// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControlDefaultAdminRules.sol)
pragma solidity ^0.8.0;
import "./AccessControl.sol";
import "./IAccessControlDefaultAdminRules.sol";
import "../utils/math/SafeCast.sol";
import "../interfaces/IERC5313.sol";
/**
* @dev Extension of {AccessControl} that allows specifying special rules to manage
* the `DEFAULT_ADMIN_ROLE` holder, which is a sensitive role with special permissions
* over other roles that may potentially have privileged rights in the system.
*
* If a specific role doesn't have an admin role assigned, the holder of the
* `DEFAULT_ADMIN_ROLE` will have the ability to grant it and revoke it.
*
* This contract implements the following risk mitigations on top of {AccessControl}:
*
* * Only one account holds the `DEFAULT_ADMIN_ROLE` since deployment until it's potentially renounced.
* * Enforces a 2-step process to transfer the `DEFAULT_ADMIN_ROLE` to another account.
* * Enforces a configurable delay between the two steps, with the ability to cancel before the transfer is accepted.
* * The delay can be changed by scheduling, see {changeDefaultAdminDelay}.
* * It is not possible to use another role to manage the `DEFAULT_ADMIN_ROLE`.
*
* Example usage:
*
* ```solidity
* contract MyToken is AccessControlDefaultAdminRules {
* constructor() AccessControlDefaultAdminRules(
* 3 days,
* msg.sender // Explicit initial `DEFAULT_ADMIN_ROLE` holder
* ) {}
* }
* ```
*
* _Available since v4.9._
*/
abstract contract AccessControlDefaultAdminRules is IAccessControlDefaultAdminRules, IERC5313, AccessControl {
// pending admin pair read/written together frequently
address private _pendingDefaultAdmin;
uint48 private _pendingDefaultAdminSchedule; // 0 == unset
uint48 private _currentDelay;
address private _currentDefaultAdmin;
// pending delay pair read/written together frequently
uint48 private _pendingDelay;
uint48 private _pendingDelaySchedule; // 0 == unset
/**
* @dev Sets the initial values for {defaultAdminDelay} and {defaultAdmin} address.
*/
constructor(uint48 initialDelay, address initialDefaultAdmin) {
require(initialDefaultAdmin != address(0), "AccessControl: 0 default admin");
_currentDelay = initialDelay;
_grantRole(DEFAULT_ADMIN_ROLE, initialDefaultAdmin);
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControlDefaultAdminRules).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC5313-owner}.
*/
function owner() public view virtual returns (address) {
return defaultAdmin();
}
///
/// Override AccessControl role management
///
/**
* @dev See {AccessControl-grantRole}. Reverts for `DEFAULT_ADMIN_ROLE`.
*/
function grantRole(bytes32 role, address account) public virtual override(AccessControl, IAccessControl) {
require(role != DEFAULT_ADMIN_ROLE, "AccessControl: can't directly grant default admin role");
super.grantRole(role, account);
}
/**
* @dev See {AccessControl-revokeRole}. Reverts for `DEFAULT_ADMIN_ROLE`.
*/
function revokeRole(bytes32 role, address account) public virtual override(AccessControl, IAccessControl) {
require(role != DEFAULT_ADMIN_ROLE, "AccessControl: can't directly revoke default admin role");
super.revokeRole(role, account);
}
/**
* @dev See {AccessControl-renounceRole}.
*
* For the `DEFAULT_ADMIN_ROLE`, it only allows renouncing in two steps by first calling
* {beginDefaultAdminTransfer} to the `address(0)`, so it's required that the {pendingDefaultAdmin} schedule
* has also passed when calling this function.
*
* After its execution, it will not be possible to call `onlyRole(DEFAULT_ADMIN_ROLE)` functions.
*
* NOTE: Renouncing `DEFAULT_ADMIN_ROLE` will leave the contract without a {defaultAdmin},
* thereby disabling any functionality that is only available for it, and the possibility of reassigning a
* non-administrated role.
*/
function renounceRole(bytes32 role, address account) public virtual override(AccessControl, IAccessControl) {
if (role == DEFAULT_ADMIN_ROLE && account == defaultAdmin()) {
(address newDefaultAdmin, uint48 schedule) = pendingDefaultAdmin();
require(
newDefaultAdmin == address(0) && _isScheduleSet(schedule) && _hasSchedulePassed(schedule),
"AccessControl: only can renounce in two delayed steps"
);
delete _pendingDefaultAdminSchedule;
}
super.renounceRole(role, account);
}
/**
* @dev See {AccessControl-_grantRole}.
*
* For `DEFAULT_ADMIN_ROLE`, it only allows granting if there isn't already a {defaultAdmin} or if the
* role has been previously renounced.
*
* NOTE: Exposing this function through another mechanism may make the `DEFAULT_ADMIN_ROLE`
* assignable again. Make sure to guarantee this is the expected behavior in your implementation.
*/
function _grantRole(bytes32 role, address account) internal virtual override {
if (role == DEFAULT_ADMIN_ROLE) {
require(defaultAdmin() == address(0), "AccessControl: default admin already granted");
_currentDefaultAdmin = account;
}
super._grantRole(role, account);
}
/**
* @dev See {AccessControl-_revokeRole}.
*/
function _revokeRole(bytes32 role, address account) internal virtual override {
if (role == DEFAULT_ADMIN_ROLE && account == defaultAdmin()) {
delete _currentDefaultAdmin;
}
super._revokeRole(role, account);
}
/**
* @dev See {AccessControl-_setRoleAdmin}. Reverts for `DEFAULT_ADMIN_ROLE`.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual override {
require(role != DEFAULT_ADMIN_ROLE, "AccessControl: can't violate default admin rules");
super._setRoleAdmin(role, adminRole);
}
///
/// AccessControlDefaultAdminRules accessors
///
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function defaultAdmin() public view virtual returns (address) {
return _currentDefaultAdmin;
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function pendingDefaultAdmin() public view virtual returns (address newAdmin, uint48 schedule) {
return (_pendingDefaultAdmin, _pendingDefaultAdminSchedule);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function defaultAdminDelay() public view virtual returns (uint48) {
uint48 schedule = _pendingDelaySchedule;
return (_isScheduleSet(schedule) && _hasSchedulePassed(schedule)) ? _pendingDelay : _currentDelay;
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function pendingDefaultAdminDelay() public view virtual returns (uint48 newDelay, uint48 schedule) {
schedule = _pendingDelaySchedule;
return (_isScheduleSet(schedule) && !_hasSchedulePassed(schedule)) ? (_pendingDelay, schedule) : (0, 0);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function defaultAdminDelayIncreaseWait() public view virtual returns (uint48) {
return 5 days;
}
///
/// AccessControlDefaultAdminRules public and internal setters for defaultAdmin/pendingDefaultAdmin
///
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function beginDefaultAdminTransfer(address newAdmin) public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
_beginDefaultAdminTransfer(newAdmin);
}
/**
* @dev See {beginDefaultAdminTransfer}.
*
* Internal function without access restriction.
*/
function _beginDefaultAdminTransfer(address newAdmin) internal virtual {
uint48 newSchedule = SafeCast.toUint48(block.timestamp) + defaultAdminDelay();
_setPendingDefaultAdmin(newAdmin, newSchedule);
emit DefaultAdminTransferScheduled(newAdmin, newSchedule);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function cancelDefaultAdminTransfer() public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
_cancelDefaultAdminTransfer();
}
/**
* @dev See {cancelDefaultAdminTransfer}.
*
* Internal function without access restriction.
*/
function _cancelDefaultAdminTransfer() internal virtual {
_setPendingDefaultAdmin(address(0), 0);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function acceptDefaultAdminTransfer() public virtual {
(address newDefaultAdmin, ) = pendingDefaultAdmin();
require(_msgSender() == newDefaultAdmin, "AccessControl: pending admin must accept");
_acceptDefaultAdminTransfer();
}
/**
* @dev See {acceptDefaultAdminTransfer}.
*
* Internal function without access restriction.
*/
function _acceptDefaultAdminTransfer() internal virtual {
(address newAdmin, uint48 schedule) = pendingDefaultAdmin();
require(_isScheduleSet(schedule) && _hasSchedulePassed(schedule), "AccessControl: transfer delay not passed");
_revokeRole(DEFAULT_ADMIN_ROLE, defaultAdmin());
_grantRole(DEFAULT_ADMIN_ROLE, newAdmin);
delete _pendingDefaultAdmin;
delete _pendingDefaultAdminSchedule;
}
///
/// AccessControlDefaultAdminRules public and internal setters for defaultAdminDelay/pendingDefaultAdminDelay
///
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function changeDefaultAdminDelay(uint48 newDelay) public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
_changeDefaultAdminDelay(newDelay);
}
/**
* @dev See {changeDefaultAdminDelay}.
*
* Internal function without access restriction.
*/
function _changeDefaultAdminDelay(uint48 newDelay) internal virtual {
uint48 newSchedule = SafeCast.toUint48(block.timestamp) + _delayChangeWait(newDelay);
_setPendingDelay(newDelay, newSchedule);
emit DefaultAdminDelayChangeScheduled(newDelay, newSchedule);
}
/**
* @inheritdoc IAccessControlDefaultAdminRules
*/
function rollbackDefaultAdminDelay() public virtual onlyRole(DEFAULT_ADMIN_ROLE) {
_rollbackDefaultAdminDelay();
}
/**
* @dev See {rollbackDefaultAdminDelay}.
*
* Internal function without access restriction.
*/
function _rollbackDefaultAdminDelay() internal virtual {
_setPendingDelay(0, 0);
}
/**
* @dev Returns the amount of seconds to wait after the `newDelay` will
* become the new {defaultAdminDelay}.
*
* The value returned guarantees that if the delay is reduced, it will go into effect
* after a wait that honors the previously set delay.
*
* See {defaultAdminDelayIncreaseWait}.
*/
function _delayChangeWait(uint48 newDelay) internal view virtual returns (uint48) {
uint48 currentDelay = defaultAdminDelay();
// When increasing the delay, we schedule the delay change to occur after a period of "new delay" has passed, up
// to a maximum given by defaultAdminDelayIncreaseWait, by default 5 days. For example, if increasing from 1 day
// to 3 days, the new delay will come into effect after 3 days. If increasing from 1 day to 10 days, the new
// delay will come into effect after 5 days. The 5 day wait period is intended to be able to fix an error like
// using milliseconds instead of seconds.
//
// When decreasing the delay, we wait the difference between "current delay" and "new delay". This guarantees
// that an admin transfer cannot be made faster than "current delay" at the time the delay change is scheduled.
// For example, if decreasing from 10 days to 3 days, the new delay will come into effect after 7 days.
return
newDelay > currentDelay
? uint48(Math.min(newDelay, defaultAdminDelayIncreaseWait())) // no need to safecast, both inputs are uint48
: currentDelay - newDelay;
}
///
/// Private setters
///
/**
* @dev Setter of the tuple for pending admin and its schedule.
*
* May emit a DefaultAdminTransferCanceled event.
*/
function _setPendingDefaultAdmin(address newAdmin, uint48 newSchedule) private {
(, uint48 oldSchedule) = pendingDefaultAdmin();
_pendingDefaultAdmin = newAdmin;
_pendingDefaultAdminSchedule = newSchedule;
// An `oldSchedule` from `pendingDefaultAdmin()` is only set if it hasn't been accepted.
if (_isScheduleSet(oldSchedule)) {
// Emit for implicit cancellations when another default admin was scheduled.
emit DefaultAdminTransferCanceled();
}
}
/**
* @dev Setter of the tuple for pending delay and its schedule.
*
* May emit a DefaultAdminDelayChangeCanceled event.
*/
function _setPendingDelay(uint48 newDelay, uint48 newSchedule) private {
uint48 oldSchedule = _pendingDelaySchedule;
if (_isScheduleSet(oldSchedule)) {
if (_hasSchedulePassed(oldSchedule)) {
// Materialize a virtual delay
_currentDelay = _pendingDelay;
} else {
// Emit for implicit cancellations when another delay was scheduled.
emit DefaultAdminDelayChangeCanceled();
}
}
_pendingDelay = newDelay;
_pendingDelaySchedule = newSchedule;
}
///
/// Private helpers
///
/**
* @dev Defines if an `schedule` is considered set. For consistency purposes.
*/
function _isScheduleSet(uint48 schedule) private pure returns (bool) {
return schedule != 0;
}
/**
* @dev Defines if an `schedule` is considered passed. For consistency purposes.
*/
function _hasSchedulePassed(uint48 schedule) private view returns (bool) {
return schedule < block.timestamp;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Checkpoints.sol)
// This file was procedurally generated from scripts/generate/templates/Checkpoints.js.
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SafeCast.sol";
/**
* @dev This library defines the `History` struct, for checkpointing values as they change at different points in
* time, and later looking up past values by block number. See {Votes} as an example.
*
* To create a history of checkpoints define a variable type `Checkpoints.History` in your contract, and store a new
* checkpoint for the current transaction block using the {push} function.
*
* _Available since v4.5._
*/
library Checkpoints {
struct History {
Checkpoint[] _checkpoints;
}
struct Checkpoint {
uint32 _blockNumber;
uint224 _value;
}
/**
* @dev Returns the value at a given block number. If a checkpoint is not available at that block, the closest one
* before it is returned, or zero otherwise. Because the number returned corresponds to that at the end of the
* block, the requested block number must be in the past, excluding the current block.
*/
function getAtBlock(History storage self, uint256 blockNumber) internal view returns (uint256) {
require(blockNumber < block.number, "Checkpoints: block not yet mined");
uint32 key = SafeCast.toUint32(blockNumber);
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value at a given block number. If a checkpoint is not available at that block, the closest one
* before it is returned, or zero otherwise. Similar to {upperLookup} but optimized for the case when the searched
* checkpoint is probably "recent", defined as being among the last sqrt(N) checkpoints where N is the number of
* checkpoints.
*/
function getAtProbablyRecentBlock(History storage self, uint256 blockNumber) internal view returns (uint256) {
require(blockNumber < block.number, "Checkpoints: block not yet mined");
uint32 key = SafeCast.toUint32(blockNumber);
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._blockNumber) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Pushes a value onto a History so that it is stored as the checkpoint for the current block.
*
* Returns previous value and new value.
*/
function push(History storage self, uint256 value) internal returns (uint256, uint256) {
return _insert(self._checkpoints, SafeCast.toUint32(block.number), SafeCast.toUint224(value));
}
/**
* @dev Pushes a value onto a History, by updating the latest value using binary operation `op`. The new value will
* be set to `op(latest, delta)`.
*
* Returns previous value and new value.
*/
function push(
History storage self,
function(uint256, uint256) view returns (uint256) op,
uint256 delta
) internal returns (uint256, uint256) {
return push(self, op(latest(self), delta));
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(History storage self) internal view returns (uint224) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(
History storage self
) internal view returns (bool exists, uint32 _blockNumber, uint224 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._blockNumber, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoint.
*/
function length(History storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(Checkpoint[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) {
uint256 pos = self.length;
if (pos > 0) {
// Copying to memory is important here.
Checkpoint memory last = _unsafeAccess(self, pos - 1);
// Checkpoint keys must be non-decreasing.
require(last._blockNumber <= key, "Checkpoint: decreasing keys");
// Update or push new checkpoint
if (last._blockNumber == key) {
_unsafeAccess(self, pos - 1)._value = value;
} else {
self.push(Checkpoint({_blockNumber: key, _value: value}));
}
return (last._value, value);
} else {
self.push(Checkpoint({_blockNumber: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` if there is none.
* `low` and `high` define a section where to do the search, with inclusive `low` and exclusive `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint[] storage self,
uint32 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._blockNumber > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or `high` if there is none.
* `low` and `high` define a section where to do the search, with inclusive `low` and exclusive `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint[] storage self,
uint32 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._blockNumber < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(Checkpoint[] storage self, uint256 pos) private pure returns (Checkpoint storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
struct Trace224 {
Checkpoint224[] _checkpoints;
}
struct Checkpoint224 {
uint32 _key;
uint224 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*/
function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if there is none.
*/
function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero if there is none.
*/
function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high keys).
*/
function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace224 storage self) internal view returns (uint224) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint224 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoint.
*/
function length(Trace224 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) {
uint256 pos = self.length;
if (pos > 0) {
// Copying to memory is important here.
Checkpoint224 memory last = _unsafeAccess(self, pos - 1);
// Checkpoint keys must be non-decreasing.
require(last._key <= key, "Checkpoint: decreasing keys");
// Update or push new checkpoint
if (last._key == key) {
_unsafeAccess(self, pos - 1)._value = value;
} else {
self.push(Checkpoint224({_key: key, _value: value}));
}
return (last._value, value);
} else {
self.push(Checkpoint224({_key: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` if there is none.
* `low` and `high` define a section where to do the search, with inclusive `low` and exclusive `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint224[] storage self,
uint32 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or `high` if there is none.
