALTH_KXA_30_QUOT)) /
(
((((HEALTH_E ** 30 * SCALING_FACTOR_5) / 1e2 ** 30) **
HEALTH_KXA_30_QUOT) *
((HEALTH_E ** HEALTH_KXA_30_REM *
SCALING_FACTOR_5) / 1e2 ** HEALTH_KXA_30_REM))
));
} else {
health =
HEALTH_INIT *
((1 * SCALING_FACTOR_5 ** 2) /
(
((HEALTH_E ** HEALTH_KXA_30_REM * SCALING_FACTOR_5) /
1e2 ** HEALTH_KXA_30_REM)
));
}
return health / SCALING_FACTOR_5;
}
function calculateCycle() internal {
uint256 calculatedCycle = getCurrentCycle();
if (calculatedCycle > currentCycle) {
currentCycle = calculatedCycle;
}
}
function updateCycleFeesPerStakeSummed() internal {
if (currentCycle != currentStartedCycle) {
previousStartedCycle = lastStartedCycle + 1;
lastStartedCycle = currentStartedCycle;
}
if (
currentCycle > lastStartedCycle &&
cycleFeesPerStakeSummed[lastStartedCycle + 1] == 0
) {
uint256 feePerStake;
if (summedCycleStakes[lastStartedCycle] != 0) {
feePerStake =
((cycleAccruedFees[lastStartedCycle] + pendingFees) *
SCALING_FACTOR) /
summedCycleStakes[lastStartedCycle];
pendingFees = 0;
} else {
pendingFees += cycleAccruedFees[lastStartedCycle];
feePerStake = 0;
}
cycleFeesPerStakeSummed[lastStartedCycle + 1] =
cycleFeesPerStakeSummed[previousStartedCycle] +
feePerStake;
}
}
function setUpNewCycle() internal {
if (rewardPerCycle[currentCycle] == 0) {
lastCycleReward = currentCycleReward;
uint256 calculatedCycleReward = (lastCycleReward * 20000) / 20080;
currentCycleReward = calculatedCycleReward;
rewardPerCycle[currentCycle] = calculatedCycleReward;
currentStartedCycle = currentCycle;
summedCycleStakes[currentStartedCycle] +=
summedCycleStakes[lastStartedCycle] +
currentCycleReward;
if (pendingStake != 0) {
summedCycleStakes[currentStartedCycle] += pendingStake;
pendingStake = 0;
}
if (pendingStakeWithdrawal != 0) {
summedCycleStakes[
currentStartedCycle
] -= pendingStakeWithdrawal;
pendingStakeWithdrawal = 0;
}
emit NewCycleStarted(
currentCycle,
calculatedCycleReward,
summedCycleStakes[currentStartedCycle]
);
}
}
function updateStats(address account) internal {
if (
currentCycle > lastActiveCycle[account] &&
accCycleBatchesBurned[account] != 0
) {
uint256 lastCycleAccReward = (accCycleBatchesBurned[account] *
rewardPerCycle[lastActiveCycle[account]]) /
cycleTotalBatchesBurned[lastActiveCycle[account]];
accRewards[account] += lastCycleAccReward;
accCycleBatchesBurned[account] = 0;
}
if (
currentCycle > lastStartedCycle &&
lastFeeUpdateCycle[account] != lastStartedCycle + 1
) {
accAccruedFees[account] =
accAccruedFees[account] +
(
(accRewards[account] *
(cycleFeesPerStakeSummed[lastStartedCycle + 1] -
cycleFeesPerStakeSummed[
lastFeeUpdateCycle[account]
]))
) /
SCALING_FACTOR;
lastFeeUpdateCycle[account] = lastStartedCycle + 1;
}
if (
accFirstStake[account] != 0 && currentCycle > accFirstStake[account]
) {
uint256 unlockedFirstStake = accStakeCycle[account][
accFirstStake[account]
];
accRewards[account] += unlockedFirstStake;
accWithdrawableStake[account] += unlockedFirstStake;
if (lastStartedCycle + 1 > accFirstStake[account]) {
accAccruedFees[account] =
accAccruedFees[account] +
(
(accStakeCycle[account][accFirstStake[account]] *
(cycleFeesPerStakeSummed[lastStartedCycle + 1] -
cycleFeesPerStakeSummed[
accFirstStake[account]
]))
) /
SCALING_FACTOR;
}
accStakeCycle[account][accFirstStake[account]] = 0;
accFirstStake[account] = 0;
if (accSecondStake[account] != 0) {
if (currentCycle > accSecondStake[account]) {
uint256 unlockedSecondStake = accStakeCycle[account][
accSecondStake[account]
];
accRewards[account] += unlockedSecondStake;
accWithdrawableStake[account] += unlockedSecondStake;
if (lastStartedCycle + 1 > accSecondStake[account]) {
accAccruedFees[account] =
