账户
0x9a...8201
0x9a...8201

0x9a...8201

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.12+commit.f00d7308
语言
Solidity
合同源代码
文件 1 的 8:ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}
合同源代码
文件 2 的 8:ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
合同源代码
文件 3 的 8:Forwarder.sol
// solhint-disable not-rely-on-time
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.0;
pragma abicoder v2;

import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/introspection/ERC165.sol";

// #if ENABLE_CONSOLE_LOG

// #endif

import "./IForwarder.sol";

/**
 * @title The Forwarder Implementation
 * @notice This implementation of the `IForwarder` interface uses ERC-712 signatures and stored nonces for verification.
 */
contract Forwarder is IForwarder, ERC165 {
    using ECDSA for bytes32;

    address private constant DRY_RUN_ADDRESS = 0x0000000000000000000000000000000000000000;

    string public constant GENERIC_PARAMS = "address from,address to,uint256 value,uint256 gas,uint256 nonce,bytes data,uint256 validUntilTime";

    string public constant EIP712_DOMAIN_TYPE = "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)";

    mapping(bytes32 => bool) public typeHashes;
    mapping(bytes32 => bool) public domains;

    // Nonces of senders, used to prevent replay attacks
    mapping(address => uint256) private nonces;

    // solhint-disable-next-line no-empty-blocks
    receive() external payable {}

    /// @inheritdoc IForwarder
    function getNonce(address from)
    public view override
    returns (uint256) {
        return nonces[from];
    }

    constructor() {
        string memory requestType = string(abi.encodePacked("ForwardRequest(", GENERIC_PARAMS, ")"));
        registerRequestTypeInternal(requestType);
    }

    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) {
        return interfaceId == type(IForwarder).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /// @inheritdoc IForwarder
    function verify(
        ForwardRequest calldata req,
        bytes32 domainSeparator,
        bytes32 requestTypeHash,
        bytes calldata suffixData,
        bytes calldata sig)
    external override view {
        _verifyNonce(req);
        _verifySig(req, domainSeparator, requestTypeHash, suffixData, sig);
    }

    /// @inheritdoc IForwarder
    function execute(
        ForwardRequest calldata req,
        bytes32 domainSeparator,
        bytes32 requestTypeHash,
        bytes calldata suffixData,
        bytes calldata sig
    )
    external payable
    override
    returns (bool success, bytes memory ret) {
        _verifySig(req, domainSeparator, requestTypeHash, suffixData, sig);
        _verifyAndUpdateNonce(req);

        require(req.validUntilTime == 0 || req.validUntilTime > block.timestamp, "FWD: request expired");

        uint256 gasForTransfer = 0;
        if ( req.value != 0 ) {
            gasForTransfer = 40000; //buffer in case we need to move eth after the transaction.
        }
        bytes memory callData = abi.encodePacked(req.data, req.from);
        require(gasleft()*63/64 >= req.gas + gasForTransfer, "FWD: insufficient gas");
        // solhint-disable-next-line avoid-low-level-calls
        (success,ret) = req.to.call{gas : req.gas, value : req.value}(callData);

        // #if ENABLE_CONSOLE_LOG


        // #endif

        if ( req.value != 0 && address(this).balance>0 ) {
            // can't fail: req.from signed (off-chain) the request, so it must be an EOA...
            payable(req.from).transfer(address(this).balance);
        }

        return (success,ret);
    }

    function _verifyNonce(ForwardRequest calldata req) internal view {
        require(nonces[req.from] == req.nonce, "FWD: nonce mismatch");
    }

    function _verifyAndUpdateNonce(ForwardRequest calldata req) internal {
        require(nonces[req.from]++ == req.nonce, "FWD: nonce mismatch");
    }

    /// @inheritdoc IForwarder
    function registerRequestType(string calldata typeName, string calldata typeSuffix) external override {

        for (uint256 i = 0; i < bytes(typeName).length; i++) {
            bytes1 c = bytes(typeName)[i];
            require(c != "(" && c != ")", "FWD: invalid typename");
        }

        string memory requestType = string(abi.encodePacked(typeName, "(", GENERIC_PARAMS, ",", typeSuffix));
        registerRequestTypeInternal(requestType);
    }