* `low` and `high` define a section where to do the search, with inclusive `low` and exclusive `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint224[] storage self,
uint32 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint224[] storage self,
uint256 pos
) private pure returns (Checkpoint224 storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
struct Trace160 {
Checkpoint160[] _checkpoints;
}
struct Checkpoint160 {
uint96 _key;
uint160 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*/
function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if there is none.
*/
function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero if there is none.
*/
function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high keys).
*/
function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace160 storage self) internal view returns (uint160) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint160 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoint.
*/
function length(Trace160 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) {
uint256 pos = self.length;
if (pos > 0) {
// Copying to memory is important here.
Checkpoint160 memory last = _unsafeAccess(self, pos - 1);
// Checkpoint keys must be non-decreasing.
require(last._key <= key, "Checkpoint: decreasing keys");
// Update or push new checkpoint
if (last._key == key) {
_unsafeAccess(self, pos - 1)._value = value;
} else {
self.push(Checkpoint160({_key: key, _value: value}));
}
return (last._value, value);
} else {
self.push(Checkpoint160({_key: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` if there is none.
* `low` and `high` define a section where to do the search, with inclusive `low` and exclusive `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint160[] storage self,
uint96 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or `high` if there is none.
* `low` and `high` define a section where to do the search, with inclusive `low` and exclusive `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint160[] storage self,
uint96 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint160[] storage self,
uint256 pos
) private pure returns (Checkpoint160 storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import {TypeAndVersionInterface} from
"@chainlink/contracts/src/v0.8/interfaces/TypeAndVersionInterface.sol";
import {MerkleProof} from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import {IMerkleAccessController} from "../interfaces/IMerkleAccessController.sol";
import {OperatorStakingPool} from "./OperatorStakingPool.sol";
import {StakingPoolBase} from "./StakingPoolBase.sol";
/// @notice This contract manages the staking of LINK tokens for the community stakers.
/// @dev This contract inherits the StakingPoolBase contract and interacts with the MigrationProxy,
/// OperatorStakingPool, and RewardVault contracts.
/// @dev invariant Operators cannot stake in the community staking pool.
contract CommunityStakingPool is StakingPoolBase, IMerkleAccessController, TypeAndVersionInterface {
/// @notice This error is thrown when the pool is opened with an empty
/// merkle root
error MerkleRootNotSet();
/// @notice This event is emitted when the operator staking pool is changed
/// @param oldOperatorStakingPool The old operator staking pool
/// @param newOperatorStakingPool The new operator staking pool
event OperatorStakingPoolChanged(
address indexed oldOperatorStakingPool, address indexed newOperatorStakingPool
);
/// @notice This struct defines the params required by the Staking contract's
/// constructor.
struct ConstructorParams {
/// @notice The base staking pool constructor parameters
ConstructorParamsBase baseParams;
/// @notice The operator staking pool contract
OperatorStakingPool operatorStakingPool;
}
/// @notice The operator staking pool contract
OperatorStakingPool private s_operatorStakingPool;
/// @notice The merkle root of the merkle tree generated from the list
/// of staker addresses with early access.
bytes32 private s_merkleRoot;
constructor(ConstructorParams memory params) StakingPoolBase(params.baseParams) {
if (address(params.operatorStakingPool) == address(0)) {
revert InvalidZeroAddress();
}
s_operatorStakingPool = params.operatorStakingPool;
}
// =======================
// IMerkleAccessController
// =======================
/// @inheritdoc IMerkleAccessController
function hasAccess(address staker, bytes32[] calldata proof) external view returns (bool) {
return _hasAccess(staker, proof);
}
/// @inheritdoc IMerkleAccessController
/// @dev precondition The caller must have the initiator admin role.
/// @dev precondition Cannot be called after the pool is closed.
function setMerkleRoot(bytes32 newMerkleRoot) external onlyRole(INITIATOR_ROLE) whenBeforeClosing {
bytes32 oldMerkleRoot = s_merkleRoot;
if (oldMerkleRoot == newMerkleRoot) return;
s_merkleRoot = newMerkleRoot;
emit MerkleRootChanged(oldMerkleRoot, newMerkleRoot);
}
/// @inheritdoc IMerkleAccessController
function getMerkleRoot() external view returns (bytes32) {
return s_merkleRoot;
}
/// @notice This function sets the operator staking pool
/// @param newOperatorStakingPool The new operator staking pool
/// @dev precondition The caller must have the default admin role.
function setOperatorStakingPool(OperatorStakingPool newOperatorStakingPool)
external
onlyRole(DEFAULT_ADMIN_ROLE)
{
if (address(newOperatorStakingPool) == address(0)) revert InvalidZeroAddress();
address oldOperatorStakingPool = address(s_operatorStakingPool);
if (oldOperatorStakingPool == address(newOperatorStakingPool)) return;
s_operatorStakingPool = newOperatorStakingPool;
emit OperatorStakingPoolChanged(oldOperatorStakingPool, address(newOperatorStakingPool));
}
// =======================
// TypeAndVersionInterface
// =======================
/// @inheritdoc TypeAndVersionInterface
function typeAndVersion() external pure virtual override returns (string memory) {
return "CommunityStakingPool 1.0.0";
}
// ===============
// StakingPoolBase
// ===============
/// @inheritdoc StakingPoolBase
function _validateOnTokenTransfer(
address sender,
address staker,
bytes calldata data
) internal view override(StakingPoolBase) {
// check if staker has access
// if the sender is the migration proxy, the staker is allowed to stake
// if currently in public phase (merkle root set to empty bytes) data is ignored
// if in the access limited phase data is the merkle proof
// if in migrations only phase, the merkle root is set to double hash of the migration proxy
// address. This is essentially only used as a placeholder to differentiate between the open
// phase (empty merkle root) and access limited phase (merkle root generated from allowlist)
if (
sender != address(s_migrationProxy) && s_merkleRoot != bytes32(0)
&& !_hasAccess(staker, abi.decode(data, (bytes32[])))
) {
revert AccessForbidden();
}
// check if the sender is an operator
if (s_operatorStakingPool.isOperator(staker) || s_operatorStakingPool.isRemoved(staker)) {
revert AccessForbidden();
}
}
/// @inheritdoc StakingPoolBase
function _validateBeforeOpen() internal view override(StakingPoolBase) {
if (s_merkleRoot == bytes32(0)) {
revert MerkleRootNotSet();
}
}
/// @notice Util function that validates if a community staker has access to an
/// access limited community staking pool
/// @param staker The community staker's address
/// @param proof Merkle proof for the community staker's allowlist
/// @return bool True if the community staker has access to the access limited
/// community staking pool
function _hasAccess(address staker, bytes32[] memory proof) private view returns (bool) {
if (s_merkleRoot == bytes32(0)) return true;
return MerkleProof.verify({
proof: proof,
root: s_merkleRoot,
leaf: keccak256(bytes.concat(keccak256(abi.encode(staker))))
});
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.6;
interface ERC677ReceiverInterface {
function onTokenTransfer(
address sender,
uint256 amount,
bytes calldata data
) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
/*//////////////////////////////////////////////////////////////
SIMPLIFIED FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
uint256 internal constant MAX_UINT256 = 2**256 - 1;
uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
}
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
}
function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
}
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
}
/*//////////////////////////////////////////////////////////////
LOW LEVEL FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
function mulDivDown(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
revert(0, 0)
}
// Divide x * y by the denominator.
z := div(mul(x, y), denominator)
}
}
function mulDivUp(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
revert(0, 0)
}
// If x * y modulo the denominator is strictly greater than 0,
// 1 is added to round up the division of x * y by the denominator.
z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
}
}
function rpow(
uint256 x,
uint256 n,
uint256 scalar
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
switch x
case 0 {
switch n
case 0 {
// 0 ** 0 = 1
z := scalar
}
default {
// 0 ** n = 0
z := 0
}
}
default {
switch mod(n, 2)
case 0 {
// If n is even, store scalar in z for now.
z := scalar
}
default {
// If n is odd, store x in z for now.
z := x
}
// Shifting right by 1 is like dividing by 2.
let half := shr(1, scalar)
for {
// Shift n right by 1 before looping to halve it.
n := shr(1, n)
} n {
// Shift n right by 1 each iteration to halve it.
n := shr(1, n)
} {
// Revert immediately if x ** 2 would overflow.
// Equivalent to iszero(eq(div(xx, x), x)) here.
if shr(128, x) {
revert(0, 0)
}
// Store x squared.
let xx := mul(x, x)
// Round to the nearest number.
let xxRound := add(xx, half)
// Revert if xx + half overflowed.
if lt(xxRound, xx) {
revert(0, 0)
}
// Set x to scaled xxRound.
x := div(xxRound, scalar)
// If n is even:
if mod(n, 2) {
// Compute z * x.
let zx := mul(z, x)
// If z * x overflowed:
if iszero(eq(div(zx, x), z)) {
// Revert if x is non-zero.
if iszero(iszero(x)) {
revert(0, 0)
}
}
// Round to the nearest number.
let zxRound := add(zx, half)
// Revert if zx + half overflowed.
if lt(zxRound, zx) {
revert(0, 0)
}
// Return properly scaled zxRound.
z := div(zxRound, scalar)
}
}
}
}
}
/*//////////////////////////////////////////////////////////////
GENERAL NUMBER UTILITIES
//////////////////////////////////////////////////////////////*/
function sqrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
let y := x // We start y at x, which will help us make our initial estimate.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// We check y >= 2^(k + 8) but shift right by k bits
// each branch to ensure that if x >= 256, then y >= 256.
if iszero(lt(y, 0x10000000000000000000000000000000000)) {
y := shr(128, y)
z := shl(64, z)
}
if iszero(lt(y, 0x1000000000000000000)) {
y := shr(64, y)
z := shl(32, z)
}
if iszero(lt(y, 0x10000000000)) {
y := shr(32, y)
z := shl(16, z)
}
if iszero(lt(y, 0x1000000)) {
y := shr(16, y)
z := shl(8, z)
}
// Goal was to get z*z*y within a small factor of x. More iterations could
// get y in a tighter range. Currently, we will have y in [256, 256*2^16).
// We ensured y >= 256 so that the relative difference between y and y+1 is small.
// That's not possible if x < 256 but we can just verify those cases exhaustively.
// Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
// Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
// Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
// For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
// (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
// Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
// sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
// There is no overflow risk here since y < 2^136 after the first branch above.
z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If x+1 is a perfect square, the Babylonian method cycles between
// floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
// Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
// If you don't care whether the floor or ceil square root is returned, you can remove this statement.
z := sub(z, lt(div(x, z), z))
}
}
function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Mod x by y. Note this will return
// 0 instead of reverting if y is zero.
z := mod(x, y)
}
}
function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
// Divide x by y. Note this will return
// 0 instead of reverting if y is zero.
r := div(x, y)
}
}
function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Add 1 to x * y if x % y > 0. Note this will
// return 0 instead of reverting if y is zero.
z := add(gt(mod(x, y), 0), div(x, y))
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/IAccessControlDefaultAdminRules.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
/**
* @dev External interface of AccessControlDefaultAdminRules declared to support ERC165 detection.
*
* _Available since v4.9._
*/
interface IAccessControlDefaultAdminRules is IAccessControl {
/**
* @dev Emitted when a {defaultAdmin} transfer is started, setting `newAdmin` as the next
* address to become the {defaultAdmin} by calling {acceptDefaultAdminTransfer} only after `acceptSchedule`
* passes.
*/
event DefaultAdminTransferScheduled(address indexed newAdmin, uint48 acceptSchedule);
/**
* @dev Emitted when a {pendingDefaultAdmin} is reset if it was never accepted, regardless of its schedule.
*/
event DefaultAdminTransferCanceled();
/**
* @dev Emitted when a {defaultAdminDelay} change is started, setting `newDelay` as the next
* delay to be applied between default admin transfer after `effectSchedule` has passed.
*/
event DefaultAdminDelayChangeScheduled(uint48 newDelay, uint48 effectSchedule);
/**
* @dev Emitted when a {pendingDefaultAdminDelay} is reset if its schedule didn't pass.
*/
event DefaultAdminDelayChangeCanceled();
/**
* @dev Returns the address of the current `DEFAULT_ADMIN_ROLE` holder.
*/
function defaultAdmin() external view returns (address);
/**
* @dev Returns a tuple of a `newAdmin` and an accept schedule.
*
* After the `schedule` passes, the `newAdmin` will be able to accept the {defaultAdmin} role
* by calling {acceptDefaultAdminTransfer}, completing the role transfer.
*
* A zero value only in `acceptSchedule` indicates no pending admin transfer.
*
* NOTE: A zero address `newAdmin` means that {defaultAdmin} is being renounced.
*/
function pendingDefaultAdmin() external view returns (address newAdmin, uint48 acceptSchedule);
/**
* @dev Returns the delay required to schedule the acceptance of a {defaultAdmin} transfer started.
*
* This delay will be added to the current timestamp when calling {beginDefaultAdminTransfer} to set
* the acceptance schedule.
*
* NOTE: If a delay change has been scheduled, it will take effect as soon as the schedule passes, making this
* function returns the new delay. See {changeDefaultAdminDelay}.
*/
function defaultAdminDelay() external view returns (uint48);
/**
* @dev Returns a tuple of `newDelay` and an effect schedule.
*
* After the `schedule` passes, the `newDelay` will get into effect immediately for every
* new {defaultAdmin} transfer started with {beginDefaultAdminTransfer}.
*
* A zero value only in `effectSchedule` indicates no pending delay change.
*
* NOTE: A zero value only for `newDelay` means that the next {defaultAdminDelay}
* will be zero after the effect schedule.
*/
function pendingDefaultAdminDelay() external view returns (uint48 newDelay, uint48 effectSchedule);
/**
* @dev Starts a {defaultAdmin} transfer by setting a {pendingDefaultAdmin} scheduled for acceptance
* after the current timestamp plus a {defaultAdminDelay}.
*
* Requirements:
*
* - Only can be called by the current {defaultAdmin}.
*
* Emits a DefaultAdminRoleChangeStarted event.
*/
function beginDefaultAdminTransfer(address newAdmin) external;
/**
* @dev Cancels a {defaultAdmin} transfer previously started with {beginDefaultAdminTransfer}.
*
* A {pendingDefaultAdmin} not yet accepted can also be cancelled with this function.
*
* Requirements:
*
* - Only can be called by the current {defaultAdmin}.
*
* May emit a DefaultAdminTransferCanceled event.
*/
function cancelDefaultAdminTransfer() external;
/**
* @dev Completes a {defaultAdmin} transfer previously started with {beginDefaultAdminTransfer}.
*
* After calling the function:
*
* - `DEFAULT_ADMIN_ROLE` should be granted to the caller.
* - `DEFAULT_ADMIN_ROLE` should be revoked from the previous holder.
* - {pendingDefaultAdmin} should be reset to zero values.
*
* Requirements:
*
* - Only can be called by the {pendingDefaultAdmin}'s `newAdmin`.
* - The {pendingDefaultAdmin}'s `acceptSchedule` should've passed.
*/
function acceptDefaultAdminTransfer() external;
/**
* @dev Initiates a {defaultAdminDelay} update by setting a {pendingDefaultAdminDelay} scheduled for getting
* into effect after the current timestamp plus a {defaultAdminDelay}.
*
* This function guarantees that any call to {beginDefaultAdminTransfer} done between the timestamp this
* method is called and the {pendingDefaultAdminDelay} effect schedule will use the current {defaultAdminDelay}
* set before calling.
*
* The {pendingDefaultAdminDelay}'s effect schedule is defined in a way that waiting until the schedule and then
* calling {beginDefaultAdminTransfer} with the new delay will take at least the same as another {defaultAdmin}
* complete transfer (including acceptance).
*
* The schedule is designed for two scenarios:
*
* - When the delay is changed for a larger one the schedule is `block.timestamp + newDelay` capped by
* {defaultAdminDelayIncreaseWait}.
* - When the delay is changed for a shorter one, the schedule is `block.timestamp + (current delay - new delay)`.
*
* A {pendingDefaultAdminDelay} that never got into effect will be canceled in favor of a new scheduled change.
*
* Requirements:
*
* - Only can be called by the current {defaultAdmin}.
*
* Emits a DefaultAdminDelayChangeScheduled event and may emit a DefaultAdminDelayChangeCanceled event.
*/
function changeDefaultAdminDelay(uint48 newDelay) external;
/**
* @dev Cancels a scheduled {defaultAdminDelay} change.
*
* Requirements:
*
* - Only can be called by the current {defaultAdmin}.
*
* May emit a DefaultAdminDelayChangeCanceled event.
*/
function rollbackDefaultAdminDelay() external;
/**
* @dev Maximum time in seconds for an increase to {defaultAdminDelay} (that is scheduled using {changeDefaultAdminDelay})
* to take effect. Default to 5 days.
*
* When the {defaultAdminDelay} is scheduled to be increased, it goes into effect after the new delay has passed with
* the purpose of giving enough time for reverting any accidental change (i.e. using milliseconds instead of seconds)
* that may lock the contract. However, to avoid excessive schedules, the wait is capped by this function and it can
* be overrode for a custom {defaultAdminDelay} increase scheduling.
