// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// solhint-disable not-rely-on-time
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.0;
pragma abicoder v2;
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";
// #if ENABLE_CONSOLE_LOG
// #endif
import "./IForwarder.sol";
/**
* @title The Forwarder Implementation
* @notice This implementation of the `IForwarder` interface uses ERC-712 signatures and stored nonces for verification.
*/
contract Forwarder is IForwarder, ERC165 {
using ECDSA for bytes32;
address private constant DRY_RUN_ADDRESS = 0x0000000000000000000000000000000000000000;
string public constant GENERIC_PARAMS = "address from,address to,uint256 value,uint256 gas,uint256 nonce,bytes data,uint256 validUntilTime";
string public constant EIP712_DOMAIN_TYPE = "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)";
mapping(bytes32 => bool) public typeHashes;
mapping(bytes32 => bool) public domains;
// Nonces of senders, used to prevent replay attacks
mapping(address => uint256) private nonces;
// solhint-disable-next-line no-empty-blocks
receive() external payable {}
/// @inheritdoc IForwarder
function getNonce(address from)
public view override
returns (uint256) {
return nonces[from];
}
constructor() {
string memory requestType = string(abi.encodePacked("ForwardRequest(", GENERIC_PARAMS, ")"));
registerRequestTypeInternal(requestType);
}
/// @inheritdoc IERC165
function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) {
return interfaceId == type(IForwarder).interfaceId ||
super.supportsInterface(interfaceId);
}
/// @inheritdoc IForwarder
function verify(
ForwardRequest calldata req,
bytes32 domainSeparator,
bytes32 requestTypeHash,
bytes calldata suffixData,
bytes calldata sig)
external override view {
_verifyNonce(req);
_verifySig(req, domainSeparator, requestTypeHash, suffixData, sig);
}
/// @inheritdoc IForwarder
function execute(
ForwardRequest calldata req,
bytes32 domainSeparator,
bytes32 requestTypeHash,
bytes calldata suffixData,
bytes calldata sig
)
external payable
override
returns (bool success, bytes memory ret) {
_verifySig(req, domainSeparator, requestTypeHash, suffixData, sig);
_verifyAndUpdateNonce(req);
require(req.validUntilTime == 0 || req.validUntilTime > block.timestamp, "FWD: request expired");
uint256 gasForTransfer = 0;
if ( req.value != 0 ) {
gasForTransfer = 40000; //buffer in case we need to move eth after the transaction.
}
bytes memory callData = abi.encodePacked(req.data, req.from);
require(gasleft()*63/64 >= req.gas + gasForTransfer, "FWD: insufficient gas");
// solhint-disable-next-line avoid-low-level-calls
(success,ret) = req.to.call{gas : req.gas, value : req.value}(callData);
// #if ENABLE_CONSOLE_LOG
// #endif
if ( req.value != 0 && address(this).balance>0 ) {
// can't fail: req.from signed (off-chain) the request, so it must be an EOA...