accAccruedFees[account] +
(
(accStakeCycle[account][
accSecondStake[account]
] *
(cycleFeesPerStakeSummed[
lastStartedCycle + 1
] -
cycleFeesPerStakeSummed[
accSecondStake[account]
]))
) /
SCALING_FACTOR;
}
accStakeCycle[account][accSecondStake[account]] = 0;
accSecondStake[account] = 0;
} else {
accFirstStake[account] = accSecondStake[account];
accSecondStake[account] = 0;
}
}
}
}
function sendViaCall(address payable to, uint256 amount) internal {
(bool sent, ) = to.call{value: amount}("");
require(sent, "GDXen: failed to send amount");
}
function supportsInterface(bytes4 interfaceId) public pure returns (bool) {
return interfaceId == type(IBurnRedeemable).interfaceId;
}
}
文件 10 的 32:GDXenERC20.sol
pragma solidity ^0.8.17;
import "@openzeppelin/contracts/token/ERC20/extensions/draft-ERC20Permit.sol";
contract GDXenERC20 is ERC20Permit {
address public immutable owner;
constructor() ERC20("GDXen Token", "GDXen") ERC20Permit("GDXen Token") {
owner = msg.sender;
}
function mintReward(address account, uint256 amount) external {
require(msg.sender == owner, "GDXen: caller is not GDXen contract.");
require(
super.totalSupply() < 5010000000000000000000000,
"GDXen: max supply already minted"
);
_mint(account, amount);
}
}
文件 11 的 32:IBurnRedeemable.sol
pragma solidity ^0.8.10;
interface IBurnRedeemable {
event Redeemed(
address indexed user,
address indexed xenContract,
address indexed tokenContract,
uint256 xenAmount,
uint256 tokenAmount
);
function onTokenBurned(address user, uint256 amount) external;
}
文件 12 的 32:IBurnableToken.sol
pragma solidity ^0.8.10;
interface IBurnableToken {
function burn(address user, uint256 amount) external;
}
文件 13 的 32:IERC165.sol
pragma solidity ^0.8.0;
import "../utils/introspection/IERC165.sol";
文件 14 的 32:IERC20.sol
pragma solidity ^0.8.0;
interface IERC20 {
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function transfer(address to, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
文件 15 的 32:IERC20Metadata.sol
pragma solidity ^0.8.0;
import "../IERC20.sol";
interface IERC20Metadata is IERC20 {
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
}
文件 16 的 32:IERC20Permit.sol
pragma solidity ^0.8.0;
interface IERC20Permit {
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
function nonces(address owner) external view returns (uint256);
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
文件 17 的 32:IERC5267.sol
pragma solidity ^0.8.0;
interface IERC5267 {
event EIP712DomainChanged();
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
文件 18 的 32:IRankedMintingToken.sol
pragma solidity ^0.8.10;
interface IRankedMintingToken {
event RankClaimed(address indexed user, uint256 term, uint256 rank);
event MintClaimed(address indexed user, uint256 rewardAmount);
function claimRank(uint256 term) external;
function claimMintReward() external;
}
文件 19 的 32:IStakingToken.sol
pragma solidity ^0.8.10;
interface IStakingToken {
event Staked(address indexed user, uint256 amount, uint256 term);
event Withdrawn(address indexed user, uint256 amount, uint256 reward);
function stake(uint256 amount, uint256 term) external;
function withdraw() external;
}
文件 20 的 32:Math.sol
pragma solidity ^0.8.0;
library Math {
enum Rounding {
Down,
Up,
Zero
}
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
function average(uint256 a, uint256 b) internal pure returns (uint256) {
return (a & b) + (a ^ b) / 2;
}
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
return a == 0 ? 0 : (a - 1) / b + 1;
}
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
uint256 prod0;
uint256 prod1;
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 == 0) {