    /// @inheritdoc IForwarder
    function registerDomainSeparator(string calldata name, string calldata version) external override {
        uint256 chainId;
        /* solhint-disable-next-line no-inline-assembly */
        assembly { chainId := chainid() }

        bytes memory domainValue = abi.encode(
            keccak256(bytes(EIP712_DOMAIN_TYPE)),
            keccak256(bytes(name)),
            keccak256(bytes(version)),
            chainId,
            address(this));

        bytes32 domainHash = keccak256(domainValue);

        domains[domainHash] = true;
        emit DomainRegistered(domainHash, domainValue);
    }

    function registerRequestTypeInternal(string memory requestType) internal {

        bytes32 requestTypehash = keccak256(bytes(requestType));
        typeHashes[requestTypehash] = true;
        emit RequestTypeRegistered(requestTypehash, requestType);
    }

    function _verifySig(
        ForwardRequest calldata req,
        bytes32 domainSeparator,
        bytes32 requestTypeHash,
        bytes calldata suffixData,
        bytes calldata sig)
    internal
    virtual
    view
    {
        require(domains[domainSeparator], "FWD: unregistered domain sep.");
        require(typeHashes[requestTypeHash], "FWD: unregistered typehash");
        bytes32 digest = keccak256(abi.encodePacked(
                "\x19\x01", domainSeparator,
                keccak256(_getEncoded(req, requestTypeHash, suffixData))
            ));
        // solhint-disable-next-line avoid-tx-origin
        require(tx.origin == DRY_RUN_ADDRESS || digest.recover(sig) == req.from, "FWD: signature mismatch");
    }

    /**
     * @notice Creates a byte array that is a valid ABI encoding of a request of a `RequestType` type. See `execute()`.
     */
    function _getEncoded(
        ForwardRequest calldata req,
        bytes32 requestTypeHash,
        bytes calldata suffixData
    )
    public
    pure
    returns (
        bytes memory
    ) {
        // we use encodePacked since we append suffixData as-is, not as dynamic param.
        // still, we must make sure all first params are encoded as abi.encode()
        // would encode them - as 256-bit-wide params.
        return abi.encodePacked(
            requestTypeHash,
            uint256(uint160(req.from)),
            uint256(uint160(req.to)),
            req.value,
            req.gas,
            req.nonce,
            keccak256(req.data),
            req.validUntilTime,
            suffixData
        );
    }
}
合同源代码
文件 4 的 8:GrappaForwarder.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import '@opengsn/contracts/src/forwarder/Forwarder.sol';

contract GrappaForwarder is Forwarder {}
合同源代码
文件 5 的 8:IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC165.sol)

pragma solidity ^0.8.0;

import "../utils/introspection/IERC165.sol";
合同源代码
文件 6 的 8:IForwarder.sol
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity >=0.7.6;
pragma abicoder v2;

import "@openzeppelin/contracts/interfaces/IERC165.sol";

/**
 * @title The Forwarder Interface
 * @notice The contracts implementing this interface take a role of authorization, authentication and replay protection
 * for contracts that choose to trust a `Forwarder`, instead of relying on a mechanism built into the Ethereum protocol.
 *
 * @notice if the `Forwarder` contract decides that an incoming `ForwardRequest` is valid, it must append 20 bytes that
 * represent the caller to the `data` field of the request and send this new data to the target address (the `to` field)
 *
 * :warning: **Warning** :warning: The Forwarder can have a full control over a `Recipient` contract.
 * Any vulnerability in a `Forwarder` implementation can make all of its `Recipient` contracts susceptible!
 * Recipient contracts should only trust forwarders that passed through security audit,
 * otherwise they are susceptible to identity theft.
 */
interface IForwarder is IERC165 {

    /**
     * @notice A representation of a request for a `Forwarder` to send `data` on behalf of a `from` to a target (`to`).
     */
    struct ForwardRequest {
        address from;
        address to;
        uint256 value;
        uint256 gas;
        uint256 nonce;
        bytes data;
        uint256 validUntilTime;
    }

    event DomainRegistered(bytes32 indexed domainSeparator, bytes domainValue);

    event RequestTypeRegistered(bytes32 indexed typeHash, string typeStr);

    /**
     * @param from The address of a sender.
     * @return The nonce for this address.
     */
    function getNonce(address from)
    external view
    returns(uint256);

    /**
     * @notice Verify the transaction is valid and can be executed.
     * Implementations must validate the signature and the nonce of the request are correct.
     * Does not revert and returns successfully if the input is valid.
     * Reverts if any validation has failed. For instance, if either signature or nonce are incorrect.
     * Reverts if `domainSeparator` or `requestTypeHash` are not registered as well.
     */
    function verify(
        ForwardRequest calldata forwardRequest,
        bytes32 domainSeparator,
        bytes32 requestTypeHash,
        bytes calldata suffixData,
        bytes calldata signature
    ) external view;