payable(req.from).transfer(address(this).balance);
}
return (success,ret);
}
function _verifyNonce(ForwardRequest calldata req) internal view {
require(nonces[req.from] == req.nonce, "FWD: nonce mismatch");
}
function _verifyAndUpdateNonce(ForwardRequest calldata req) internal {
require(nonces[req.from]++ == req.nonce, "FWD: nonce mismatch");
}
/// @inheritdoc IForwarder
function registerRequestType(string calldata typeName, string calldata typeSuffix) external override {
for (uint256 i = 0; i < bytes(typeName).length; i++) {
bytes1 c = bytes(typeName)[i];
require(c != "(" && c != ")", "FWD: invalid typename");
}
string memory requestType = string(abi.encodePacked(typeName, "(", GENERIC_PARAMS, ",", typeSuffix));
registerRequestTypeInternal(requestType);
}
/// @inheritdoc IForwarder
function registerDomainSeparator(string calldata name, string calldata version) external override {
uint256 chainId;
/* solhint-disable-next-line no-inline-assembly */
assembly { chainId := chainid() }
bytes memory domainValue = abi.encode(
keccak256(bytes(EIP712_DOMAIN_TYPE)),
keccak256(bytes(name)),
keccak256(bytes(version)),
chainId,
address(this));
bytes32 domainHash = keccak256(domainValue);
domains[domainHash] = true;
emit DomainRegistered(domainHash, domainValue);
}
function registerRequestTypeInternal(string memory requestType) internal {
bytes32 requestTypehash = keccak256(bytes(requestType));
typeHashes[requestTypehash] = true;
emit RequestTypeRegistered(requestTypehash, requestType);
}
function _verifySig(
ForwardRequest calldata req,
bytes32 domainSeparator,
bytes32 requestTypeHash,
bytes calldata suffixData,
bytes calldata sig)
internal
virtual
view
{
require(domains[domainSeparator], "FWD: unregistered domain sep.");
require(typeHashes[requestTypeHash], "FWD: unregistered typehash");
bytes32 digest = keccak256(abi.encodePacked(
"\x19\x01", domainSeparator,
keccak256(_getEncoded(req, requestTypeHash, suffixData))
));
// solhint-disable-next-line avoid-tx-origin
require(tx.origin == DRY_RUN_ADDRESS || digest.recover(sig) == req.from, "FWD: signature mismatch");
}
/**
* @notice Creates a byte array that is a valid ABI encoding of a request of a `RequestType` type. See `execute()`.
*/
function _getEncoded(
ForwardRequest calldata req,
bytes32 requestTypeHash,
bytes calldata suffixData
)
public
pure
returns (
bytes memory
) {
// we use encodePacked since we append suffixData as-is, not as dynamic param.
// still, we must make sure all first params are encoded as abi.encode()
// would encode them - as 256-bit-wide params.
return abi.encodePacked(
requestTypeHash,
uint256(uint160(req.from)),
uint256(uint160(req.to)),
req.value,
req.gas,
req.nonce,
keccak256(req.data),
req.validUntilTime,
suffixData
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import '@opengsn/contracts/src/forwarder/Forwarder.sol';
contract GrappaForwarder is Forwarder {}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC165.sol)
pragma solidity ^0.8.0;
import "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity >=0.7.6;
pragma abicoder v2;
import "@openzeppelin/contracts/interfaces/IERC165.sol";
/**
* @title The Forwarder Interface
* @notice The contracts implementing this interface take a role of authorization, authentication and replay protection
* for contracts that choose to trust a `Forwarder`, instead of relying on a mechanism built into the Ethereum protocol.
*
* @notice if the `Forwarder` contract decides that an incoming `ForwardRequest` is valid, it must append 20 bytes that
* represent the caller to the `data` field of the request and send this new data to the target address (the `to` field)
*
* :warning: **Warning** :warning: The Forwarder can have a full control over a `Recipient` contract.
* Any vulnerability in a `Forwarder` implementation can make all of its `Recipient` contracts susceptible!
* Recipient contracts should only trust forwarders that passed through security audit,
* otherwise they are susceptible to identity theft.
*/
interface IForwarder is IERC165 {
/**
* @notice A representation of a request for a `Forwarder` to send `data` on behalf of a `from` to a target (`to`).
*/
struct ForwardRequest {
address from;
address to;
uint256 value;
uint256 gas;
uint256 nonce;
bytes data;
uint256 validUntilTime;
}
event DomainRegistered(bytes32 indexed domainSeparator, bytes domainValue);
event RequestTypeRegistered(bytes32 indexed typeHash, string typeStr);
/**
* @param from The address of a sender.
* @return The nonce for this address.
*/
function getNonce(address from)
external view
returns(uint256);
/**
* @notice Verify the transaction is valid and can be executed.
* Implementations must validate the signature and the nonce of the request are correct.
* Does not revert and returns successfully if the input is valid.
* Reverts if any validation has failed. For instance, if either signature or nonce are incorrect.
* Reverts if `domainSeparator` or `requestTypeHash` are not registered as well.
*/
function verify(
ForwardRequest calldata forwardRequest,
bytes32 domainSeparator,
bytes32 requestTypeHash,
bytes calldata suffixData,
bytes calldata signature
) external view;
/**
* @notice Executes a transaction specified by the `ForwardRequest`.