return prod0 / denominator;
}
require(denominator > prod1, "Math: mulDiv overflow");
uint256 remainder;
assembly {
remainder := mulmod(x, y, denominator)
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
uint256 twos = denominator & (~denominator + 1);
assembly {
denominator := div(denominator, twos)
prod0 := div(prod0, twos)
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
uint256 inverse = (3 * denominator) ^ 2;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
result = prod0 * inverse;
return result;
}
}
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 result = 1 << (log2(a) >> 1);
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
文件 21 的 32:MathX.sol
pragma solidity ^0.8.10;
import "abdk-libraries-solidity/ABDKMath64x64.sol";
library MathX {
function min(uint256 a, uint256 b) external pure returns (uint256) {
if (a > b) return b;
return a;
}
function max(uint256 a, uint256 b) external pure returns (uint256) {
if (a > b) return a;
return b;
}
function logX64(uint256 x) external pure returns (int128) {
return ABDKMath64x64.log_2(ABDKMath64x64.fromUInt(x));
}
}
文件 22 的 32:Ownable.sol
pragma solidity ^0.8.0;
import "../utils/Context.sol";
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
constructor() {
_transferOwnership(_msgSender());
}
modifier onlyOwner() {
_checkOwner();
_;
}
function owner() public view virtual returns (address) {
return _owner;
}
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
文件 23 的 32:ReentrancyGuard.sol
pragma solidity ^0.8.0;
abstract contract ReentrancyGuard {
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
_status = _ENTERED;
}
function _nonReentrantAfter() private {
_status = _NOT_ENTERED;
}
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
文件 24 的 32:SafeERC20.sol
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
library SafeERC20 {
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
function _callOptionalReturn(IERC20 token, bytes memory data) private {
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
文件 25 的 32:ShortStrings.sol
pragma solidity ^0.8.8;
import "./StorageSlot.sol";
type ShortString is bytes32;
library ShortStrings {
bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
string memory str = new string(32);
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(_FALLBACK_SENTINEL);
}
}
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
文件 26 的 32:SignedMath.sol
pragma solidity ^0.8.0;
library SignedMath {
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
function average(int256 a, int256 b) internal pure returns (int256) {
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
function abs(int256 n) internal pure returns (uint256) {
unchecked {
return uint256(n >= 0 ? n : -n);
}
}
}
文件 27 的 32:StorageSlot.sol
pragma solidity ^0.8.0;
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly {
r.slot := slot
}
}
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly {
r.slot := slot
}
}
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly {
r.slot := slot
}
}
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly {
r.slot := slot
}
}
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly {
r.slot := slot
}
}
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly {
r.slot := store.slot
}
}
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly {
r.slot := slot
}
}
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly {
r.slot := store.slot
}
}
}
文件 28 的 32:Strings.sol
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
文件 29 的 32:XENCrypto.sol
pragma solidity ^0.8.10;
import "./MathX.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/interfaces/IERC165.sol";