*
* IMPORTANT: Make sure to add a reasonable amount of time while overriding this value, otherwise,
* there's a risk of setting a high new delay that goes into effect almost immediately without the
* possibility of human intervention in the case of an input error (eg. set milliseconds instead of seconds).
*/
function defaultAdminDelayIncreaseWait() external view returns (uint48);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5313.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface for the Light Contract Ownership Standard.
*
* A standardized minimal interface required to identify an account that controls a contract
*
* _Available since v4.9._
*/
interface IERC5313 {
/**
* @dev Gets the address of the owner.
*/
function owner() external view returns (address);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
interface IMerkleAccessController {
/// @notice Emitted when the contract owner updates the staking allowlist
/// @param oldMerkleRoot The root of the old Staking allowlist merkle tree
/// @param newMerkleRoot The root of a new Staking allowlist merkle tree
event MerkleRootChanged(bytes32 oldMerkleRoot, bytes32 newMerkleRoot);
/// @notice Validates if a community staker has access to the private staking pool
/// @param staker The community staker's address
/// @param proof Merkle proof for the community staker's allowlist
/// @return true If the staker has access to the private staking pool
function hasAccess(address staker, bytes32[] calldata proof) external view returns (bool);
/// @notice This function is called to update the staking allowlist in a private staking pool
/// @dev Only callable by the contract owner
/// @param newMerkleRoot Merkle Tree root, used to prove access for community stakers
/// will be required at opening but can be removed at any time by the owner when
/// staking access will be granted to the public.
function setMerkleRoot(bytes32 newMerkleRoot) external;
/// @notice This function returns the current root of the Staking allowlist merkle tree
/// @return The current root of the Staking allowlist merkle tree
function getMerkleRoot() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
interface IMigratable {
/// @notice This error is thrown when the owner tries to set the migration target to the
/// zero address or an invalid address as well as when the migration target is not set and owner
/// tries to migrate the contract.
error InvalidMigrationTarget();
/// @notice This event is emitted when the migration target is set
/// @param oldMigrationTarget The previous migration target
/// @param newMigrationTarget The updated migration target
event MigrationTargetSet(address indexed oldMigrationTarget, address indexed newMigrationTarget);
/// @notice Sets the address this contract will be upgraded to
/// @param newMigrationTarget The address of the migration target
function setMigrationTarget(address newMigrationTarget) external;
/// @notice Returns the current migration target of the contract
/// @return address The current migration target
function getMigrationTarget() external view returns (address);
/// @notice Migrates the contract
/// @param data Optional calldata to call on new contract
function migrate(bytes calldata data) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
interface IPausable {
/// @notice This function pauses the contract
/// @dev Sets the pause flag to true
function emergencyPause() external;
/// @notice This function unpauses the contract
/// @dev Sets the pause flag to false
function emergencyUnpause() external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
interface IRewardVault {
/// @notice This enum describes the different staker types
enum StakerType {
NOT_STAKED,
COMMUNITY,
OPERATOR
}
/// @notice This struct is used to store the reward information for a staker.
struct StakerReward {
/// @notice The staker's accrued multiplier-applied reward that's accounted for and stored.
/// This is used for storing delegated rewards and preserving the staker's past rewards between
/// unstakes or multiplier resets.
/// To get the full claimable reward amount, this value is added to the stored reward *
/// multiplier.
/// @dev This value is reset when a staker calls claimRewards and rewards
/// are transferred to the staker.
uint112 vestedBaseReward;
/// @notice The staker's accrued delegated reward that's accounted for and stored.
/// Delegated rewards are not subject to the ramp up multiplier and are immediately finalized.
/// @dev This value is reset when a staker calls claimRewards and rewards
/// are transferred to the staker.
uint112 vestedDelegatedReward;
/// @notice The last updated per-token base reward of the staker. This
/// value only increases over time
uint112 baseRewardPerToken;
/// @notice The last updated per-token delegated reward of the operator
uint112 operatorDelegatedRewardPerToken;
/// @notice The staker type
/// @dev This value is set once the first time a staker stakes. This value is used to enforce
/// that a community staker is not added as an operator.
StakerType stakerType;
/// @notice The amount of base rewards that the staker has claimed between
/// the last time they staked/unstaked until they stake, unstake again or
/// when an operator is removed.
/// @dev This is reset to 0 whenever concludeRewardPeriod is called
/// @dev This is set to vestedBaseReward whenever claimReward is called
/// @dev Invariant: The sum of unvestedBaseReward and claimedBaseRewardsInPeriod
/// is the total amount of base rewards a staker has earned since the last time
/// they stake/unstake.
uint112 claimedBaseRewardsInPeriod;
/// @notice The staker's earned but unvested base rewards. The staker's current multiplier is
/// applied to get the vested base reward amount.
uint112 unvestedBaseReward;
}
/// @notice Claims reward earned by a staker.
/// @return uint256 The amount of rewards claimed in juels
function claimReward() external returns (uint256);
/// @notice Updates the staking pools' reward per token and staker’s reward state
/// in the reward vault. This is called whenever an operator is slashed as we want
/// to update the operator's rewards state without resetting their multiplier.
/// @param staker The staker's address. If this is set to zero address,
/// staker's reward update will be skipped
/// @param stakerPrincipal The staker's current staked LINK amount in juels
function updateReward(address staker, uint256 stakerPrincipal) external;
/// @notice Concludes the staker's current reward period (defined by a multiplier reset).
/// This will apply the staker's current ramp up multiplier to their
/// earned rewards and store the amount of rewards they have earned before
/// their multiplier is reset.
/// @dev This is called whenever 1) A staker stakes 2) A staker unstakes
/// 3) An operator is removed as we want to update the staker's
/// rewards AND reset their multiplier.
/// @dev Staker rewards are not forfeited when they stake before they have
/// reached their maximum ramp up period multiplier. Instead these
/// rewards are stored as already earned rewards and will be subject to the
/// multiplier the next time the contract calculates the staker's claimable
/// rewards.
/// @dev Staker rewards are forfeited when a staker unstakes before they
/// have reached their maximum ramp up period multiplier. Additionally an
/// operator will also forfeit any unclaimable rewards if they are removed
/// before they reach the maximum ramp up period multiplier. The amount of
/// rewards forfeited is proportional to the amount unstaked relative to
/// the staker's total staked LINK amount when unstaking. A removed operator forfeits
/// 100% of their unclaimable rewards.
/// @param staker The staker addres
/// @param oldPrincipal The staker's staked LINK amount before finalizing
/// @param stakedAt The last time the staker staked at
/// @param unstakedAmount The amount that the staker has unstaked in juels
/// @param shouldForfeit True if rewards should be forfeited
function concludeRewardPeriod(
address staker,
uint256 oldPrincipal,
uint256 stakedAt,
uint256 unstakedAmount,
bool shouldForfeit
) external;
/// @notice Closes the reward vault, disabling adding rewards and staking
function close() external;
/// @notice Returns a boolean that is true if the reward vault is open
/// @return True if open, false otherwise
function isOpen() external view returns (bool);
/// @notice Returns the rewards that the staker would get if they withdraw now
/// Rewards calculation is based on the staker's multiplier
/// @param staker The staker's address
/// @return The reward amount
function getReward(address staker) external view returns (uint256);
/// @notice Returns the stored reward info of the staker
/// @param staker The staker address
/// @return The staker's stored reward info
function getStoredReward(address staker) external view returns (StakerReward memory);
/// @notice Returns whether or not the vault is paused
/// @return bool True if the vault is paused
function isPaused() external view returns (bool);
/// @notice Returns whether or not the reward duration for the pool has ended
/// @param stakingPool The address of the staking pool rewards are being shared to
/// @return bool True if the reward duration has ended
function hasRewardDurationEnded(address stakingPool) external view returns (bool);
/// @notice Returns whether or not the reward vault has had rewards added to it
/// @return bool True if the reward vault has had rewards added to it
function hasRewardAdded() external view returns (bool);
/// @notice Returns the staking pools that are earning rewards from
/// the reward vault
/// @return address[] The staking pools that are earning rewards from the
/// reward vault
function getStakingPools() external view returns (address[] memory);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
interface ISlashable {
/// @notice This error is thrown when the slasher config is invalid
error InvalidSlasherConfig();
/// @notice This error is thrown when the contract manager tries to set the slasher role directly
/// through
/// `grantRole`
error InvalidRole();
/// @notice This error is thrown then the contract manager tries to set the slasher config for an
/// address
/// that doesn't have the slasher role
error InvalidSlasher();
/// @notice This struct defines the parameters of the slasher config
struct SlasherConfig {
/// @notice The pool's refill rate (Juels/sec)
uint256 refillRate;
/// @notice The refillable slash capacity amount
uint256 slashCapacity;
}
/// @notice This struct defines the parameters of the slasher state
struct SlasherState {
/// @notice The last slash timestamp, will be 0 if never slashed
/// The timestamp will be set to the time the slashing configuration was configured
/// instead of 0 if slashing never occurs, refilling slash capacity to full.
uint256 lastSlashTimestamp;
/// @notice The current amount of remaining slash capacity
uint256 remainingSlashCapacityAmount;
}
/// @notice This struct defines the slasher's state and config
struct Slasher {
/// @notice The slasher's config
SlasherConfig config;
/// @notice The slasher's state
SlasherState state;
}
/// @notice Adds a new slasher with the given config
/// @param slasher The address of the slasher
/// @param config The slasher config
function addSlasher(address slasher, SlasherConfig calldata config) external;
/// @notice Removes a slasher by revoking the SLASHER_ROLE and resetting the slasher config
/// @param slasher The address of the slasher
function removeSlasher(address slasher) external;
/// @notice Sets the slasher config
/// @param slasher The address of the slasher
/// @param config The slasher config
function setSlasherConfig(address slasher, SlasherConfig calldata config) external;
/// @notice Returns the slasher config
/// @param slasher The slasher
/// @return The slasher config
function getSlasherConfig(address slasher) external view returns (SlasherConfig memory);
/// @notice Returns the slash capacity for a slasher
/// @param slasher The slasher
/// @return The slash capacity
function getSlashCapacity(address slasher) external view returns (uint256);
/// @notice Slashes stakers and rewards the alerter. Moves slashed staker
/// funds into the alerter reward funds. The alerter is then
/// rewarded by the funds in the alerter reward funds.
/// @param stakers The list of stakers to slash
/// @param alerter The alerter that successfully raised the alert
/// @param principalAmount The amount of the staker's staked LINK amount to slash
/// @param alerterRewardAmount The reward amount to be given to the alerter
function slashAndReward(
address[] calldata stakers,
address alerter,
uint256 principalAmount,
uint256 alerterRewardAmount
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
interface IStakingOwner {
/// @notice This event is emitted when the staking pool is opened for staking
event PoolOpened();
/// @notice This event is emitted when the staking pool is closed
event PoolClosed();
/// @notice This error is thrown when an invalid min operator stake amount is
/// supplied
error InvalidMinStakeAmount();
/// @notice This error is raised when attempting to decrease maximum pool size
/// @param maxPoolSize the proposed maximum pool size
error InvalidPoolSize(uint256 maxPoolSize);
/// @notice This error is raised when attempting to decrease maximum stake amount
/// for the pool members
/// @param maxStakeAmount the proposed maximum stake amount
error InvalidMaxStakeAmount(uint256 maxStakeAmount);
/// @notice This error is thrown when the staking pool is closed.
error PoolNotOpen();
/// @notice This error is thrown when the staking pool is open.
error PoolNotClosed();
/// @notice This error is thrown when the staking pool has been opened and contract manager tries
/// to re-open.
error PoolHasBeenOpened();
/// @notice This error is thrown when the pool has been closed and contract manager tries to
/// re-open
error PoolHasBeenClosed();
/// @notice Set the pool config
/// @param maxPoolSize The max amount of staked LINK allowed in the pool
/// @param maxPrincipalPerStaker The max amount of LINK a staker can stake
/// in the pool.
function setPoolConfig(uint256 maxPoolSize, uint256 maxPrincipalPerStaker) external;
/// @notice Opens the pool for staking
function open() external;
/// @notice Closes the pool
function close() external;
/// @notice Sets the migration proxy contract address
/// @param migrationProxy The migration proxy contract address
function setMigrationProxy(address migrationProxy) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import {IRewardVault} from "./IRewardVault.sol";
import {Checkpoints} from "@openzeppelin/contracts/utils/Checkpoints.sol";
interface IStakingPool {
/// @notice This error is thrown when a caller tries to execute a transaction
/// that they do not have permissions for
error AccessForbidden();
/// @notice This event is emitted when the migration proxy address has been set
/// @param oldMigrationProxy The old migration proxy contract address
/// @param newMigrationProxy The new migration proxy contract address
event MigrationProxySet(address indexed oldMigrationProxy, address indexed newMigrationProxy);
/// @notice This event is emitted when the staking pool's maximum size is
/// increased
/// @param maxPoolSize the new maximum pool size
event PoolSizeIncreased(uint256 maxPoolSize);
/// @notice This event is emitted when the maximum stake amount
// for the stakers in the pool is increased
/// @param maxPrincipalPerStaker the new maximum stake amount
event MaxPrincipalAmountIncreased(uint256 maxPrincipalPerStaker);
/// @notice This event is emitted when a staker adds stake to the pool.
/// @param staker Staker address
/// @param amount Amount of stake added
/// @param newStake New LINK amount staked
/// @param newTotalPrincipal Total amount of juels staked in the pool
event Staked(address indexed staker, uint256 amount, uint256 newStake, uint256 newTotalPrincipal);
/// @notice This event is emitted when a staker removes stake from the pool.
/// @param staker Staker address
/// @param amount Amount of stake removed
/// @param newStake New LINK amount staked
/// @param newTotalPrincipal Total amount of staked juels remaining in the pool
event Unstaked(
address indexed staker, uint256 amount, uint256 newStake, uint256 newTotalPrincipal
);
/// @notice This error is thrown whenever a zero-address is supplied when
/// a non-zero address is required
error InvalidZeroAddress();
/// @notice This error is thrown whenever the sender is not the LINK token
error SenderNotLinkToken();
/// @notice This error is thrown whenever the migration proxy address has not been set
error MigrationProxyNotSet();
/// @notice This error is thrown whenever the reward vault address has not been set
error RewardVaultNotSet();
/// @notice This error is thrown when invalid data is passed to the onTokenTransfer function
error InvalidData();
/// @notice This error is thrown when the staker tries to stake less than the min amount
error InsufficientStakeAmount();
/// @notice This error is thrown when the staker tries to stake more than the max amount
error ExceedsMaxStakeAmount();
/// @notice This error is thrown when the staker tries to stake more than the max pool size
error ExceedsMaxPoolSize();
/// @notice This error is raised when stakers attempt to exit the pool
/// @param staker address of the staker
error StakeNotFound(address staker);
/// @notice This error is thrown when the staker tries to unstake a zero amount
error UnstakeZeroAmount();
/// @notice This error is thrown when the staker tries to unstake more than the
/// staked LINK amount
error UnstakeExceedsPrincipal();
/// @notice This error is thrown when the staker tries to unstake an amount that leaves their
/// staked LINK amount below the minimum amount
error UnstakePrincipalBelowMinAmount();
/// @notice This struct defines the state of a staker
struct Staker {
/// @notice The combined staked LINK amount and staked at time history
/// @dev Both the staker staked LINK amount and staked at timestamp are stored in uint112 to
/// save space
/// @dev The max value of uint112 is greater than the total supply of LINK
/// @dev The max value of uint112 can represent a timestamp in the year 3615, long after the
/// staking program has ended
/// @dev The combination is performed as such:
/// uint224 history = (uint224(uint112(principal)) << 112) |
/// uint224(uint112(stakedAtTime))
Checkpoints.History history;
/// @notice The staker's unbonding period end time
uint128 unbondingPeriodEndsAt;
/// @notice The staker's claim period end time
uint128 claimPeriodEndsAt;
}
/// @notice Unstakes amount LINK tokens from the staker’s staked LINK amount
/// @param amount The amount of LINK tokens to unstake
function unstake(uint256 amount) external;
/// @notice Returns the total amount staked in the pool
/// @return The total amount staked in pool
function getTotalPrincipal() external view returns (uint256);
/// @notice Returns the staker's staked LINK amount
/// @param staker The address of the staker to query for
/// @return uint256 The staker's staked LINK amount
function getStakerPrincipal(address staker) external view returns (uint256);
/// @notice Returns the staker's staked LINK amount
/// @param staker The address of the staker to query for
/// @param blockNumber The block number to fetch the staker's balance for. Pass 0
/// to return the staker's latest staked LINK amount
/// @return uint256 The staker's staked LINK amount
function getStakerPrincipalAt(
address staker,
uint256 blockNumber
) external view returns (uint256);
/// @notice Returns the staker's average staked at time
/// @param staker The address of the staker to query for
/// @return uint256 The staker's average staked at time
function getStakerStakedAtTime(address staker) external view returns (uint256);
/// @notice Returns the staker's last staked at time for a block number ID
/// @param staker The address of the staker to query for
/// @param blockNumber The block number to query for
/// @return uint256 The staker's staked at time for the block number ID
function getStakerStakedAtTimeAt(
address staker,
uint256 blockNumber
) external view returns (uint256);
/// @notice Returns the current reward vault address
/// @return The reward vault
function getRewardVault() external view returns (IRewardVault);
/// @notice Returns the address of the LINK token contract
/// @return The LINK token contract's address that is used by the pool
function getChainlinkToken() external view returns (address);
/// @notice Returns the migration proxy contract address
/// @return The migration proxy contract address
function getMigrationProxy() external view returns (address);
/// @notice Returns a boolean that is true if the pool is open
/// @return True if the pool is open, false otherwise
function isOpen() external view returns (bool);
/// @notice Returns a boolean that is true if the pool is active,
/// i.e. is open and there are remaining rewards to vest in the pool.
