// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
interface IPoolExtension {
function setShare(
address wallet,
uint256 balanceChange,
bool isRemoving
) external;
function reStake(
address wallet,
uint256 amount
) external;
function calculateRewards(address stakeHolder) external view returns (uint);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/// @author RetreebInc
/// @title Interface Staking Platform with fixed APY and lockup
interface ITokenStakingPool {
/**
* @notice function that returns the amount of total Staked tokens
* for a specific user
* @param stakeHolder, address of the user to check
* @return uint amount of the total deposited Tokens by the caller
*/
function amountStaked(address stakeHolder) external view returns (uint);
/**
* @notice function that returns the amount of total Staked tokens
* on the smart contract
* @return uint amount of the total deposited Tokens
*/
function totalDeposited() external view returns (uint);
/**
* @notice function that returns the amount of pending rewards
* that can be claimed by the user
* @param stakeHolder, address of the user to be checked
* @return uint amount of claimable rewards
*/
function rewardOf(address stakeHolder) external view returns (uint);
/**
* @notice function that claims pending rewards
* @dev transfer the pending rewards to the `msg.sender`
*/
function claimRewards() external;
/**
* @dev Emitted when `amount` tokens are deposited into
* staking platform
*/
event Deposit(address indexed owner, uint amount);
/**
* @dev Emitted when user withdraw deposited `amount`
*/
event Withdraw(address indexed owner, uint amount);
/**
* @dev Emitted when `stakeHolder` claim rewards
*/
event Claim(address indexed stakeHolder, uint amount);
/**
* @dev Emitted when staking has started
*/
event StartStaking(uint startPeriod, uint endingPeriod);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import '@openzeppelin/contracts/access/Ownable.sol';
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol';
import './interfaces/ITokenStakingPool.sol';
import './interfaces/IPoolExtension.sol';
/// @title Staking Platform with fixed APY and lockup
contract TokenStakingPool is IPoolExtension, ITokenStakingPool, Ownable {
using SafeERC20 for IERC20;
address public immutable mainPool;
IERC20 public immutable token;
IERC20 public rewardToken;
uint public fixedAPR;
uint private _totalStaked;
mapping(address => uint) public staked;
mapping(address => uint) private _rewardsToClaim;
mapping(address => uint) public _userStartTime;
modifier onlyPool() {
require(_msgSender() == mainPool, 'Unauthorized');
_;
}
/**
* @notice constructor contains all the parameters of the staking platform
* @dev all parameters are immutable
* @param _token, address of the token to be staked
* @param _fixedAPR, the fixed APY (in %) 10 = 10%, 50 = 50%
* @param _token, address of the token to be rewarded
*/
constructor(address _mainPool, IERC20 _token, uint _fixedAPR, IERC20 _rewardToken) Ownable(_msgSender()) {
mainPool = _mainPool;
token = _token;
rewardToken = _rewardToken;
fixedAPR = _fixedAPR;
}
function setShare(
address wallet,
uint256 balanceChange,
bool isRemoving
) external override onlyPool {
if (isRemoving) {
_withdraw(wallet, balanceChange);
} else {
_deposit(wallet, balanceChange);
}
}
function reStake(
address wallet,
uint256 amount
) external override onlyPool {
_rewardsToClaim[wallet] = 0;
_userStartTime[wallet] = block.timestamp;
}
/**
* @notice function that allows a user to deposit tokens
* @dev user must first approve the amount to deposit before calling this function,
* cannot exceed the `maxAmountStaked`
* @param amount, the amount to be deposited
* @dev that the amount deposited should greater than 0
*/
function _deposit(address wallet, uint amount) internal {
require(amount > 0, 'Amount must be greater than 0');
if (_userStartTime[wallet] == 0) {
_userStartTime[wallet] = block.timestamp;
}
_updateRewards(wallet);
staked[wallet] += amount;
_totalStaked += amount;
emit Deposit(wallet, amount);
}
/**
* @notice function that allows a user to withdraw its initial deposit
* @param amount, amount to withdraw
* @dev `amount` must be higher than `0`
* @dev `amount` must be lower or equal to the amount staked
* withdraw reset all states variable for the `msg.sender` to 0, and claim rewards
* if rewards to claim
*/
function _withdraw(address wallet, uint amount) internal {
require(amount > 0, 'Amount must be greater than 0');
require(amount <= staked[wallet], 'Amount higher than stakedAmount');
_updateRewards(wallet);
if (_rewardsToClaim[wallet] > 0) {
_claimRewards(wallet);
}
_totalStaked -= amount;
staked[wallet] -= amount;
emit Withdraw(wallet, amount);
}
/**
* @notice claim all remaining balance on the contract
* Residual balance is all the remaining tokens that have not been distributed
* (e.g, in case the number of stakeholders is not sufficient)
* @dev Can only be called after the end of the staking period
* Cannot claim initial stakeholders deposit
*/
function withdrawResidualBalance() external onlyOwner {
uint residualBalance = rewardToken.balanceOf(address(this)) - _totalStaked;
require(residualBalance > 0, 'No residual Balance to withdraw');
rewardToken.safeTransfer(_msgSender(), residualBalance);
}
/**
* @notice function that allows the owner to set the APY