import "abdk-libraries-solidity/ABDKMath64x64.sol";
import "./interfaces/IStakingToken.sol";
import "./interfaces/IRankedMintingToken.sol";
import "./interfaces/IBurnableToken.sol";
import "./interfaces/IBurnRedeemable.sol";
contract XENCrypto is
Context,
IRankedMintingToken,
IStakingToken,
IBurnableToken,
ERC20("XEN Crypto", "XEN")
{
using MathX for uint256;
using ABDKMath64x64 for int128;
using ABDKMath64x64 for uint256;
struct MintInfo {
address user;
uint256 term;
uint256 maturityTs;
uint256 rank;
uint256 amplifier;
uint256 eaaRate;
}
struct StakeInfo {
uint256 term;
uint256 maturityTs;
uint256 amount;
uint256 apy;
}
uint256 public constant SECONDS_IN_DAY = 3_600 * 24;
uint256 public constant DAYS_IN_YEAR = 365;
uint256 public constant GENESIS_RANK = 1;
uint256 public constant MIN_TERM = 1 * SECONDS_IN_DAY - 1;
uint256 public constant MAX_TERM_START = 100 * SECONDS_IN_DAY;
uint256 public constant MAX_TERM_END = 1_000 * SECONDS_IN_DAY;
uint256 public constant TERM_AMPLIFIER = 15;
uint256 public constant TERM_AMPLIFIER_THRESHOLD = 5_000;
uint256 public constant REWARD_AMPLIFIER_START = 3_000;
uint256 public constant REWARD_AMPLIFIER_END = 1;
uint256 public constant EAA_PM_START = 100;
uint256 public constant EAA_PM_STEP = 1;
uint256 public constant EAA_RANK_STEP = 100_000;
uint256 public constant WITHDRAWAL_WINDOW_DAYS = 7;
uint256 public constant MAX_PENALTY_PCT = 99;
uint256 public constant XEN_MIN_STAKE = 0;
uint256 public constant XEN_MIN_BURN = 0;
uint256 public constant XEN_APY_START = 20;
uint256 public constant XEN_APY_DAYS_STEP = 90;
uint256 public constant XEN_APY_END = 2;
string public constant AUTHORS = "@MrJackLevin @lbelyaev faircrypto.org";
uint256 public immutable genesisTs;
uint256 public globalRank = GENESIS_RANK;
uint256 public activeMinters;
uint256 public activeStakes;
uint256 public totalXenStaked;
mapping(address => MintInfo) public userMints;
mapping(address => StakeInfo) public userStakes;
mapping(address => uint256) public userBurns;
constructor() {
genesisTs = block.timestamp;
}
function _calculateMaxTerm() private view returns (uint256) {
if (globalRank > TERM_AMPLIFIER_THRESHOLD) {
uint256 delta = globalRank
.fromUInt()
.log_2()
.mul(TERM_AMPLIFIER.fromUInt())
.toUInt();
uint256 newMax = MAX_TERM_START + delta * SECONDS_IN_DAY;
return MathX.min(newMax, MAX_TERM_END);
}
return MAX_TERM_START;
}
function _penalty(uint256 secsLate) private pure returns (uint256) {
uint256 daysLate = secsLate / SECONDS_IN_DAY;
if (daysLate > WITHDRAWAL_WINDOW_DAYS - 1) return MAX_PENALTY_PCT;
uint256 penalty = (uint256(1) << (daysLate + 3)) /
WITHDRAWAL_WINDOW_DAYS -
1;
return MathX.min(penalty, MAX_PENALTY_PCT);
}
function _calculateMintReward(
uint256 cRank,
uint256 term,
uint256 maturityTs,
uint256 amplifier,
uint256 eeaRate
) private view returns (uint256) {
uint256 secsLate = block.timestamp - maturityTs;
uint256 penalty = _penalty(secsLate);
uint256 rankDelta = MathX.max(globalRank - cRank, 2);
uint256 EAA = (1_000 + eeaRate);
uint256 reward = getGrossReward(rankDelta, amplifier, term, EAA);
return (reward * (100 - penalty)) / 100;
}
function _cleanUpUserMint() private {
delete userMints[_msgSender()];
activeMinters--;
}
function _calculateStakeReward(
uint256 amount,
uint256 term,
uint256 maturityTs,
uint256 apy
) private view returns (uint256) {
if (block.timestamp > maturityTs) {
uint256 rate = (apy * term * 1_000_000) / DAYS_IN_YEAR;
return (amount * rate) / 100_000_000;
}
return 0;
}
function _calculateRewardAmplifier() private view returns (uint256) {
uint256 amplifierDecrease = (block.timestamp - genesisTs) /
SECONDS_IN_DAY;