/// @return True if the pool is active, false otherwise
function isActive() external view returns (bool);
/// @notice Returns the minimum and maximum amounts a staker can stake in the
/// pool
/// @return uint256 minimum amount that can be staked by a staker
/// @return uint256 maximum amount that can be staked by a staker
function getStakerLimits() external view returns (uint256, uint256);
/// @notice uint256 Returns the maximum amount that can be staked in the pool
/// @return uint256 current maximum staking pool size
function getMaxPoolSize() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface LinkTokenInterface {
function allowance(address owner, address spender) external view returns (uint256 remaining);
function approve(address spender, uint256 value) external returns (bool success);
function balanceOf(address owner) external view returns (uint256 balance);
function decimals() external view returns (uint8 decimalPlaces);
function decreaseApproval(address spender, uint256 addedValue) external returns (bool success);
function increaseApproval(address spender, uint256 subtractedValue) external;
function name() external view returns (string memory tokenName);
function symbol() external view returns (string memory tokenSymbol);
function totalSupply() external view returns (uint256 totalTokensIssued);
function transfer(address to, uint256 value) external returns (bool success);
function transferAndCall(
address to,
uint256 value,
bytes calldata data
) external returns (bool success);
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool success);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
require(proofPos == proofLen, "MerkleProof: invalid multiproof");
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
require(proofPos == proofLen, "MerkleProof: invalid multiproof");
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import {AccessControlDefaultAdminRules} from
"@openzeppelin/contracts/access/AccessControlDefaultAdminRules.sol";
import {IMigratable} from "./interfaces/IMigratable.sol";
/// @notice Base contract that adds migration functionality.
abstract contract Migratable is IMigratable, AccessControlDefaultAdminRules {
/// @notice The address of the new contract that this contract will be upgraded to.
address internal s_migrationTarget;
function setMigrationTarget(address newMigrationTarget)
external
override
onlyRole(DEFAULT_ADMIN_ROLE)
{
_validateMigrationTarget(newMigrationTarget);
address oldMigrationTarget = s_migrationTarget;
s_migrationTarget = newMigrationTarget;
emit MigrationTargetSet(oldMigrationTarget, newMigrationTarget);
}
/// @inheritdoc IMigratable
function getMigrationTarget() external view returns (address) {
return s_migrationTarget;
}
/// @notice Helper function for validating the migration target
/// @param newMigrationTarget The address of the new migration target
function _validateMigrationTarget(address newMigrationTarget) internal virtual {
if (
newMigrationTarget == address(0) || newMigrationTarget == address(this)
|| newMigrationTarget == s_migrationTarget || newMigrationTarget.code.length == 0
) {
revert InvalidMigrationTarget();
}
}
/// @dev Reverts if the migration target is not set
modifier validateMigrationTargetSet() {
if (s_migrationTarget == address(0)) {
revert InvalidMigrationTarget();
}
_;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import {TypeAndVersionInterface} from
"@chainlink/contracts/src/v0.8/interfaces/TypeAndVersionInterface.sol";
import {AccessControlDefaultAdminRules} from
"@openzeppelin/contracts/access/AccessControlDefaultAdminRules.sol";
import {Checkpoints} from "@openzeppelin/contracts/utils/Checkpoints.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {ISlashable} from "../interfaces/ISlashable.sol";
import {IRewardVault} from "../interfaces/IRewardVault.sol";
import {StakingPoolBase} from "./StakingPoolBase.sol";
/// @notice This contract manages the staking of LINK tokens for the operator stakers.
/// @dev This contract inherits the StakingPoolBase contract and interacts with the MigrationProxy,
/// PriceFeedAlertsController, CommunityStakingPool, and RewardVault contracts.
/// @dev invariant Only addresses added as operators by the contract manager can stake in this pool.
/// @dev invariant contract's LINK token balance should be greater than or equal to the sum of
/// totalPrincipal and s_alerterRewardFunds.
contract OperatorStakingPool is ISlashable, StakingPoolBase, TypeAndVersionInterface {
using Checkpoints for Checkpoints.History;
using EnumerableSet for EnumerableSet.AddressSet;
/// @notice This error is raised when adding the zero address as an operator
error InvalidOperator();
/// @notice Error code for when the operator list is invalid
error InvalidOperatorList();
/// @notice Error code for when the staker is not an operator
error StakerNotOperator();
/// @notice This error is raised when an address is duplicated in the supplied list of operators.
/// This can happen in addOperators and setFeedOperators functions.
/// @param operator address of the operator
error OperatorAlreadyExists(address operator);
/// @notice This error is raised when removing an operator that doesn't exist.
/// @param operator Address of the operator
error OperatorDoesNotExist(address operator);
/// @notice This error is raised when an operator to add has been removed previously.
/// @param operator Address of the operator
error OperatorHasBeenRemoved(address operator);
/// @notice This error is raised when an operator to add is already a community staker.
error OperatorCannotBeCommunityStaker(address operator);
/// @notice This error is thrown whenever the max pool size is less than the
/// reserved space for operators
/// @param maxPoolSize The maximum pool size of the operator staking pool
/// @param maxPrincipalPerStaker The maximum amount an operator can stake in the
/// pool
/// @param numOperators The number of operators in the pool
error InsufficientPoolSpace(
uint256 maxPoolSize, uint256 maxPrincipalPerStaker, uint256 numOperators
);
/// @notice This error is raised when attempting to open the staking pool with less
/// than the minimum required node operators
/// @param numOperators The current number of operators in the staking pool
/// @param minInitialOperatorCount The minimum required number of operators
/// in the staking pool before it can be opened
error InadequateInitialOperatorCount(uint256 numOperators, uint256 minInitialOperatorCount);
/// @notice This error is thrown when the contract manager tries to add a zero amount
/// to the alerter reward funds
error InvalidAlerterRewardFundAmount();
/// @notice This error is thrown whenever the contract manager tries to withdraw
/// more than the remaining balance in the alerter reward funds
/// @param amountToWithdraw The amount that the contract manager tried to withdraw
/// @param remainingBalance The remaining balance of the alerter reward funds
error InsufficientAlerterRewardFunds(uint256 amountToWithdraw, uint256 remainingBalance);
/// @notice This event is emitted when an operator is removed
/// @param operator Address of the operator
/// @param principal Operator's staked LINK amount
/// @param newTotalPrincipal Total amount of staked juels remaining in the pool
event OperatorRemoved(address indexed operator, uint256 principal, uint256 newTotalPrincipal);
/// @notice This event is emitted when an operator is added
/// @param operator Address of the operator
event OperatorAdded(address indexed operator);
/// @notice This event is emitted whenever the alerter reward funds is funded
/// @param amountFunded The amount added to the alerter reward funds
/// @param totalBalance The current balance of the alerter reward funds
event AlerterRewardDeposited(uint256 amountFunded, uint256 totalBalance);
/// @notice This event is emitted whenever the contract manager withdraws from the
/// alerter reward funds
/// @param amountWithdrawn The amount withdrawn from the alerter reward funds
/// @param remainingBalance The remaining balance of the alerter reward funds
event AlerterRewardWithdrawn(uint256 amountWithdrawn, uint256 remainingBalance);
/// @notice This event is emitted whenever the alerter is paid the full
/// alerter reward amount
/// @param alerter The address of the alerter
/// @param alerterRewardActual The amount of rewards sent to the alerter in juels.
/// This can be lower than the expected value, if the reward fund is low or we aren't able to
/// slash enough.
/// @param alerterRewardExpected The amount of expected rewards for the alerter
/// in juels
event AlertingRewardPaid(
address indexed alerter, uint256 alerterRewardActual, uint256 alerterRewardExpected
);
/// @notice This event is emitted when the slasher config is set
/// @param slasher The address of the slasher
/// @param refillRate The refill rate of the slasher
/// @param slashCapacity The slash capacity of the slasher
event SlasherConfigSet(address indexed slasher, uint256 refillRate, uint256 slashCapacity);
/// @notice This event is emitted when an operator is slashed
/// @param operator The address of the operator
/// @param slashedAmount The amount slashed from the operator's staked LINK
/// amount
/// @param updatedStakerPrincipal The operator's updated staked LINK amount
/// @param newTotalPrincipal Total amount of staked juels remaining in the pool
event Slashed(
address indexed operator,
uint256 slashedAmount,
uint256 updatedStakerPrincipal,
uint256 newTotalPrincipal
);
/// @notice This struct defines the params required by the Staking contract's
/// constructor.
struct ConstructorParams {
/// @notice The base staking pool constructor parameters
ConstructorParamsBase baseParams;
/// @notice The minimum number of node operators required to open the
/// staking pool.
uint256 minInitialOperatorCount;
}
/// @notice This struct defines the operator-specific states.
struct Operator {
/// @notice The operator's staked LINK amount when they get removed.
uint256 removedPrincipal;
/// @notice Flag that signals whether the operator is an operator.
bool isOperator;
/// @notice Flag that signals whether the operator has been removed.
bool isRemoved;
}
/// @notice This is the ID for the alert rewarder role, which is given to the
/// addresses that will deposit and withdraw the alerter reward.
/// @dev Hash: 8d2cf17e37ecc80f26d65bcf3868b78960ab38b0762747f6c5e311e75068a88b
bytes32 public constant ALERT_REWARDER_ROLE = keccak256("ALERT_REWARDER_ROLE");
/// @notice This is the ID for the operator manager role, which is given to the address that will
/// add and remove operators
/// @dev Hash: 001fdceeaab2d33566b504ecfe97e6dc3cf82cc816e696d9fe5cce35954bed17
bytes32 public constant OPERATOR_MANAGER_ROLE = keccak256("OPERATOR_MANAGER_ROLE");
/// @notice This is the ID for the slasher role, which will be given to the
/// AlertsController contract.
/// @dev Hash: 12b42e8a160f6064dc959c6f251e3af0750ad213dbecf573b4710d67d6c28e39
bytes32 public constant SLASHER_ROLE = keccak256("SLASHER_ROLE");
/// @notice Mapping of addresses to the Operator struct.
mapping(address operator => Operator) private s_operators;
/// @notice Mapping of the slashers to slasher config and state.
mapping(address slasher => Slasher) private s_slashers;
/// @notice The set of operators that are currently on-feed (slashable).
EnumerableSet.AddressSet private s_operatorSet;
/// @notice The number of node operators that have been set in the pool
uint256 private s_numOperators;
/// @notice Tracks the balance of the alerter reward funds. This bucket holds all
/// slashed funds and also funds alerter rewards.
uint256 private s_alerterRewardFunds;
/// @notice The minimum number of node operators required to open the
/// staking pool.
uint256 private immutable i_minInitialOperatorCount;
constructor(ConstructorParams memory params) StakingPoolBase(params.baseParams) {
i_minInitialOperatorCount = params.minInitialOperatorCount;
}
/// @notice Adds LINK to the alerter reward funds
/// @param amount The amount of LINK to add to the alerter reward funds
/// @dev precondition The caller must have the alert rewarder role.
/// @dev precondition The caller must have at least `amount` LINK tokens.
/// @dev precondition The caller must have approved this contract for the transfer of at least
/// `amount` LINK tokens.
function depositAlerterReward(uint256 amount)
external
onlyRole(ALERT_REWARDER_ROLE)
whenBeforeClosing
{
if (amount == 0) revert InvalidAlerterRewardFundAmount();
uint256 alerterRewardFunds = s_alerterRewardFunds;
alerterRewardFunds += amount;
s_alerterRewardFunds = alerterRewardFunds;
// The return value is not checked since the call will revert if any balance, allowance or
// receiver conditions fail.
i_LINK.transferFrom({from: msg.sender, to: address(this), value: amount});
emit AlerterRewardDeposited(amount, alerterRewardFunds);
}
/// @notice Withdraws LINK from the alerter reward funds
/// @param amount The amount of LINK withdrawn from the alerter reward funds
/// @dev precondition The caller must have the alert rewarder role.
/// @dev precondition This contract must have at least `amount` LINK tokens as the alerter reward
/// funds.
/// @dev precondition This contract must be closed (before opening or after closing).
function withdrawAlerterReward(uint256 amount) external onlyRole(ALERT_REWARDER_ROLE) {
if (amount == 0) revert InvalidAlerterRewardFundAmount();
if (s_isOpen) revert PoolNotClosed();
uint256 alerterRewardFunds = s_alerterRewardFunds;
if (amount > alerterRewardFunds) {
revert InsufficientAlerterRewardFunds(amount, alerterRewardFunds);
}
alerterRewardFunds -= amount;
s_alerterRewardFunds = alerterRewardFunds;
// The return value is not checked since the call will revert if any balance, allowance or
// receiver conditions fail.
i_LINK.transfer(msg.sender, amount);
emit AlerterRewardWithdrawn(amount, alerterRewardFunds);
}
/// @notice Returns the balance of the pool's alerter reward funds
/// @return uint256 The balance of the pool's alerter reward funds
function getAlerterRewardFunds() external view returns (uint256) {
return s_alerterRewardFunds;
}
// ===============
// StakingPoolBase
// ===============
/// @inheritdoc StakingPoolBase
/// @dev The access control is done in StakingPoolBase.
function setPoolConfig(
uint256 maxPoolSize,
uint256 maxPrincipalPerStaker
)
external
override(StakingPoolBase)
validatePoolSpace(maxPoolSize, maxPrincipalPerStaker, s_numOperators)
whenOpen
onlyRole(DEFAULT_ADMIN_ROLE)
{
_setPoolConfig(maxPoolSize, maxPrincipalPerStaker);
}
/// @inheritdoc StakingPoolBase
/// @dev Removed operators need to go through the unbonding period before they can withdraw. This
/// function will check if the operator has removed principal they can unstake.
function unbond() external override {
Staker storage staker = s_stakers[msg.sender];
uint224 history = staker.history.latest();
uint112 stakerPrincipal = uint112(history >> 112);
if (stakerPrincipal == 0 && s_operators[msg.sender].removedPrincipal == 0) {
revert StakeNotFound(msg.sender);
}
_unbond(staker);
}
/// @notice Registers operators from a list of unique, sorted addresses
/// Addresses must be provided in sorted order so that
/// address(0xNext) > address(0xPrev)
/// @dev Previously removed operators cannot be readded to the pool.
/// @dev precondition The caller must have the operator manager role.
/// @dev precondition Cannot be called after the pool is closed.
/// @param operators The sorted list of operator addresses
function addOperators(address[] calldata operators)
external
whenBeforeClosing
validateRewardVaultSet
validatePoolSpace(
s_pool.configs.maxPoolSize,
s_pool.configs.maxPrincipalPerStaker,
s_numOperators + operators.length
)
onlyRole(OPERATOR_MANAGER_ROLE)
{
for (uint256 i; i < operators.length; ++i) {
address operatorAddress = operators[i];
if (operatorAddress == address(0)) revert InvalidOperator();
IRewardVault.StakerReward memory stakerReward = s_rewardVault.getStoredReward(operatorAddress);
if (stakerReward.stakerType == IRewardVault.StakerType.COMMUNITY) {
revert OperatorCannotBeCommunityStaker(operatorAddress);
}
// verify input list is sorted and addresses are unique
if (i < operators.length - 1 && operatorAddress >= operators[i + 1]) {
revert InvalidOperatorList();
}
Operator storage operator = s_operators[operatorAddress];
if (operator.isOperator) revert OperatorAlreadyExists(operatorAddress);
if (operator.isRemoved) revert OperatorHasBeenRemoved(operatorAddress);
operator.isOperator = true;
s_operatorSet.add(operatorAddress);
emit OperatorAdded(operatorAddress);
}
unchecked {
s_numOperators += operators.length;
}
}
/// @notice Removes one or more operators from a list of operators.
/// @dev Should only be callable by the owner when the pool is open.
/// When an operator is removed, we store their staked LINK amount in a separate mapping to
/// stop it from accruing rewards. They can withdraw their removedPrincipal and exit the system
/// after going through the unbonding period.
/// Removed operators are no longer slashable.