* @param _newAPR, the new APY to be set (in %) 10 = 10%, 50 = 50
*/
function setAPR(uint8 _newAPR) external onlyOwner {
fixedAPR = _newAPR;
}
/**
* @notice function that allows the owner to set the APY
* @param _newRewardToken, the new address of the token to be rewarded
*/
function setRewardToken(IERC20 _newRewardToken) external onlyOwner {
rewardToken = _newRewardToken;
}
/**
* @notice function that returns the amount of total Staked tokens
* for a specific user
* @param stakeHolder, address of the user to check
* @return uint amount of the total deposited Tokens by the caller
*/
function amountStaked(
address stakeHolder
) external view override returns (uint) {
return staked[stakeHolder];
}
/**
* @notice function that returns the amount of total Staked tokens
* on the smart contract
* @return uint amount of the total deposited Tokens
*/
function totalDeposited() external view override returns (uint) {
return _totalStaked;
}
/**
* @notice function that returns the amount of pending rewards
* that can be claimed by the user
* @param stakeHolder, address of the user to be checked
* @return uint amount of claimable rewards
*/
function rewardOf(address stakeHolder) external view override returns (uint) {
return calculateRewards(stakeHolder);
}
/**
* @notice function that claims pending rewards
* @dev transfer the pending rewards to the `msg.sender`
*/
function claimRewards() external override {
_claimRewards(_msgSender());
}
/**
* @notice calculate rewards based on the `fixedAPR`
* @param stakeHolder, address of the user to be checked
* @return uint amount of claimable tokens of the specified address
*/
function calculateRewards(address stakeHolder) public view returns (uint) {
uint _timeStaked = block.timestamp - _userStartTime[stakeHolder];
return
((staked[stakeHolder] * fixedAPR * _timeStaked) / 365 days / 100) +
_rewardsToClaim[stakeHolder];
}
/**
* @notice internal function that claims pending rewards
* @dev transfer the pending rewards to the user address
*/
function _claimRewards(address stakeHolder) private {
_updateRewards(stakeHolder);
uint rewardsToClaim = _rewardsToClaim[stakeHolder];
require(rewardsToClaim > 0, 'Nothing to claim');
_rewardsToClaim[stakeHolder] = 0;
rewardToken.safeTransfer(stakeHolder, rewardsToClaim);
emit Claim(stakeHolder, rewardsToClaim);
}
function withdrawETH(uint256 amount) external onlyOwner {
require(amount <= address(this).balance, "Insufficient balance");
address payable to = payable(_msgSender());
to.transfer(amount);
}
function withdrawAnyERC20(uint256 amount, address contractAddress) external onlyOwner {
IERC20 _token = IERC20(contractAddress);
require(amount <= _token.balanceOf(address(this)), "Insufficient balance");
_token.safeTransfer(
_msgSender(),
amount
);
}
/**
* @notice function that update pending rewards
* and shift them to rewardsToClaim
* @dev update rewards claimable
* and check the time spent since deposit for the `msg.sender`
*/
function _updateRewards(address stakeHolder) private {
_rewardsToClaim[stakeHolder] = calculateRewards(stakeHolder);
_userStartTime[stakeHolder] = block.timestamp;
}
}
{
"compilationTarget": {
"contracts/contracts/TokenStakingPool.sol": "TokenStakingPool"
},
"evmVersion": "cancun",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_mainPool","type":"address"},{"internalType":"contract IERC20","name":"_token","type":"address"},{"internalType":"uint256","name":"_fixedAPR","type":"uint256"},{"internalType":"contract IERC20","name":"_rewardToken","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"stakeHolder","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Claim","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"startPeriod","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endingPeriod","type":"uint256"}],"name":"StartStaking","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"_userStartTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"stakeHolder","type":"address"}],"name":"amountStaked","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"stakeHolder","type":"address"}],"name":"calculateRewards","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"fixedAPR","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mainPool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"wallet","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"reStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"stakeHolder","type":"address"}],"name":"rewardOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"_newAPR","type":"uint8"}],"name":"setAPR","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"_newRewardToken","type":"address"}],"name":"setRewardToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"wallet","type":"address"},{"internalType":"uint256","name":"balanceChange","type":"uint256"},{"internalType":"bool","name":"isRemoving","type":"bool"}],"name":"setShare","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"staked","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalDeposited","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"contractAddress","type":"address"}],"name":"withdrawAnyERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawETH","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawResidualBalance","outputs":[],"stateMutability":"nonpayable","type":"function"}]