if (amplifierDecrease < REWARD_AMPLIFIER_START) {
return
MathX.max(
REWARD_AMPLIFIER_START - amplifierDecrease,
REWARD_AMPLIFIER_END
);
} else {
return REWARD_AMPLIFIER_END;
}
}
function _calculateEAARate() private view returns (uint256) {
uint256 decrease = (EAA_PM_STEP * globalRank) / EAA_RANK_STEP;
if (decrease > EAA_PM_START) return 0;
return EAA_PM_START - decrease;
}
function _calculateAPY() private view returns (uint256) {
uint256 decrease = (block.timestamp - genesisTs) /
(SECONDS_IN_DAY * XEN_APY_DAYS_STEP);
if (XEN_APY_START - XEN_APY_END < decrease) return XEN_APY_END;
return XEN_APY_START - decrease;
}
function _createStake(uint256 amount, uint256 term) private {
userStakes[_msgSender()] = StakeInfo({
term: term,
maturityTs: block.timestamp + term * SECONDS_IN_DAY,
amount: amount,
apy: _calculateAPY()
});
activeStakes++;
totalXenStaked += amount;
}
function getGrossReward(
uint256 rankDelta,
uint256 amplifier,
uint256 term,
uint256 eaa
) public pure returns (uint256) {
int128 log128 = rankDelta.fromUInt().log_2();
int128 reward128 = log128
.mul(amplifier.fromUInt())
.mul(term.fromUInt())
.mul(eaa.fromUInt());
return reward128.div(uint256(1_000).fromUInt()).toUInt();
}
function getUserMint() external view returns (MintInfo memory) {
return userMints[_msgSender()];
}
function getUserStake() external view returns (StakeInfo memory) {
return userStakes[_msgSender()];
}
function getCurrentAMP() external view returns (uint256) {
return _calculateRewardAmplifier();
}
function getCurrentEAAR() external view returns (uint256) {
return _calculateEAARate();
}
function getCurrentAPY() external view returns (uint256) {
return _calculateAPY();
}
function getCurrentMaxTerm() external view returns (uint256) {
return _calculateMaxTerm();
}
function claimRank(uint256 term) external {
uint256 termSec = term * SECONDS_IN_DAY;
require(termSec > MIN_TERM, "CRank: Term less than min");
require(
termSec < _calculateMaxTerm() + 1,
"CRank: Term more than current max term"
);
require(
userMints[_msgSender()].rank == 0,
"CRank: Mint already in progress"
);
MintInfo memory mintInfo = MintInfo({
user: _msgSender(),
term: term,
maturityTs: block.timestamp + termSec,
rank: globalRank,
amplifier: _calculateRewardAmplifier(),
eaaRate: _calculateEAARate()
});
userMints[_msgSender()] = mintInfo;
activeMinters++;
emit RankClaimed(_msgSender(), term, globalRank++);
}
function claimMintReward() external {
MintInfo memory mintInfo = userMints[_msgSender()];
require(mintInfo.rank > 0, "CRank: No mint exists");
require(
block.timestamp > mintInfo.maturityTs,
"CRank: Mint maturity not reached"
);
uint256 rewardAmount = _calculateMintReward(
mintInfo.rank,
mintInfo.term,
mintInfo.maturityTs,
mintInfo.amplifier,
mintInfo.eaaRate
) * 1 ether;
_mint(_msgSender(), rewardAmount);
_cleanUpUserMint();
emit MintClaimed(_msgSender(), rewardAmount);
}
function claimMintRewardAndShare(address other, uint256 pct) external {
MintInfo memory mintInfo = userMints[_msgSender()];
require(other != address(0), "CRank: Cannot share with zero address");
require(pct > 0, "CRank: Cannot share zero percent");
require(pct < 101, "CRank: Cannot share 100+ percent");
require(mintInfo.rank > 0, "CRank: No mint exists");
require(
block.timestamp > mintInfo.maturityTs,
"CRank: Mint maturity not reached"
);
uint256 rewardAmount = _calculateMintReward(
mintInfo.rank,
mintInfo.term,
mintInfo.maturityTs,
mintInfo.amplifier,
mintInfo.eaaRate
) * 1 ether;
uint256 sharedReward = (rewardAmount * pct) / 100;
uint256 ownReward = rewardAmount - sharedReward;
_mint(_msgSender(), ownReward);
_mint(other, sharedReward);
_cleanUpUserMint();