/// @param operators A list of operator addresses to remove
/// @dev precondition The caller must have the operator manager role.
/// @dev precondition Cannot be called after the pool is closed.
/// @dev precondition The operators must be currently added operators.
function removeOperators(address[] calldata operators)
external
onlyRole(OPERATOR_MANAGER_ROLE)
whenBeforeClosing
{
Operator storage operator;
Staker storage staker;
uint256 totalPrincipal = s_pool.state.totalPrincipal;
for (uint256 i; i < operators.length; ++i) {
address operatorAddress = operators[i];
operator = s_operators[operatorAddress];
if (!operator.isOperator) revert OperatorDoesNotExist(operatorAddress);
staker = s_stakers[operatorAddress];
uint224 history = staker.history.latest();
uint256 principal = uint256(history >> 112);
uint256 stakedAtTime = uint112(history);
s_rewardVault.concludeRewardPeriod({
staker: operatorAddress,
oldPrincipal: principal,
unstakedAmount: principal,
shouldForfeit: true,
stakedAt: stakedAtTime
});
totalPrincipal -= principal;
s_pool.state.totalPrincipal = totalPrincipal;
delete operator.isOperator;
s_operatorSet.remove(operatorAddress);
operator.isRemoved = true;
// Reset the staker's stakedAtTime to 0 so their multiplier resets to 0.
_updateStakerHistory({staker: staker, latestPrincipal: 0, latestStakedAtTime: 0});
// Move the operator's staked LINK amount to removedPrincipal so that
// the operator stops earning rewards
operator.removedPrincipal = principal;
_resetUnbondingPeriod(staker, operatorAddress);
emit OperatorRemoved(operatorAddress, principal, totalPrincipal);
}
s_numOperators -= operators.length;
}
/// @notice Getter function to check if an address is registered as an operator
/// @param staker The address of the staker
/// @return bool True if the staker is an operator
function isOperator(address staker) external view returns (bool) {
return s_operators[staker].isOperator;
}
/// @notice Getter function to check if an address is a removed operator
/// @param staker The address of the staker
/// @return bool True if the operator has been removed
function isRemoved(address staker) external view returns (bool) {
return s_operators[staker].isRemoved;
}
/// @notice Getter function for a removed operator's total staked LINK amount
/// @param staker The address of the staker
/// @return uint256 The removed operator's staked LINK amount that hasn't been withdrawn
function getRemovedPrincipal(address staker) external view returns (uint256) {
return s_operators[staker].removedPrincipal;
}
/// @notice Called by removed operators to withdraw their removed stake
/// @dev precondition The caller must be in the claim period or the pool must be closed or paused.
/// @dev precondition The caller must be a removed operator with some removed
/// staked LINK amount.
function unstakeRemovedPrincipal() external {
if (!_canUnstake(s_stakers[msg.sender])) {
revert StakerNotInClaimPeriod(msg.sender);
}
uint256 withdrawableAmount = s_operators[msg.sender].removedPrincipal;
if (withdrawableAmount == 0) {
revert UnstakeExceedsPrincipal();
}
delete s_operators[msg.sender].removedPrincipal;
// The return value is not checked since the call will revert if any balance, allowance or
// receiver conditions fail.
i_LINK.transfer(msg.sender, withdrawableAmount);
// Since operator has been removed their total amount staked will be 0
emit Unstaked(msg.sender, withdrawableAmount, 0, s_pool.state.totalPrincipal);
}
/// @notice Returns the number of operators configured in the pool.
/// @return uint256 The number of operators configured in the pool
function getNumOperators() external view returns (uint256) {
return s_numOperators;
}
/// @notice Returns the list of operators configured in the pool.
/// @return address[] The list of operators configured in the pool
function getOperators() external view returns (address[] memory) {
return s_operatorSet.values();
}
// =======================
// ISlashable
// =======================
/// @inheritdoc ISlashable
/// @dev precondition The caller must have the default admin role.
/// @dev precondition Cannot be called after the pool is closed.
function addSlasher(
address slasher,
SlasherConfig calldata config
) external onlyRole(DEFAULT_ADMIN_ROLE) whenBeforeClosing {
_grantRole(SLASHER_ROLE, slasher);
_setSlasherConfig(slasher, config);
}
/// @inheritdoc ISlashable
/// @dev precondition The caller must have the default admin role.
/// @dev precondition Cannot be called after the pool is closed.
function removeSlasher(address slasher) external onlyRole(DEFAULT_ADMIN_ROLE) whenBeforeClosing {
if (!hasRole(SLASHER_ROLE, slasher)) {
revert InvalidSlasher();
}
delete s_slashers[slasher];
_revokeRole(SLASHER_ROLE, slasher);
emit SlasherConfigSet(slasher, 0, 0);
}
/// @inheritdoc ISlashable
/// @dev precondition The caller must have the default admin role.
/// @dev precondition Cannot be called after the pool is closed.
function setSlasherConfig(
address slasher,
SlasherConfig calldata config
) external onlyRole(DEFAULT_ADMIN_ROLE) whenBeforeClosing {
if (!hasRole(SLASHER_ROLE, slasher)) {
revert InvalidSlasher();
}
_setSlasherConfig(slasher, config);
}
/// @inheritdoc ISlashable
function getSlasherConfig(address slasher) external view returns (SlasherConfig memory) {
return s_slashers[slasher].config;
}
/// @inheritdoc ISlashable
function getSlashCapacity(address slasher) external view returns (uint256) {
SlasherConfig memory slasherConfig = s_slashers[slasher].config;
return _getRemainingSlashCapacity(slasherConfig, slasher);
}
/// @inheritdoc ISlashable
/// @dev In the current implementation, on-feed operators can raise alerts to rescue a portion of
/// their slashed staked LINK amount. All operators can raise alerts in the priority period. Note
/// that this may change in the future as we add alerting for additional services.
/// @dev We will operationally make sure to remove an operator from the slashable (on-feed)
/// operators list in alerts controllers if they are removed from the operators list in this
/// contract, so there won't be a case where we slash a removed operator.
/// @dev precondition The caller must have the slasher role.
/// @dev precondition This contract must be active (open and stakers are earning rewards).
/// @dev precondition The slasher must have enough capacity to slash.
function slashAndReward(
address[] calldata stakers,
address alerter,
uint256 principalAmount,
uint256 alerterRewardAmount
) external onlySlasher whenActive whenNotPaused {
SlasherConfig storage slasherConfig = s_slashers[msg.sender].config;
uint256 combinedSlashAmount = stakers.length * principalAmount;
uint256 remainingSlashCapacity = _getRemainingSlashCapacity(slasherConfig, msg.sender);
// check if the total slashed amount exceeds the slasher's capacity
if (combinedSlashAmount > remainingSlashCapacity) {
/// @dev If a slashing occurs with an amount to be slashed that is higher than the remaining
/// slashing capacity, only an amount equal to the remaining capacity is slashed.
principalAmount = remainingSlashCapacity / stakers.length;
}
uint256 totalSlashedAmount = _slashOperators(stakers, principalAmount);
s_slashers[msg.sender].state.remainingSlashCapacityAmount =
remainingSlashCapacity - totalSlashedAmount;
s_slashers[msg.sender].state.lastSlashTimestamp = block.timestamp;
_payAlerter({
alerter: alerter,
totalSlashedAmount: totalSlashedAmount,
alerterRewardAmount: alerterRewardAmount
});
}
// =======================
// TypeAndVersionInterface
// =======================
/// @inheritdoc TypeAndVersionInterface
function typeAndVersion() external pure virtual override returns (string memory) {
return "OperatorStakingPool 1.0.0";
}
// ==============================
// AccessControlDefaultAdminRules
// ==============================
/// @inheritdoc AccessControlDefaultAdminRules
/// @notice Grants `role` to `account`. Reverts if the contract manager tries to grant the default
/// admin or slasher role.
/// @dev The default admin role must be granted through `beginDefaultAdminTransfer` and
/// `acceptDefaultAdminTransfer`.
/// @dev The slasher role must be granted through `addSlasher`.
/// @param role The role to grant
/// @param account The address to grant the role to
function grantRole(
bytes32 role,
address account
) public virtual override(AccessControlDefaultAdminRules) {
if (role == SLASHER_ROLE) revert InvalidRole();
super.grantRole(role, account);
}
/// @inheritdoc AccessControlDefaultAdminRules
/// @notice Grants `role` to `account`. Reverts if the contract manager tries to grant the default
/// admin or slasher role.
/// @dev The default admin role must be revoked through `beginDefaultAdminTransfer` and
/// `acceptDefaultAdminTransfer` to another address.
/// @dev The slasher role must be revoked through `removeSlasher`.
/// @param role The role to revoke
/// @param account The address to revoke the role from
function revokeRole(
bytes32 role,
address account
) public virtual override(AccessControlDefaultAdminRules) {
if (role == SLASHER_ROLE) revert InvalidRole();
super.revokeRole(role, account);
}
// ===============
// StakingPoolBase
// ===============
/// @inheritdoc StakingPoolBase
function _validateOnTokenTransfer(
address,
address staker,
bytes calldata
) internal view override(StakingPoolBase) {
// check if staker is an operator
if (!s_operators[staker].isOperator) revert StakerNotOperator();
}
/// @inheritdoc StakingPoolBase
function _validateBeforeOpen() internal view override(StakingPoolBase) {
if (s_numOperators < i_minInitialOperatorCount) {
revert InadequateInitialOperatorCount(s_numOperators, i_minInitialOperatorCount);
}
}
/// @notice Helper function to set the slasher config
/// @param slasher The slasher
/// @param config The slasher config
function _setSlasherConfig(address slasher, SlasherConfig calldata config) private {
if (config.slashCapacity == 0 || config.refillRate == 0) {
revert ISlashable.InvalidSlasherConfig();
}
s_slashers[slasher].config = config;
// refill capacity
SlasherState storage state = s_slashers[slasher].state;
state.remainingSlashCapacityAmount = config.slashCapacity;
state.lastSlashTimestamp = block.timestamp;
emit SlasherConfigSet(slasher, config.refillRate, config.slashCapacity);
}
/// @notice Helper function to slash operators
/// @param operators The list of operators to slash
/// @param principalAmount The amount to slash from each operator's staked
/// LINK amount
/// @return The total amount slashed from all operators
function _slashOperators(
address[] calldata operators,
uint256 principalAmount
) private returns (uint256) {
// perform the slash on all operators and add up the total slashed amount
uint256 totalSlashedAmount;
Staker storage staker;
uint256 totalPrincipal = s_pool.state.totalPrincipal;
for (uint256 i; i < operators.length; ++i) {
// verify input list is sorted and addresses are unique
address operatorAddress = operators[i];
if (i < operators.length - 1 && operatorAddress >= operators[i + 1]) {
revert InvalidOperatorList();
}
staker = s_stakers[operatorAddress];
uint224 history = staker.history.latest();
uint256 operatorPrincipal = uint112(history >> 112);
uint256 stakerStakedAtTime = uint112(history);
uint256 slashedAmount =
principalAmount > operatorPrincipal ? operatorPrincipal : principalAmount;
uint256 updatedPrincipal = operatorPrincipal - slashedAmount;
// update the staker's rewards
s_rewardVault.updateReward(operatorAddress, operatorPrincipal);
_updateStakerHistory({
staker: staker,
latestPrincipal: updatedPrincipal,
latestStakedAtTime: stakerStakedAtTime
});
totalSlashedAmount += slashedAmount;
totalPrincipal -= slashedAmount;
emit Slashed(operatorAddress, slashedAmount, updatedPrincipal, totalPrincipal);
}
// update the pool state
s_pool.state.totalPrincipal = totalPrincipal;
return totalSlashedAmount;
}
/// @notice Helper function to reward the alerter
/// @param alerter The alerter
/// @param totalSlashedAmount The total amount slashed from all the operators
/// @param alerterRewardAmount The amount to reward the alerter
function _payAlerter(
address alerter,
uint256 totalSlashedAmount,
uint256 alerterRewardAmount
) private {
uint256 newAlerterRewardFunds = s_alerterRewardFunds + totalSlashedAmount;
uint256 alerterRewardActual =
newAlerterRewardFunds < alerterRewardAmount ? newAlerterRewardFunds : alerterRewardAmount;
s_alerterRewardFunds = newAlerterRewardFunds - alerterRewardActual;
// We emit an event here instead of reverting so that the alerter can
// immediately receive a portion of their rewards. This event
// will allow the contract manager to reimburse any remaining rewards to the
// alerter.
emit AlertingRewardPaid(alerter, alerterRewardActual, alerterRewardAmount);
// The return value is not checked since the call will revert if any balance, allowance or
// receiver conditions fail.
i_LINK.transfer(alerter, alerterRewardActual);
}
/// @notice Helper function to return the current remaining slash capacity for a slasher
/// @param slasherConfig The slasher's config
/// @param slasher The slasher
/// @return The remaining slashing capacity
function _getRemainingSlashCapacity(
SlasherConfig memory slasherConfig,
address slasher
) private view returns (uint256) {
SlasherState memory slasherState = s_slashers[slasher].state;
uint256 refilledAmount =
(block.timestamp - slasherState.lastSlashTimestamp) * slasherConfig.refillRate;
return Math.min(
slasherConfig.slashCapacity, slasherState.remainingSlashCapacityAmount + refilledAmount
);
}
/// @dev Reverts if the msg.sender doesn't have the rewarder role.
modifier onlyRewarder() {
if (!hasRole(ALERT_REWARDER_ROLE, msg.sender)) {
revert AccessForbidden();
}
_;
}
/// @dev Reverts if not sent by an address that has the SLASHER role
modifier onlySlasher() {
if (!hasRole(SLASHER_ROLE, msg.sender)) {
revert AccessForbidden();
}
_;
}
/// @notice Checks that the maximum pool size is greater than or equal to
/// the reserved space for operators.
/// @param maxPoolSize The maximum pool size of the operator staking pool
/// @param maxPrincipalPerStaker The maximum amount an operator can stake in the
/// @param numOperators The number of operators in the pool
/// @dev The reserved space is calculated by multiplying the number of
/// operators and the maximum staked LINK amount per operator
modifier validatePoolSpace(
uint256 maxPoolSize,
uint256 maxPrincipalPerStaker,
uint256 numOperators
) {
if (maxPoolSize < maxPrincipalPerStaker * numOperators) {
revert InsufficientPoolSpace(maxPoolSize, maxPrincipalPerStaker, numOperators);
}
_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import {AccessControlDefaultAdminRules} from
"@openzeppelin/contracts/access/AccessControlDefaultAdminRules.sol";
import {Pausable} from "@openzeppelin/contracts/security/Pausable.sol";
import {IPausable} from "./interfaces/IPausable.sol";
/// @notice Base contract that adds pausing and access control functionality.
abstract contract PausableWithAccessControl is IPausable, Pausable, AccessControlDefaultAdminRules {
/// @notice This is the ID for the pauser role, which is given to the addresses that can pause and
/// unpause the contract.
/// @dev Hash: 65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a
bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE");
constructor(
uint48 adminRoleTransferDelay,
address defaultAdmin
) AccessControlDefaultAdminRules(adminRoleTransferDelay, defaultAdmin) {}
/// @inheritdoc IPausable
function emergencyPause() external onlyRole(PAUSER_ROLE) {
_pause();
}
/// @inheritdoc IPausable
function emergencyUnpause() external onlyRole(PAUSER_ROLE) {
_unpause();
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import {LinkTokenInterface} from "@chainlink/contracts/src/v0.8/interfaces/LinkTokenInterface.sol";
import {TypeAndVersionInterface} from
"@chainlink/contracts/src/v0.8/interfaces/TypeAndVersionInterface.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {FixedPointMathLib} from "@solmate/utils/FixedPointMathLib.sol";
import {IRewardVault} from "../interfaces/IRewardVault.sol";
import {IStakingPool} from "../interfaces/IStakingPool.sol";
import {PausableWithAccessControl} from "../PausableWithAccessControl.sol";
import {CommunityStakingPool} from "../pools/CommunityStakingPool.sol";
import {OperatorStakingPool} from "../pools/OperatorStakingPool.sol";
/// @notice This contract is the reward vault for the staking pools. Admin can deposit rewards into
/// the vault and set the aggregate reward rate for each pool to control the reward distribution.
/// @dev This contract interacts with the community and operator staking pools that it is connected
/// to. A reward vault is connected to only one community and operator staking pool during its
/// lifetime, which means when we upgrade either one of the pools or introduce a new type of pool,
/// we will need to update this contract and deploy a new reward vault.
/// @dev invariant LINK balance of the contract is greater than or equal to the sum of unvested
/// rewards.
/// @dev invariant The sum of all stakers' rewards is less than or equal to the sum of available
/// rewards.
/// @dev invariant The reward bucket with zero aggregate reward rate has zero reward.
/// @dev invariant Stakers' multipliers are within 0 and the max value.