    /**
     * @notice Executes a transaction specified by the `ForwardRequest`.
     * The transaction is first verified and then executed.
     * The success flag and returned bytes array of the `CALL` are returned as-is.
     *
     * This method would revert only in case of a verification error.
     *
     * All the target errors are reported using the returned success flag and returned bytes array.
     *
     * @param forwardRequest All requested transaction parameters.
     * @param domainSeparator The domain used when signing this request.
     * @param requestTypeHash The request type used when signing this request.
     * @param suffixData The ABI-encoded extension data for the current `RequestType` used when signing this request.
     * @param signature The client signature to be validated.
     *
     * @return success The success flag of the underlying `CALL` to the target address.
     * @return ret The byte array returned by the underlying `CALL` to the target address.
     */
    function execute(
        ForwardRequest calldata forwardRequest,
        bytes32 domainSeparator,
        bytes32 requestTypeHash,
        bytes calldata suffixData,
        bytes calldata signature
    )
    external payable
    returns (bool success, bytes memory ret);

    /**
     * @notice Register a new Request typehash.
     *
     * @notice This is necessary for the Forwarder to be able to verify the signatures conforming to the ERC-712.
     *
     * @param typeName The name of the request type.
     * @param typeSuffix Any extra data after the generic params. Must contain add at least one param.
     * The generic ForwardRequest type is always registered by the constructor.
     */
    function registerRequestType(string calldata typeName, string calldata typeSuffix) external;

    /**
     * @notice Register a new domain separator.
     *
     * @notice This is necessary for the Forwarder to be able to verify the signatures conforming to the ERC-712.
     *
     * @notice The domain separator must have the following fields: `name`, `version`, `chainId`, `verifyingContract`.
     * The `chainId` is the current network's `chainId`, and the `verifyingContract` is this Forwarder's address.
     * This method accepts the domain name and version to create and register the domain separator value.
     * @param name The domain's display name.
     * @param version The domain/protocol version.
     */
    function registerDomainSeparator(string calldata name, string calldata version) external;
}
合同源代码
文件 7 的 8:Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}
合同源代码
文件 8 的 8:Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}
设置
{
  "compilationTarget": {
    "contracts/GrappaForwarder.sol": "GrappaForwarder"
  },
  "evmVersion": "london",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs",
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "remappings": []
}
ABI
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"domainSeparator","type":"bytes32"},{"indexed":false,"internalType":"bytes","name":"domainValue","type":"bytes"}],"name":"DomainRegistered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"typeHash","type":"bytes32"},{"indexed":false,"internalType":"string","name":"typeStr","type":"string"}],"name":"RequestTypeRegistered","type":"event"},{"inputs":[],"name":"EIP712_DOMAIN_TYPE","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"GENERIC_PARAMS","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gas","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"validUntilTime","type":"uint256"}],"internalType":"struct IForwarder.ForwardRequest","name":"req","type":"tuple"},{"internalType":"bytes32","name":"requestTypeHash","type":"bytes32"},{"internalType":"bytes","name":"suffixData","type":"bytes"}],"name":"_getEncoded","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"domains","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gas","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"validUntilTime","type":"uint256"}],"internalType":"struct IForwarder.ForwardRequest","name":"req","type":"tuple"},{"internalType":"bytes32","name":"domainSeparator","type":"bytes32"},{"internalType":"bytes32","name":"requestTypeHash","type":"bytes32"},{"internalType":"bytes","name":"suffixData","type":"bytes"},{"internalType":"bytes","name":"sig","type":"bytes"}],"name":"execute","outputs":[{"internalType":"bool","name":"success","type":"bool"},{"internalType":"bytes","name":"ret","type":"bytes"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"}],"name":"getNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"}],"name":"registerDomainSeparator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"typeName","type":"string"},{"internalType":"string","name":"typeSuffix","type":"string"}],"name":"registerRequestType","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"typeHashes","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gas","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"validUntilTime","type":"uint256"}],"internalType":"struct IForwarder.ForwardRequest","name":"req","type":"tuple"},{"internalType":"bytes32","name":"domainSeparator","type":"bytes32"},{"internalType":"bytes32","name":"requestTypeHash","type":"bytes32"},{"internalType":"bytes","name":"suffixData","type":"bytes"},{"internalType":"bytes","name":"sig","type":"bytes"}],"name":"verify","outputs":[],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]