emit MintClaimed(_msgSender(), rewardAmount);
}
function claimMintRewardAndStake(uint256 pct, uint256 term) external {
MintInfo memory mintInfo = userMints[_msgSender()];
require(pct < 101, "CRank: Cannot share >100 percent");
require(mintInfo.rank > 0, "CRank: No mint exists");
require(
block.timestamp > mintInfo.maturityTs,
"CRank: Mint maturity not reached"
);
uint256 rewardAmount = _calculateMintReward(
mintInfo.rank,
mintInfo.term,
mintInfo.maturityTs,
mintInfo.amplifier,
mintInfo.eaaRate
) * 1 ether;
uint256 stakedReward = (rewardAmount * pct) / 100;
uint256 ownReward = rewardAmount - stakedReward;
_mint(_msgSender(), ownReward);
_cleanUpUserMint();
emit MintClaimed(_msgSender(), rewardAmount);
require(stakedReward > XEN_MIN_STAKE, "XEN: Below min stake");
require(term * SECONDS_IN_DAY > MIN_TERM, "XEN: Below min stake term");
require(
term * SECONDS_IN_DAY < MAX_TERM_END + 1,
"XEN: Above max stake term"
);
require(userStakes[_msgSender()].amount == 0, "XEN: stake exists");
_createStake(stakedReward, term);
emit Staked(_msgSender(), stakedReward, term);
}
function stake(uint256 amount, uint256 term) external {
require(balanceOf(_msgSender()) >= amount, "XEN: not enough balance");
require(amount > XEN_MIN_STAKE, "XEN: Below min stake");
require(term * SECONDS_IN_DAY > MIN_TERM, "XEN: Below min stake term");
require(
term * SECONDS_IN_DAY < MAX_TERM_END + 1,
"XEN: Above max stake term"
);
require(userStakes[_msgSender()].amount == 0, "XEN: stake exists");
_burn(_msgSender(), amount);
_createStake(amount, term);
emit Staked(_msgSender(), amount, term);
}
function withdraw() external {
StakeInfo memory userStake = userStakes[_msgSender()];
require(userStake.amount > 0, "XEN: no stake exists");
uint256 xenReward = _calculateStakeReward(
userStake.amount,
userStake.term,
userStake.maturityTs,
userStake.apy
);
activeStakes--;
totalXenStaked -= userStake.amount;
_mint(_msgSender(), userStake.amount + xenReward);
emit Withdrawn(_msgSender(), userStake.amount, xenReward);
delete userStakes[_msgSender()];
}
function burn(address user, uint256 amount) public {
require(amount > XEN_MIN_BURN, "Burn: Below min limit");
require(
IERC165(_msgSender()).supportsInterface(
type(IBurnRedeemable).interfaceId
),
"Burn: not a supported contract"
);
_spendAllowance(user, _msgSender(), amount);
_burn(user, amount);
userBurns[user] += amount;
IBurnRedeemable(_msgSender()).onTokenBurned(user, amount);
}
}
文件 30 的 32:Xec.sol
pragma solidity ^0.8.17;
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "abdk-libraries-solidity/ABDKMath64x64.sol";
import "./interfaces/IBurnRedeemable.sol";
import "./XecERC20.sol";
import "./GDXen.sol";
import "./XENCrypto.sol";
contract Xec is Context, ReentrancyGuard, Ownable {
using SafeERC20 for XecERC20;
using Math for uint256;
using ABDKMath64x64 for int128;
using ABDKMath64x64 for uint256;
uint256 public constant M = 2 ether / 10000;
uint256 public constant awardThreshold = 6 ether / 1000;
uint256 public constant xecLockTime = 1 days;
uint256 public constant xecMaxLockTime = 10 days;
uint256 public constant A = 106;
uint256 public constant aDecimal = 1e2;
XecERC20 public xec;
GDXen public gdxen;
XENCrypto public xen;
uint256 public totalBurnedGarbage;
address[] public garbageTokens;
mapping(address => uint256) public accClaimableXec;
mapping(address => string) public garbageSymbols;
mapping(address => uint256) public E_0;
mapping(address => uint256) public lastBurnedTimeToClaim;
event BurnGarbageToken(
address indexed userAddress,
uint256 garbageNumber,
uint256 xecAmount
);
constructor(address xenAddress) {
xec = new XecERC20();
xen = XENCrypto(xenAddress);
}