/// @dev We only support LINK token in v0.2 staking. Rebasing tokens, ERC777 tokens, fee-on-transfer
/// tokens or tokens that do not have 18 decimal places are not supported.
contract RewardVault is IRewardVault, PausableWithAccessControl, TypeAndVersionInterface {
using FixedPointMathLib for uint256;
using SafeCast for uint256;
/// @notice This error is thrown when the pool address is not one of the registered staking pools
error InvalidPool();
/// @notice This error is thrown when the reward amount is invalid when adding rewards
error InvalidRewardAmount();
/// @notice This error is thrown when the aggregate reward rate is invalid when adding rewards
error InvalidEmissionRate();
/// @notice This error is thrown when the delegation rate is invalid when setting delegation rate
error InvalidDelegationRate();
/// @notice This error is thrown when an address who doesn't have access tries to call a function
/// For example, when the caller is not a rewarder and adds rewards to the vault, or
/// when the caller is not a staking pool and tries to call updateRewardPerToken.
error AccessForbidden();
/// @notice This error is thrown whenever a zero-address is supplied when
/// a non-zero address is required
error InvalidZeroAddress();
/// @notice This error is thrown when the reward duration is too short when adding rewards
error RewardDurationTooShort();
/// @notice this error is thrown when the rewards remaining are insufficient for the new
/// delegation rate
error InsufficentRewardsForDelegationRate();
/// @notice This error is thrown when calling an operation that is not allowed when the vault is
/// closed.
error VaultAlreadyClosed();
/// @notice This error is thrown when the staker tries to claim rewards and the staker has no
/// rewards to claim.
error NoRewardToClaim();
/// @notice This event is emitted when the delegation rate is updated.
/// @param oldDelegationRate The old delegationRate
/// @param newDelegationRate The new delegationRate
event DelegationRateSet(uint256 oldDelegationRate, uint256 newDelegationRate);
/// @notice This event is emitted when rewards are added to the vault
/// @param pool The pool to which the rewards are added
/// @param amount The reward amount
/// @param emissionRate The target aggregate reward rate (token/second)
event RewardAdded(address indexed pool, uint256 amount, uint256 emissionRate);
/// @notice This event is emitted when the vault is opened.
event VaultOpened();
/// @notice This event is emitted when the vault is closed.
/// @param totalUnvestedRewards The total amount of unvested rewards at the
/// time the vault was closed
event VaultClosed(uint256 totalUnvestedRewards);
/// @notice This event is emitted when the staker claims rewards
event RewardClaimed(address indexed staker, uint256 claimedRewards);
/// @notice This event is emitted when the forfeited rewards are shared back into the reward
/// buckets.
/// @param vestedReward The amount of forfeited rewards shared in juels
/// @param vestedRewardPerToken The amount of forfeited rewards per token added.
/// @param reclaimedReward The amount of forfeited rewards reclaimed.
/// @param isOperatorReward True if the forfeited reward is from the operator staking pool.
event ForfeitedRewardDistributed(
uint256 vestedReward,
uint256 vestedRewardPerToken,
uint256 reclaimedReward,
bool isOperatorReward
);
/// @notice This event is emitted when the community pool rewards are updated
/// @param baseRewardPerToken The per-token base reward of the community staking pool
/// pool
event CommunityPoolRewardUpdated(uint256 baseRewardPerToken);
/// @notice This event is emitted when the operator pool rewards are updated
/// @param baseRewardPerToken The per-token base reward of the operator staking pool
/// @param delegatedRewardPerToken The per-token delegated reward of the operator staking
/// pool
event OperatorPoolRewardUpdated(uint256 baseRewardPerToken, uint256 delegatedRewardPerToken);
/// @notice This event is emitted when a staker's rewards are updated
/// @param staker The staker address
/// @param vestedBaseReward The staker's vested base rewards
/// @param vestedDelegatedReward The staker's vested delegated rewards
/// @param baseRewardPerToken The staker's base reward per token
/// @param operatorDelegatedRewardPerToken The staker's delegated reward per token
/// @param claimedBaseRewardsInPeriod The staker's claimed base rewards in the period
event StakerRewardUpdated(
address indexed staker,
uint256 vestedBaseReward,
uint256 vestedDelegatedReward,
uint256 baseRewardPerToken,
uint256 operatorDelegatedRewardPerToken,
uint256 claimedBaseRewardsInPeriod
);
/// @notice This event is emitted when the staker rewards are finalized
/// @param staker The staker address
/// @param shouldForfeit True if the staker forfeited their rewards
event RewardFinalized(address indexed staker, bool shouldForfeit);
/// @notice The constructor parameters.
struct ConstructorParams {
/// @notice The LINK token.
LinkTokenInterface linkToken;
/// @notice The community staking pool.
CommunityStakingPool communityStakingPool;
/// @notice The operator staking pool.
OperatorStakingPool operatorStakingPool;
/// @notice The delegation rate expressed in basis points. For example, a delegation rate of
/// 4.5% would be represented as 450 basis points.
uint32 delegationRate;
/// @notice The time it takes for a multiplier to reach its max value in seconds.
uint32 multiplierDuration;
/// @notice The time it requires to transfer admin role
uint48 adminRoleTransferDelay;
}
/// @notice This struct is used to store the reward information for a reward bucket.
struct RewardBucket {
/// @notice The reward aggregate reward rate of the reward bucket in Juels/second.
uint80 emissionRate;
/// @notice The timestamp when the reward duration ends.
uint80 rewardDurationEndsAt;
/// @notice The last updated available reward per token of the reward bucket.
/// This value only increases over time as more rewards vest to the
/// stakers.
uint80 vestedRewardPerToken;
}
/// @notice This struct is used to store the reward buckets states.
struct RewardBuckets {
/// @notice The reward bucket for the operator staking pool.
RewardBucket operatorBase;
/// @notice The reward bucket for the community staking pool.
RewardBucket communityBase;
/// @notice The reward bucket for the delegated rewards.
RewardBucket operatorDelegated;
}
/// @notice This struct is used to store the vault config.
struct VaultConfig {
/// @notice The delegation rate expressed in basis points. For example, a delegation rate of
/// 4.5% would be represented as 450 basis points.
uint32 delegationRate;
/// @notice Flag that signals if the reward vault is open
bool isOpen;
}
/// @notice This struct is used to store the checkpoint information at the time the reward vault
/// is closed
struct VestingCheckpointData {
/// @notice The total staked LINK amount of the operator staking pool at the time
/// the reward vault was closed
uint256 operatorPoolTotalPrincipal;
/// @notice The total staked LINK amount of the community staking pool at the time
/// the reward vault was closed
uint256 communityPoolTotalPrincipal;
/// @notice The block number of at the time the reward vault was migrated or closed
uint256 finalBlockNumber;
}
/// @notice This struct is used for aggregating the return values of a function that calculates
/// the reward aggregate reward rate splits.
struct BucketRewardEmissionSplit {
/// @notice The reward for the community staking pool
uint256 communityReward;
/// @notice The reward for the operator staking pool
uint256 operatorReward;
/// @notice The reward for the delegated staking pool
uint256 operatorDelegatedReward;
/// @notice The aggregate reward rate for the community staking pool
uint256 communityRate;
/// @notice The aggregate reward rate for the operator staking pool
uint256 operatorRate;
/// @notice The aggregate reward rate for the delegated staking pool
uint256 delegatedRate;
}
/// @notice This is the ID for the rewarder role, which is given to the
/// addresses that will add rewards to the vault.
/// @dev Hash: beec13769b5f410b0584f69811bfd923818456d5edcf426b0e31cf90eed7a3f6
bytes32 public constant REWARDER_ROLE = keccak256("REWARDER_ROLE");
/// @notice The maximum possible value of a multiplier. Current implementation requires that this
/// value is 1e18 (i.e. 100%).
uint256 private constant MAX_MULTIPLIER = 1e18;
/// @notice The denominator used to calculate the delegation rate.
uint256 private constant DELEGATION_BASIS_POINTS_DENOMINATOR = 10000;
/// @notice The multiplier ramp up period duration in seconds.
uint256 private immutable i_multiplierDuration;
/// @notice The LINK token
LinkTokenInterface private immutable i_LINK;
/// @notice The community staking pool.
CommunityStakingPool private immutable i_communityStakingPool;
/// @notice The operator staking pool.
OperatorStakingPool private immutable i_operatorStakingPool;
/// @notice The reward buckets.
RewardBuckets private s_rewardBuckets;
/// @notice The vault config.
VaultConfig private s_vaultConfig;
/// @notice The checkpoint information at the time the reward vault was closed
VestingCheckpointData private s_finalVestingCheckpointData;
/// @notice The packed timestamps of reward updates. First digits contain community reward
/// update timestamp and last 18 digits contain operator timestamp, e.g., if both timestamps are
/// 1_697_127_483_832 then the value would be 1_697_127_483_832_000_001_697_127_483_832.
uint256 private s_packedRewardUpdateTimestamps;
/// @notice Stores reward information for each staker
mapping(address => StakerReward) private s_rewards;
constructor(ConstructorParams memory params)
PausableWithAccessControl(params.adminRoleTransferDelay, msg.sender)
{
if (address(params.linkToken) == address(0)) revert InvalidZeroAddress();
if (address(params.communityStakingPool) == address(0)) revert InvalidZeroAddress();
if (address(params.operatorStakingPool) == address(0)) revert InvalidZeroAddress();
if (params.delegationRate > DELEGATION_BASIS_POINTS_DENOMINATOR) revert InvalidDelegationRate();
i_multiplierDuration = params.multiplierDuration;
i_LINK = params.linkToken;
i_communityStakingPool = params.communityStakingPool;
i_operatorStakingPool = params.operatorStakingPool;
s_vaultConfig.delegationRate = params.delegationRate;
emit DelegationRateSet(0, params.delegationRate);
s_vaultConfig.isOpen = true;
emit VaultOpened();
}
/// @notice Adds more rewards into the reward vault
/// Calculates the reward duration from the amount and aggregate reward rate
/// @dev To add rewards to all pools use address(0) as the pool address
/// @dev There is a possibility that a fraction of the added rewards can be locked in this
/// contract as dust, specifically, when the amount is not divided by the aggregate reward rate
/// evenly. We
/// will handle this case operationally and make sure that the amount is large relative to the
/// aggregate reward rate so there will only be small dust (less than 10^18 juels).
/// @param pool The staking pool address
/// @param amount The reward amount
/// @param emissionRate The target aggregate reward rate (token/second)
/// @dev precondition The caller must have the REWARDER role.
/// @dev precondition This contract must be open and not paused.
/// @dev precondition The caller must have at least `amount` LINK tokens.
/// @dev precondition The caller must have approved this contract for the transfer of at least
/// `amount` LINK tokens.
function addReward(
address pool,
uint256 amount,
uint256 emissionRate
) external onlyRewarder whenOpen whenNotPaused {
// check if the pool is either community staking pool or operator staking pool
// if the pool is the zero address, then the reward is split between all pools
if (
pool != address(0) && pool != address(i_communityStakingPool)
&& pool != address(i_operatorStakingPool)
) {
revert InvalidPool();
}
// check that the aggregate reward rate is greater than zero
if (emissionRate == 0) revert InvalidEmissionRate();
// update the reward per tokens
_updateRewardPerToken();
// update the reward buckets
_updateRewardBuckets({pool: pool, amount: amount, emissionRate: emissionRate});
// transfer the reward tokens to the reward vault
// The return value is not checked since the call will revert if any balance, allowance or
// receiver conditions fail.
i_LINK.transferFrom({from: msg.sender, to: address(this), value: amount});
emit RewardAdded(pool, amount, emissionRate);
}
/// @notice Returns the delegation rate
/// @return The delegation rate expressed in basis points
function getDelegationRate() external view returns (uint256) {
return s_vaultConfig.delegationRate;
}
/// @notice Updates the delegation rate
/// @param newDelegationRate The delegation rate.
/// @dev precondition The caller must have the default admin role.
function setDelegationRate(uint256 newDelegationRate) external onlyRole(DEFAULT_ADMIN_ROLE) {
uint256 oldDelegationRate = s_vaultConfig.delegationRate;
if (
oldDelegationRate == newDelegationRate
|| newDelegationRate > DELEGATION_BASIS_POINTS_DENOMINATOR
) {
revert InvalidDelegationRate();
}
uint256 communityRateWithoutDelegation =
s_rewardBuckets.communityBase.emissionRate + s_rewardBuckets.operatorDelegated.emissionRate;
uint256 delegatedRate = newDelegationRate == 0
? 0
: communityRateWithoutDelegation * newDelegationRate / DELEGATION_BASIS_POINTS_DENOMINATOR;
if (delegatedRate == 0 && newDelegationRate != 0 && communityRateWithoutDelegation != 0) {
// delegated rate has rounded down to zero
revert InsufficentRewardsForDelegationRate();
}
_updateRewardPerToken();
uint256 unvestedRewards = _getUnvestedRewards(s_rewardBuckets.communityBase)
+ _getUnvestedRewards(s_rewardBuckets.operatorDelegated);
uint256 communityRate = communityRateWithoutDelegation - delegatedRate;
s_rewardBuckets.communityBase.emissionRate = communityRate.toUint80();
s_rewardBuckets.operatorDelegated.emissionRate = delegatedRate.toUint80();
// NOTE - the reward duration for both buckets need to be in sync.
if (newDelegationRate == 0) {
delete s_rewardBuckets.operatorDelegated.rewardDurationEndsAt;
_updateRewardDurationEndsAt({
bucket: s_rewardBuckets.communityBase,
rewardAmount: unvestedRewards,
emissionRate: communityRate
});
} else if (newDelegationRate == DELEGATION_BASIS_POINTS_DENOMINATOR) {
delete s_rewardBuckets.communityBase.rewardDurationEndsAt;
_updateRewardDurationEndsAt({
bucket: s_rewardBuckets.operatorDelegated,
rewardAmount: unvestedRewards,
emissionRate: delegatedRate
});
} else if (unvestedRewards != 0) {
uint256 delegatedRewards =
unvestedRewards * newDelegationRate / DELEGATION_BASIS_POINTS_DENOMINATOR;
uint256 communityRewards = unvestedRewards - delegatedRewards;
_updateRewardDurationEndsAt({
bucket: s_rewardBuckets.communityBase,
rewardAmount: communityRewards,
emissionRate: communityRate
});
_updateRewardDurationEndsAt({
bucket: s_rewardBuckets.operatorDelegated,
rewardAmount: delegatedRewards,
emissionRate: delegatedRate
});
}
s_vaultConfig.delegationRate = newDelegationRate.toUint32();
emit DelegationRateSet(oldDelegationRate, newDelegationRate);
}
// =================
// IRewardVault
// =================
/// @inheritdoc IRewardVault
/// @dev precondition This contract must not be paused.
/// @dev precondition The caller must be a staker with a non-zero reward.
function claimReward() external whenNotPaused returns (uint256) {
bool isOperator = _isOperator(msg.sender);
_updateRewardPerToken(isOperator ? StakerType.OPERATOR : StakerType.COMMUNITY);
IStakingPool stakingPool =
isOperator ? IStakingPool(i_operatorStakingPool) : IStakingPool(i_communityStakingPool);
uint256 stakerPrincipal = _getStakerPrincipal(msg.sender, stakingPool);
StakerReward memory stakerReward = _calculateStakerReward({
staker: msg.sender,
isOperator: isOperator,
stakerPrincipal: stakerPrincipal
});
uint112 newVestedBaseRewards = _calculateNewVestedBaseRewards(
stakerReward, _getMultiplier(_getStakerStakedAtTime(msg.sender, stakingPool))
);
stakerReward.unvestedBaseReward -= newVestedBaseRewards;
stakerReward.claimedBaseRewardsInPeriod += newVestedBaseRewards;
uint256 newVestedRewards = stakerReward.vestedBaseReward + newVestedBaseRewards;
delete stakerReward.vestedBaseReward;
if (isOperator) {
newVestedRewards += stakerReward.vestedDelegatedReward;
delete stakerReward.vestedDelegatedReward;
}
if (newVestedRewards == 0) {
revert NoRewardToClaim();
}
s_rewards[msg.sender] = stakerReward;
// The return value is not checked since the call will revert if any balance, allowance or
// receiver conditions fail.
i_LINK.transfer(msg.sender, newVestedRewards);
emit RewardClaimed(msg.sender, newVestedRewards);
emit StakerRewardUpdated(
msg.sender,
0,
0,
stakerReward.baseRewardPerToken,
stakerReward.operatorDelegatedRewardPerToken,
stakerReward.claimedBaseRewardsInPeriod
);
return newVestedRewards;
}
/// @inheritdoc IRewardVault
/// @dev precondition The caller must be a staking pool.
function updateReward(address staker, uint256 stakerPrincipal) external onlyStakingPool {
_updateRewardPerToken();
StakerReward memory stakerReward = _calculateStakerReward({
staker: staker,
isOperator: msg.sender == address(i_operatorStakingPool),
stakerPrincipal: stakerPrincipal
});
s_rewards[staker] = stakerReward;
emit StakerRewardUpdated(
staker,
stakerReward.vestedBaseReward,
stakerReward.vestedDelegatedReward,
stakerReward.baseRewardPerToken,
stakerReward.operatorDelegatedRewardPerToken,
stakerReward.claimedBaseRewardsInPeriod
);
}
/// @inheritdoc IRewardVault
/// @dev This applies any final logic such as the multipliers to the staker's newly accrued and
/// stored rewards and store the value.