* The transaction is first verified and then executed.
* The success flag and returned bytes array of the `CALL` are returned as-is.
*
* This method would revert only in case of a verification error.
*
* All the target errors are reported using the returned success flag and returned bytes array.
*
* @param forwardRequest All requested transaction parameters.
* @param domainSeparator The domain used when signing this request.
* @param requestTypeHash The request type used when signing this request.
* @param suffixData The ABI-encoded extension data for the current `RequestType` used when signing this request.
* @param signature The client signature to be validated.
*
* @return success The success flag of the underlying `CALL` to the target address.
* @return ret The byte array returned by the underlying `CALL` to the target address.
*/
function execute(
ForwardRequest calldata forwardRequest,
bytes32 domainSeparator,
bytes32 requestTypeHash,
bytes calldata suffixData,
bytes calldata signature
)
external payable
returns (bool success, bytes memory ret);
/**
* @notice Register a new Request typehash.
*
* @notice This is necessary for the Forwarder to be able to verify the signatures conforming to the ERC-712.
*
* @param typeName The name of the request type.
* @param typeSuffix Any extra data after the generic params. Must contain add at least one param.
* The generic ForwardRequest type is always registered by the constructor.
*/
function registerRequestType(string calldata typeName, string calldata typeSuffix) external;
/**
* @notice Register a new domain separator.
*
* @notice This is necessary for the Forwarder to be able to verify the signatures conforming to the ERC-712.
*
* @notice The domain separator must have the following fields: `name`, `version`, `chainId`, `verifyingContract`.
* The `chainId` is the current network's `chainId`, and the `verifyingContract` is this Forwarder's address.
* This method accepts the domain name and version to create and register the domain separator value.
* @param name The domain's display name.
* @param version The domain/protocol version.
*/
function registerDomainSeparator(string calldata name, string calldata version) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
{
"compilationTarget": {
"contracts/GrappaForwarder.sol": "GrappaForwarder"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"domainSeparator","type":"bytes32"},{"indexed":false,"internalType":"bytes","name":"domainValue","type":"bytes"}],"name":"DomainRegistered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"typeHash","type":"bytes32"},{"indexed":false,"internalType":"string","name":"typeStr","type":"string"}],"name":"RequestTypeRegistered","type":"event"},{"inputs":[],"name":"EIP712_DOMAIN_TYPE","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"GENERIC_PARAMS","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gas","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"validUntilTime","type":"uint256"}],"internalType":"struct IForwarder.ForwardRequest","name":"req","type":"tuple"},{"internalType":"bytes32","name":"requestTypeHash","type":"bytes32"},{"internalType":"bytes","name":"suffixData","type":"bytes"}],"name":"_getEncoded","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"domains","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gas","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"validUntilTime","type":"uint256"}],"internalType":"struct IForwarder.ForwardRequest","name":"req","type":"tuple"},{"internalType":"bytes32","name":"domainSeparator","type":"bytes32"},{"internalType":"bytes32","name":"requestTypeHash","type":"bytes32"},{"internalType":"bytes","name":"suffixData","type":"bytes"},{"internalType":"bytes","name":"sig","type":"bytes"}],"name":"execute","outputs":[{"internalType":"bool","name":"success","type":"bool"},{"internalType":"bytes","name":"ret","type":"bytes"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"}],"name":"getNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"}],"name":"registerDomainSeparator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"typeName","type":"string"},{"internalType":"string","name":"typeSuffix","type":"string"}],"name":"registerRequestType","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"typeHashes","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gas","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"validUntilTime","type":"uint256"}],"internalType":"struct IForwarder.ForwardRequest","name":"req","type":"tuple"},{"internalType":"bytes32","name":"domainSeparator","type":"bytes32"},{"internalType":"bytes32","name":"requestTypeHash","type":"bytes32"},{"internalType":"bytes","name":"suffixData","type":"bytes"},{"internalType":"bytes","name":"sig","type":"bytes"}],"name":"verify","outputs":[],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]