function setGdxen(address _gdxen) external onlyOwner {
require(_gdxen != address(0), "Xec: zero address");
gdxen = GDXen(_gdxen);
}
function createGarbageLists(
address _garbageAddress,
uint256 _E_0
) external onlyOwner {
require(_garbageAddress != address(0), "Xec: zero address");
require(_E_0 > 0, "Xec: E_0 must be greater than 0");
require(E_0[_garbageAddress] == 0, "Xec: garbage token already exists");
garbageTokens.push(_garbageAddress);
garbageSymbols[_garbageAddress] = IERC20Metadata(_garbageAddress)
.symbol();
E_0[_garbageAddress] = _E_0;
}
function onTokenBurned(address user, uint256 amount) external {
require(msg.sender == address(xen), "Xec: caller is not XENCrypto");
}
function burnGarbage(
address _garbageAddress,
uint256 _amount,
address _to
) public payable nonReentrant {
require(_garbageAddress != address(0), "Xec: zero address");
require(_amount > 0, "Xec: _amount must be greater than 0");
require(
IERC20(_garbageAddress).balanceOf(_msgSender()) >= _amount,
"Xec: insufficient balance"
);
uint256 xecAmount = getBurnedXec(_garbageAddress, _amount);
if (_garbageAddress == address(xen)) {
IBurnableToken(xen).burn(_msgSender(), _amount);
} else {
IERC20(_garbageAddress).transferFrom(
_msgSender(),
address(0x000000000000000000000000000000000000dEaD),
_amount
);
}
uint256 userFee = getXecFee(xecAmount);
require(msg.value >= userFee, "Xec: insufficient fee");
if (msg.value >= awardThreshold) {
xecAmount += xecAmount / 5;
}
totalBurnedGarbage += _amount;
lastBurnedTimeToClaim[_to] = block.timestamp + getXecLockTime();
accClaimableXec[_to] += xecAmount;
emit BurnGarbageToken(_to, _amount, xecAmount);
}
function burnXenFromGdxen(uint256 _amount, address _to) external payable {
require(msg.sender == address(gdxen), "Xec: caller is not GDXen");
uint256 xecAmount = getBurnedXec(address(xen), _amount);
totalBurnedGarbage += _amount;
lastBurnedTimeToClaim[_to] = block.timestamp + getXecLockTime();
accClaimableXec[_to] += xecAmount;
}
function claimXec() external nonReentrant {
require(accClaimableXec[_msgSender()] > 0, "Xec: no claimable XEC");
require(
block.timestamp >= lastBurnedTimeToClaim[_msgSender()],
"Xec: XEC is locked"
);
uint256 claimableXec = accClaimableXec[_msgSender()];
accClaimableXec[_msgSender()] = 0;
xec.mintReward(_msgSender(), claimableXec);
}
function awardXec(address _to) external nonReentrant {
require(msg.sender == address(gdxen), "Xec: caller is not GDXen");
accClaimableXec[_to] += 10 ether;
}
function withdraw() external onlyOwner {
uint256 balance = address(this).balance;
sendViaCall(payable(owner()), balance);
}
function sendViaCall(address payable to, uint256 amount) internal {
(bool sent, ) = to.call{value: amount}("");
require(sent, "Xec: failed to send amount");
}
function getBurnedXec(
address _garbageAddress,
uint256 _amount
) public view returns (uint256) {
require(E_0[_garbageAddress] > 0, "Xec: E_0 must be greater than 0");
uint256 decimals = IERC20Metadata(_garbageAddress).decimals();
uint256 xecAmount = (_amount * E_0[_garbageAddress]) / 10 ** decimals;
return xecAmount;
}
function getXecFee(uint256 _xecAmount) public view returns (uint256) {
uint256 _M = M;
uint256 _A = A;
uint256 _aDecimal = aDecimal;
uint256 currentCycle = Math.min(GDXen(gdxen).getCurrentCycle(), 30);
uint256 fee = (_M *
((1 * _aDecimal ** (2 + currentCycle)) / (_A ** currentCycle))) /
_aDecimal ** 2;
uint256 totalFee = (fee * _xecAmount) / 10 ** XecERC20(xec).decimals();
return totalFee;
}
function getXecLockTime() public view returns (uint256) {
uint256 lockTime = xecLockTime;
uint256 maxLockTime = xecMaxLockTime;
uint256 currentCycle = GDXen(gdxen).getCurrentCycle();