/// @dev The caller staking pool must update the total staked LINK amount of the pool AFTER
/// calling this
/// function.
/// @dev precondition The caller must be a staking pool.
function concludeRewardPeriod(
address staker,
uint256 oldPrincipal,
uint256 stakedAt,
uint256 unstakedAmount,
bool shouldForfeit
) external onlyStakingPool {
// _isOperator is not used here to save gas. The _isOperator function
// currently checks for 2 things. The first that the staker is currently
// an operator and the other is that the staker is a removed operator. As
// this function will only be called by a staking pool, the contract can
// safely assume that the staker is an operator if the msg.sender is the
// operator staking pool as upgrading a pool/reward vault means that the operator
// staking pool will point to a new reward vault. Additionally the contract
// assumes that it does not need to do the second check to determine whether
// or not an operator had been removed as it is unlikely that an operator
// is removed after the reward vault is closed.
bool isOperator = msg.sender == address(i_operatorStakingPool);
_updateRewardPerToken(isOperator ? StakerType.OPERATOR : StakerType.COMMUNITY);
StakerReward memory stakerReward = _calculateStakerReward({
staker: staker,
isOperator: isOperator,
stakerPrincipal: oldPrincipal
});
uint112 newVestedBaseRewards =
_calculateNewVestedBaseRewards(stakerReward, _getMultiplier(stakedAt));
stakerReward.unvestedBaseReward -= newVestedBaseRewards;
stakerReward.vestedBaseReward += newVestedBaseRewards;
// claimedBaseRewardsInPeriod is reset as this function ends a
// reward period for the staker. This variable only tracks the amount
// of rewards a staker has claimed within a period hence should only
// accumulate from zero after this function is called.
delete stakerReward.claimedBaseRewardsInPeriod;
if (!shouldForfeit) {
return _storeRewardAndEmitEvents(staker, stakerReward, shouldForfeit);
}
uint112 unvestedRewardAmount = stakerReward.unvestedBaseReward;
// The function terminates here as a staker that has reached the maximum
// multiplier will not have any unvested rewards hence will not forfeit
// anything.
if (unvestedRewardAmount == 0) {
return _storeRewardAndEmitEvents(staker, stakerReward, shouldForfeit);
}
IStakingPool stakingPool =
isOperator ? IStakingPool(i_operatorStakingPool) : IStakingPool(i_communityStakingPool);
uint256 remainingPoolPrincipal = _getTotalPrincipal(stakingPool) - oldPrincipal;
// This is the case when the last staker exits the pool.
if (remainingPoolPrincipal == 0) {
delete stakerReward.unvestedBaseReward;
stakerReward.vestedBaseReward += unvestedRewardAmount;
emit ForfeitedRewardDistributed(0, 0, unvestedRewardAmount, isOperator);
return _storeRewardAndEmitEvents(staker, stakerReward, shouldForfeit);
}
// This handles an edge case when an operator with 0 principal remaining (due to
// slashing) gets removed and forfeits rewards. In this scenario, the reward vault will
// forfeit the full amount of unclaimable rewards instead of calculating
// the proportion of the unclaimable rewards that should be forfeited.
// There is another case when forfeitedRewardAmount rounds down to 0, which is when a staker has
// earned too little rewards and unstakes a very small amount. In this case, we do not forfeit
// any rewards.
uint256 forfeitedRewardAmount = oldPrincipal == 0
? unvestedRewardAmount
: unvestedRewardAmount * unstakedAmount / oldPrincipal;
RewardBucket storage rewardBucket =
isOperator ? s_rewardBuckets.operatorBase : s_rewardBuckets.communityBase;
uint256 redistributedRewardPerToken = forfeitedRewardAmount.divWadDown(remainingPoolPrincipal);
/// There is an extreme edge case where redistributedRewardPerToken may overflow
/// because the remaining principal in a pool is an extremely small amount.
/// This scenario is however extremely unlikely because there is a minimum
/// staked amount for both the operator and community staking pools.
/// Operators may be slashed so that the sum of remaining staked amounts
/// is extremely small but this scenario is also unlikely to happen as
/// it would mean multiple CL services going down at the same time.
rewardBucket.vestedRewardPerToken += redistributedRewardPerToken.toUint80();
emit ForfeitedRewardDistributed(
forfeitedRewardAmount, redistributedRewardPerToken, 0, isOperator
);
// Update stakerRewardPerToken so that the staker doesn't benefit from redistributed
// tokens
_updateStakerRewardPerToken(stakerReward, isOperator);
stakerReward.unvestedBaseReward -= forfeitedRewardAmount.toUint112();
return _storeRewardAndEmitEvents(staker, stakerReward, shouldForfeit);
}
/// @notice Updates a staker's reward data and emits events
/// @param staker The address of the staker to update reward data for
/// @param stakerReward The staker's new reward data
/// @param shouldForfeit True if the staker has forfeited some unvested
/// rewards
function _storeRewardAndEmitEvents(
address staker,
StakerReward memory stakerReward,
bool shouldForfeit
) internal {
s_rewards[staker] = stakerReward;
emit RewardFinalized(staker, shouldForfeit);
emit StakerRewardUpdated(
staker,
stakerReward.vestedBaseReward,
stakerReward.vestedDelegatedReward,
stakerReward.baseRewardPerToken,
stakerReward.operatorDelegatedRewardPerToken,
stakerReward.claimedBaseRewardsInPeriod
);
}
/// @notice Calculates new vested base rewards, taking into account the multiplier
/// and the rewards that have already been claimed.
/// @return New vested base rewards
function _calculateNewVestedBaseRewards(
StakerReward memory stakerReward,
uint256 multiplier
) internal pure returns (uint112) {
return uint256(stakerReward.unvestedBaseReward + stakerReward.claimedBaseRewardsInPeriod)
.mulWadDown(multiplier).toUint112() - stakerReward.claimedBaseRewardsInPeriod;
}
/// @inheritdoc IRewardVault
/// @dev Withdraws any unvested LINK rewards to the owner's address.
/// @dev precondition The caller must have the default admin role.
/// @dev precondition This contract must be open.
function close() external onlyRole(DEFAULT_ADMIN_ROLE) whenOpen {
(, uint256 totalUnvestedRewards,,,) = _stopVestingRewardsToBuckets();
delete s_vaultConfig.isOpen;
// The return value is not checked since the call will revert if any balance, allowance or
// receiver conditions fail.
i_LINK.transfer(msg.sender, totalUnvestedRewards);
emit VaultClosed(totalUnvestedRewards);
}
/// @inheritdoc IRewardVault
function getReward(address staker) external view returns (uint256) {
// Determine if staker is operator or community
bool isOperator = _isOperator(staker);
IStakingPool stakingPool =
isOperator ? IStakingPool(i_operatorStakingPool) : IStakingPool(i_communityStakingPool);
uint256 stakerPrincipal = _getStakerPrincipal(staker, stakingPool);
(StakerReward memory stakerReward, uint256 forfeitedReward) =
_getReward(staker, stakerPrincipal, isOperator);
(,, uint256 reclaimableReward) = _calculateForfeitedRewardDistribution(
forfeitedReward, _getTotalPrincipal(stakingPool) - stakerPrincipal
);
return stakerReward.vestedBaseReward + stakerReward.vestedDelegatedReward + reclaimableReward;
}
/// @inheritdoc IRewardVault
function isOpen() external view returns (bool) {
return s_vaultConfig.isOpen;
}
/// @inheritdoc IRewardVault
function hasRewardDurationEnded(address stakingPool) external view returns (bool) {
if (stakingPool == address(i_operatorStakingPool)) {
return s_rewardBuckets.operatorBase.rewardDurationEndsAt <= block.timestamp
&& s_rewardBuckets.operatorDelegated.rewardDurationEndsAt <= block.timestamp;
}
if (stakingPool == address(i_communityStakingPool)) {
return s_rewardBuckets.communityBase.rewardDurationEndsAt <= block.timestamp;
}
revert InvalidPool();
}
/// @inheritdoc IRewardVault
function hasRewardAdded() external view returns (bool) {
return s_rewardBuckets.operatorBase.emissionRate != 0
|| s_rewardBuckets.communityBase.emissionRate != 0
|| s_rewardBuckets.operatorDelegated.emissionRate != 0;
}
/// @inheritdoc IRewardVault
function getStoredReward(address staker) external view returns (StakerReward memory) {
return s_rewards[staker];
}
/// @notice Returns the reward buckets within this vault
/// @return The reward buckets
function getRewardBuckets() external view returns (RewardBuckets memory) {
return s_rewardBuckets;
}
/// @notice Returns the timestamp of the last reward per token update
/// @return uint256 communityRewardUpdateTimestamp The timestamp of the last update
/// @return uint256 operatorRewardUpdateTimestamp The timestamp of the last update
function getRewardPerTokenUpdatedAt() external view returns (uint256, uint256) {
return _getRewardUpdateTimestamps(s_packedRewardUpdateTimestamps);
}
/// @notice Returns the multiplier ramp up time
/// @return uint256 The multiplier ramp up time
function getMultiplierDuration() external view returns (uint256) {
return i_multiplierDuration;
}
/// @notice Returns the ramp up multiplier of the staker
/// @dev Multipliers are in the range of 0 and 1, so we multiply them by 1e18 (WAD) to preserve
/// the decimals.
/// @param staker The address of the staker
/// @return uint256 The staker's multiplier
function getMultiplier(address staker) external view returns (uint256) {
IStakingPool stakingPool = _isOperator(staker)
? IStakingPool(i_operatorStakingPool)
: IStakingPool(i_communityStakingPool);
return _getMultiplier(_getStakerStakedAtTime(staker, stakingPool));
}
/// @notice Calculates and returns the latest reward info of the staker
/// @param staker The staker address
/// @return StakerReward The staker's reward info
/// @return uint256 The staker's forfeited reward in juels
function calculateLatestStakerReward(address staker)
external
view
returns (StakerReward memory, uint256)
{
// Determine if staker is operator or community
bool isOperator = _isOperator(staker);
IStakingPool stakingPool =
isOperator ? IStakingPool(i_operatorStakingPool) : IStakingPool(i_communityStakingPool);
uint256 stakerPrincipal = _getStakerPrincipal(staker, stakingPool);
return _getReward(staker, stakerPrincipal, isOperator);
}
/// @notice Returns the final checkpoint data
/// @return VestingCheckpointData The final checkpoint
function getFinalVestingCheckpointData() external view returns (VestingCheckpointData memory) {
return s_finalVestingCheckpointData;
}
/// @notice Returns the unvested rewards
/// @return unvestedCommunityBaseRewards The unvested community base rewards
/// @return unvestedOperatorBaseRewards The unvested operator base rewards
/// @return unvestedOperatorDelegatedRewards The unvested operator delegated rewards
function getUnvestedRewards() external view returns (uint256, uint256, uint256) {
uint256 unvestedCommunityBaseRewards = _getUnvestedRewards(s_rewardBuckets.communityBase);
uint256 unvestedOperatorBaseRewards = _getUnvestedRewards(s_rewardBuckets.operatorBase);
uint256 unvestedOperatorDelegatedRewards =
_getUnvestedRewards(s_rewardBuckets.operatorDelegated);
return
(unvestedCommunityBaseRewards, unvestedOperatorBaseRewards, unvestedOperatorDelegatedRewards);
}
/// @inheritdoc IRewardVault
function isPaused() external view returns (bool) {
return paused();
}
/// @inheritdoc IRewardVault
function getStakingPools() external view override returns (address[] memory) {
address[] memory stakingPools = new address[](2);
stakingPools[0] = address(i_operatorStakingPool);
stakingPools[1] = address(i_communityStakingPool);
return stakingPools;
}
// =========
// Helpers
// =========
/// @notice Stops rewards in all buckets from vesting and close the vault.
/// @dev This will also checkpoint the staking pools
/// @return uint256 The total aggregate reward rate from all three buckets
/// @return uint256 The total amount of available rewards in juels
/// @return uint256 The amount of available operator base rewards in juels
/// @return uint256 The amount of available community base rewards in juels
/// @return uint256 The amount of available operator delegated rewards in juels
function _stopVestingRewardsToBuckets()
private
returns (uint256, uint256, uint256, uint256, uint256)
{
_updateRewardPerToken();
uint256 unvestedOperatorBaseRewards = _stopVestingBucketRewards(s_rewardBuckets.operatorBase);
uint256 unvestedCommunityBaseRewards = _stopVestingBucketRewards(s_rewardBuckets.communityBase);
uint256 unvestedOperatorDelegatedRewards =
_stopVestingBucketRewards(s_rewardBuckets.operatorDelegated);
uint256 totalUnvestedRewards =
unvestedOperatorBaseRewards + unvestedCommunityBaseRewards + unvestedOperatorDelegatedRewards;
_checkpointStakingPools();
return (
s_rewardBuckets.operatorBase.emissionRate + s_rewardBuckets.communityBase.emissionRate
+ s_rewardBuckets.operatorDelegated.emissionRate,
totalUnvestedRewards,
unvestedOperatorBaseRewards,
unvestedCommunityBaseRewards,
unvestedOperatorDelegatedRewards
);
}
/// @notice Returns the total staked LINK amount staked in a staking pool. This will
/// return the staking pool's latest total staked LINK amount if the vault has not been
/// closed and the pool's total staked LINK amount at the time the vault was
/// closed if the vault has already been closed.
/// @param stakingPool The staking pool to query the total staked LINK amount for
/// @return uint256 The total staked LINK amount staked in the staking pool
function _getTotalPrincipal(IStakingPool stakingPool) private view returns (uint256) {
return s_vaultConfig.isOpen
? stakingPool.getTotalPrincipal()
: _getFinalTotalPoolPrincipal(stakingPool);
}
/// @notice Returns the staker's staked LINK amount in a staking pool. This will
/// return the staker's latest staked LINK amount if the vault has not been
/// closed and the staker's staked LINK amount at the time the vault was
/// closed if the vault has already been closed.
/// @param staker The staker to query the total staked LINK amount for
/// @param stakingPool The staking pool to query the total staked LINK amount for
/// @return uint256 The staker's staked LINK amount in the staking pool in juels
function _getStakerPrincipal(
address staker,
IStakingPool stakingPool
) private view returns (uint256) {
return s_vaultConfig.isOpen
? stakingPool.getStakerPrincipal(staker)
: stakingPool.getStakerPrincipalAt(staker, s_finalVestingCheckpointData.finalBlockNumber);
}
/// @notice Helper function to get a staker's current multiplier
/// @param stakedAt The time the staker last staked at
/// @return uint256 The staker's multiplier
function _getMultiplier(uint256 stakedAt) private view returns (uint256) {
if (stakedAt == 0) return 0;
if (!s_vaultConfig.isOpen) return MAX_MULTIPLIER;
uint256 multiplierDuration = i_multiplierDuration;
if (multiplierDuration == 0) return MAX_MULTIPLIER;
return Math.min(
FixedPointMathLib.divWadDown(block.timestamp - stakedAt, multiplierDuration), MAX_MULTIPLIER
);
}
/// @notice Returns the staker's staked at time in a staking pool. This will
/// return the staker's latest staked at time if the vault has not been
/// closed and the staker's staked at time at the time the vault was
/// closed if the vault has already been closed.