if (currentCycle > 0) {
lockTime += (currentCycle / 10) * lockTime;
}
return Math.min(lockTime, maxLockTime);
}
function getAllGarbageTokens() public view returns (address[] memory) {
return garbageTokens;
}
function supportsInterface(bytes4 interfaceId) public pure returns (bool) {
return interfaceId == type(IBurnRedeemable).interfaceId;
}
}
文件 31 的 32:XecERC20.sol
pragma solidity ^0.8.17;
import "@openzeppelin/contracts/token/ERC20/extensions/draft-ERC20Permit.sol";
contract XecERC20 is ERC20Permit {
address public immutable owner;
constructor() ERC20("Xec Token", "Xec") ERC20Permit("Xec Token") {
owner = msg.sender;
}
function mintReward(address account, uint256 amount) external {
require(msg.sender == owner, "Xec: caller is not Xec contract.");
_mint(account, amount);
}
function burn(uint256 amount) external {
_burn(msg.sender, amount);
}
}
文件 32 的 32:draft-ERC20Permit.sol
pragma solidity ^0.8.0;
import "./ERC20Permit.sol";
{
"compilationTarget": {
"contracts/Xec.sol": "Xec"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"xenAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"userAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"garbageNumber","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"xecAmount","type":"uint256"}],"name":"BurnGarbageToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"A","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"E_0","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"M","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"aDecimal","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"accClaimableXec","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"awardThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"}],"name":"awardXec","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_garbageAddress","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address","name":"_to","type":"address"}],"name":"burnGarbage","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address","name":"_to","type":"address"}],"name":"burnXenFromGdxen","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"claimXec","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_garbageAddress","type":"address"},{"internalType":"uint256","name":"_E_0","type":"uint256"}],"name":"createGarbageLists","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"garbageSymbols","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"garbageTokens","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gdxen","outputs":[{"internalType":"contract GDXen","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllGarbageTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_garbageAddress","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"getBurnedXec","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_xecAmount","type":"uint256"}],"name":"getXecFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getXecLockTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"lastBurnedTimeToClaim","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"onTokenBurned","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_gdxen","type":"address"}],"name":"setGdxen","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"totalBurnedGarbage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"xec","outputs":[{"internalType":"contract XecERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"xecLockTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"xecMaxLockTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"xen","outputs":[{"internalType":"contract XENCrypto","name":"","type":"address"}],"stateMutability":"view","type":"function"}]