/// @param staker The staker to query the staked at time for
/// @param stakingPool The staking pool to query the staked at time for
/// @return uint256 The staker's average staked at time in the staking pool
function _getStakerStakedAtTime(
address staker,
IStakingPool stakingPool
) private view returns (uint256) {
return s_vaultConfig.isOpen
? stakingPool.getStakerStakedAtTime(staker)
: stakingPool.getStakerStakedAtTimeAt(staker, s_finalVestingCheckpointData.finalBlockNumber);
}
/// @notice Return the staking pool's total staked LINK amount at the time the vault was
/// closed
/// @param stakingPool The staking pool to query the total staked LINK amount for
/// @return uint256 The pool's total staked LINK amount at the time the vault was
/// closed
function _getFinalTotalPoolPrincipal(IStakingPool stakingPool) private view returns (uint256) {
return address(stakingPool) == address(i_operatorStakingPool)
? s_finalVestingCheckpointData.operatorPoolTotalPrincipal
: s_finalVestingCheckpointData.communityPoolTotalPrincipal;
}
/// @notice Records the final block number and the total staked LINK amounts
/// in the operator and community staking pools
function _checkpointStakingPools() private {
s_finalVestingCheckpointData.operatorPoolTotalPrincipal =
i_operatorStakingPool.getTotalPrincipal();
s_finalVestingCheckpointData.communityPoolTotalPrincipal =
i_communityStakingPool.getTotalPrincipal();
s_finalVestingCheckpointData.finalBlockNumber = block.number;
}
/// @notice Stops rewards in a bucket from vesting
/// @param bucket The bucket to stop vesting rewards for
/// @return uint256 The amount of unvested rewards in juels
function _stopVestingBucketRewards(RewardBucket storage bucket) private returns (uint256) {
uint256 unvestedRewards = _getUnvestedRewards(bucket);
bucket.rewardDurationEndsAt = block.timestamp.toUint80();
return unvestedRewards;
}
/// @notice Updates the reward buckets
/// @param pool The staking pool address
/// @param amount The reward amount
/// @param emissionRate The target aggregate reward rate (Juels/second)
function _updateRewardBuckets(address pool, uint256 amount, uint256 emissionRate) private {
// split the reward and aggregate reward rate for the different reward buckets
BucketRewardEmissionSplit memory emissionSplitData = _getBucketRewardAndEmissionRateSplit({
pool: pool,
amount: amount,
emissionRate: emissionRate,
isDelegated: s_vaultConfig.delegationRate != 0
});
// If the aggregate reward rate is zero, we don't update the reward bucket
// This is because we do not allow a zero aggregate reward rate
// A zero aggregate reward rate means no rewards have been added
if (emissionSplitData.communityRate != 0) {
_updateRewardBucket({
bucket: s_rewardBuckets.communityBase,
amount: emissionSplitData.communityReward,
emissionRate: emissionSplitData.communityRate
});
}
if (emissionSplitData.operatorRate != 0) {
_updateRewardBucket({
bucket: s_rewardBuckets.operatorBase,
amount: emissionSplitData.operatorReward,
emissionRate: emissionSplitData.operatorRate
});
}
if (emissionSplitData.delegatedRate != 0) {
_updateRewardBucket({
bucket: s_rewardBuckets.operatorDelegated,
amount: emissionSplitData.operatorDelegatedReward,
emissionRate: emissionSplitData.delegatedRate
});
}
}
/// @notice Updates the reward bucket
/// @param bucket The reward bucket
/// @param amount The reward amount
/// @param emissionRate The target aggregate reward rate (token/second)
function _updateRewardBucket(
RewardBucket storage bucket,
uint256 amount,
uint256 emissionRate
) private {
// calculate the remaining rewards
uint256 remainingRewards = _getUnvestedRewards(bucket);
// if the amount of rewards is less than what becomes available per second, we revert
if (amount + remainingRewards < emissionRate) revert RewardDurationTooShort();
_updateRewardDurationEndsAt({
bucket: bucket,
rewardAmount: amount + remainingRewards,
emissionRate: emissionRate
});
bucket.emissionRate = emissionRate.toUint80();
}
/// @notice Updates the reward duration end time of the bucket
/// @param bucket The reward bucket
/// @param rewardAmount The reward amount
/// @param emissionRate The aggregate reward rate
function _updateRewardDurationEndsAt(
RewardBucket storage bucket,
uint256 rewardAmount,
uint256 emissionRate
) private {
if (emissionRate == 0) return;
bucket.rewardDurationEndsAt = (block.timestamp + (rewardAmount / emissionRate)).toUint80();
}
/// @notice Splits the reward and aggregate reward rates between the different reward buckets
/// @dev If the pool is not targeted, the returned reward and aggregate reward rate will be zero
/// @param pool The staking pool address (or zero address if the reward is split between all
/// pools)
/// @param amount The reward amount
/// @param emissionRate The aggregate reward rate (juels/second)
/// @param isDelegated Whether the reward is delegated or not
/// @return BucketRewardEmissionSplit The rewards and aggregate reward rates after
/// distributing the reward amount to the buckets
function _getBucketRewardAndEmissionRateSplit(
address pool,
uint256 amount,
uint256 emissionRate,
bool isDelegated
) private view returns (BucketRewardEmissionSplit memory) {
// when splitting reward and rate, a pool's share is 0 if it is not targeted by the pool
// address,
// otherwise it is the pool's max size
// a pool's share is used to split rewards and aggregate reward rates proportionally
uint256 communityPoolShare =
pool != address(i_operatorStakingPool) ? i_communityStakingPool.getMaxPoolSize() : 0;
uint256 operatorPoolShare =
pool != address(i_communityStakingPool) ? i_operatorStakingPool.getMaxPoolSize() : 0;
uint256 totalPoolShare = communityPoolShare + operatorPoolShare;
uint256 operatorReward;
uint256 communityReward;
uint256 operatorRate;
uint256 communityRate;
if (pool == address(i_operatorStakingPool)) {
operatorReward = amount;
operatorRate = emissionRate;
} else if (pool == address(i_communityStakingPool)) {
communityReward = amount;
communityRate = emissionRate;
} else {
// prevent a possible rounding to zero error by validating inputs
_checkForRoundingToZeroRewardAmountSplit({
rewardAmount: amount,
operatorPoolShare: operatorPoolShare,
totalPoolShare: totalPoolShare
});
_checkForRoundingToZeroEmissionRateSplit({
emissionRate: emissionRate,
operatorPoolShare: operatorPoolShare,
totalPoolShare: totalPoolShare
});
operatorReward = amount * operatorPoolShare / totalPoolShare;
operatorRate = emissionRate * operatorPoolShare / totalPoolShare;
communityReward = amount - operatorReward;
communityRate = emissionRate - operatorRate;
}
uint256 operatorDelegatedReward;
uint256 delegatedRate;
// if there is no delegation or the community pool is not targeted, the delegated reward and
// rate is zero
if (isDelegated && communityPoolShare != 0) {
// calculate the delegated pool reward and remove from community reward
operatorDelegatedReward =
communityReward * s_vaultConfig.delegationRate / DELEGATION_BASIS_POINTS_DENOMINATOR;
if (communityReward > 0 && operatorDelegatedReward == 0) revert InvalidRewardAmount();
communityReward -= operatorDelegatedReward;
// calculate the delegated pool aggregate reward rate and remove from community rate
delegatedRate =
communityRate * s_vaultConfig.delegationRate / DELEGATION_BASIS_POINTS_DENOMINATOR;
if (communityRate > 0 && delegatedRate == 0) revert InvalidEmissionRate();
communityRate -= delegatedRate;
}
return (
BucketRewardEmissionSplit({
communityReward: communityReward,
operatorReward: operatorReward,
operatorDelegatedReward: operatorDelegatedReward,
communityRate: communityRate,
operatorRate: operatorRate,
delegatedRate: delegatedRate
})
);
}
/// @notice Validates the added reward amount after splitting to avoid a rounding error when
/// dividing
/// @param rewardAmount The reward amount
/// @param operatorPoolShare The size of the operator staking pool to take into account
/// @param totalPoolShare The total size of the pools to take into account
function _checkForRoundingToZeroRewardAmountSplit(
uint256 rewardAmount,
uint256 operatorPoolShare,
uint256 totalPoolShare
) private pure {
if (
rewardAmount != 0
&& ((operatorPoolShare != 0 && rewardAmount * operatorPoolShare < totalPoolShare))
) {
revert InvalidRewardAmount();
}
}
/// @notice Validates the aggregate reward rate after splitting to avoid a rounding error when
/// dividing
/// @param emissionRate The aggregate reward rate
/// @param operatorPoolShare The size of the operator staking pool to take into account
/// @param totalPoolShare The total size of the pools to take into account
function _checkForRoundingToZeroEmissionRateSplit(
uint256 emissionRate,
uint256 operatorPoolShare,
uint256 totalPoolShare
) private pure {
if ((operatorPoolShare != 0 && emissionRate * operatorPoolShare < totalPoolShare)) {
revert InvalidEmissionRate();
}
}
/// @notice Private util function to unpack and return reward update timestamps.
/// @return uint256 communityRewardUpdateTimestamp
/// @return uint256 operatorRewardUpdateTimestamp
function _getRewardUpdateTimestamps(uint256 packedRewardUpdateTimestamps)
private
pure
returns (uint256, uint256)
{
uint256 communityRewardUpdateTimestamp = packedRewardUpdateTimestamps / 1e18;
uint256 operatorRewardUpdateTimestamp = packedRewardUpdateTimestamps % 1e18;
return (communityRewardUpdateTimestamp, operatorRewardUpdateTimestamp);
}
/// @notice Private util function to pack and set reward update timestamps.
function _setRewardUpdateTimestamps(
uint256 communityRewardUpdateTimestamp,
uint256 operatorRewardUpdateTimestamp
) private {
s_packedRewardUpdateTimestamps =
communityRewardUpdateTimestamp * 1e18 + operatorRewardUpdateTimestamp;
}
/// @notice Private util function for updateRewardPerToken
function _updateRewardPerToken() private {
(uint256 communityRewardUpdateTimestamp, uint256 operatorRewardUpdateTimestamp) =
_getRewardUpdateTimestamps(s_packedRewardUpdateTimestamps);
if (
communityRewardUpdateTimestamp == block.timestamp
&& operatorRewardUpdateTimestamp == block.timestamp
) {
// if the pools were previously updated in the same block there is no recalculation of reward
return;
}
(
uint256 communityRewardPerToken,
uint256 operatorRewardPerToken,
uint256 operatorDelegatedRewardPerToken
) = _calculatePoolsRewardPerToken();
s_rewardBuckets.communityBase.vestedRewardPerToken = communityRewardPerToken.toUint80();
s_rewardBuckets.operatorBase.vestedRewardPerToken = operatorRewardPerToken.toUint80();
s_rewardBuckets.operatorDelegated.vestedRewardPerToken =
operatorDelegatedRewardPerToken.toUint80();
_setRewardUpdateTimestamps(block.timestamp, block.timestamp);
emit CommunityPoolRewardUpdated(communityRewardPerToken);
emit OperatorPoolRewardUpdated(operatorRewardPerToken, operatorDelegatedRewardPerToken);
}
/// @notice Private util function for updateRewardPerToken
/// @param stakerType The staker type to update the reward for.
function _updateRewardPerToken(StakerType stakerType) private {
(uint256 communityRewardUpdateTimestamp, uint256 operatorRewardUpdateTimestamp) =
_getRewardUpdateTimestamps(s_packedRewardUpdateTimestamps);
if (stakerType == StakerType.COMMUNITY) {
if (communityRewardUpdateTimestamp == block.timestamp) {
return;
}
s_rewardBuckets.communityBase.vestedRewardPerToken = _calculateVestedRewardPerToken(
s_rewardBuckets.communityBase,
_getTotalPrincipal(i_communityStakingPool),
communityRewardUpdateTimestamp
).toUint80();
_setRewardUpdateTimestamps(block.timestamp, operatorRewardUpdateTimestamp);
emit CommunityPoolRewardUpdated(s_rewardBuckets.communityBase.vestedRewardPerToken);
} else if (stakerType == StakerType.OPERATOR) {
if (operatorRewardUpdateTimestamp == block.timestamp) {
return;
}
uint256 operatorTotalPrincipal = _getTotalPrincipal(i_operatorStakingPool);
s_rewardBuckets.operatorBase.vestedRewardPerToken = _calculateVestedRewardPerToken(
s_rewardBuckets.operatorBase, operatorTotalPrincipal, operatorRewardUpdateTimestamp
).toUint80();
s_rewardBuckets.operatorDelegated.vestedRewardPerToken = _calculateVestedRewardPerToken(
s_rewardBuckets.operatorDelegated, operatorTotalPrincipal, operatorRewardUpdateTimestamp
).toUint80();
_setRewardUpdateTimestamps(communityRewardUpdateTimestamp, block.timestamp);
emit OperatorPoolRewardUpdated(
s_rewardBuckets.operatorBase.vestedRewardPerToken,
s_rewardBuckets.operatorDelegated.vestedRewardPerToken
);
}
}
/// @notice Util function for calculating the current reward per token for the pools
/// @return uint256 The community reward per token
/// @return uint256 The operator reward per token
/// @return uint256 The operator delegated reward per token
function _calculatePoolsRewardPerToken() private view returns (uint256, uint256, uint256) {
uint256 communityTotalPrincipal = _getTotalPrincipal(i_communityStakingPool);
uint256 operatorTotalPrincipal = _getTotalPrincipal(i_operatorStakingPool);
(uint256 communityRewardUpdateTimestamp, uint256 operatorRewardUpdateTimestamp) =
_getRewardUpdateTimestamps(s_packedRewardUpdateTimestamps);
return (
_calculateVestedRewardPerToken(
s_rewardBuckets.communityBase, communityTotalPrincipal, communityRewardUpdateTimestamp
),
_calculateVestedRewardPerToken(
s_rewardBuckets.operatorBase, operatorTotalPrincipal, operatorRewardUpdateTimestamp
),
_calculateVestedRewardPerToken(
s_rewardBuckets.operatorDelegated, operatorTotalPrincipal, operatorRewardUpdateTimestamp
)
);
}
/// @notice Calculate a bucket’s available rewards earned per token
/// @param rewardBucket The reward bucket to calculate the vestedRewardPerToken for
/// @param totalPrincipal The total staked LINK amount staked in a pool associated with the reward
/// bucket
/// @return uint256 The available rewards earned per token
function _calculateVestedRewardPerToken(
RewardBucket memory rewardBucket,
uint256 totalPrincipal,
uint256 lastUpdateTimestamp
) private view returns (uint256) {
if (totalPrincipal == 0) return rewardBucket.vestedRewardPerToken;
uint256 latestRewardEmittedAt = Math.min(rewardBucket.rewardDurationEndsAt, block.timestamp);
if (latestRewardEmittedAt <= lastUpdateTimestamp) {
return rewardBucket.vestedRewardPerToken;
}
uint256 elapsedTime = latestRewardEmittedAt - lastUpdateTimestamp;
return rewardBucket.vestedRewardPerToken
+ (elapsedTime * rewardBucket.emissionRate).divWadDown(totalPrincipal);
}
/// @notice Calculates a stakers earned base reward
/// @param stakerReward The staker's reward info
/// @param stakerPrincipal The staker's staked LINK amount
/// @param baseRewardPerToken The base reward per token of the staking pool
/// @return uint256 The earned base reward
function _calculateEarnedBaseReward(
StakerReward memory stakerReward,
uint256 stakerPrincipal,
uint256 baseRewardPerToken
) private pure returns (uint256) {
uint256 earnedBaseReward = _calculateAccruedReward({
principal: stakerPrincipal,
rewardPerToken: stakerReward.baseRewardPerToken,
vestedRewardPerToken: baseRewardPerToken
});
return earnedBaseReward;
}
/// @notice Calculates an operator's earned delegated reward
/// @param stakerReward The staker's reward info
/// @param stakerPrincipal The staker's staked LINK amount
/// @param operatorDelegatedRewardPerToken The operator delegated reward per token
/// @return uint256 The earned delegated reward
function _calculateEarnedDelegatedReward(
StakerReward memory stakerReward,
uint256 stakerPrincipal,
uint256 operatorDelegatedRewardPerToken
) private pure returns (uint256) {
uint256 earnedDelegatedReward = _calculateAccruedReward({
principal: stakerPrincipal,
rewardPerToken: stakerReward.operatorDelegatedRewardPerToken,
vestedRewardPerToken: operatorDelegatedRewardPerToken
});
return earnedDelegatedReward;
}
/// @notice Calculates the newly accrued reward of a staker since the last time the staker's
/// reward was updated
/// @param principal The staker's staked LINK amount
/// @param rewardPerToken The base or delegated reward per token of the staker
/// @param vestedRewardPerToken The available reward per token of the staking pool
/// @return uint256 The accrued reward amount
function _calculateAccruedReward(
uint256 principal,
uint256 rewardPerToken,
uint256 vestedRewardPerToken
) private pure returns (uint256) {
return principal.mulWadDown(vestedRewardPerToken - rewardPerToken);
}
/// @notice Calculates and updates a staker's rewards
/// @param staker The staker's address
/// @param isOperator True if the staker is an operator, false otherwise
/// @param stakerPrincipal The staker's staked LINK amount
/// @dev Staker rewards are forfeited when a staker unstakes before they
/// have reached their maximum ramp up period multiplier. Additionally an
/// operator will also forfeit any unclaimed rewards if they are removed
/// before they reach the maximum ramp up period multiplier.
/// @return StakerReward The staker's updated reward info
function _calculateStakerReward(
address staker,
bool isOperator,
uint256 stakerPrincipal
) private view returns (StakerReward memory) {
StakerReward memory stakerReward = s_rewards[staker];
if (stakerReward.stakerType != StakerType.NOT_STAKED) {
// do nothing
} else {
stakerReward.stakerType = isOperator ? StakerType.OPERATOR : StakerType.COMMUNITY;
}
// Calculate earned base rewards
stakerReward.unvestedBaseReward += _calculateEarnedBaseReward({
stakerReward: stakerReward,
stakerPrincipal: stakerPrincipal,
baseRewardPerToken: isOperator
? s_rewardBuckets.operatorBase.vestedRewardPerToken
: s_rewardBuckets.communityBase.vestedRewardPerToken
}).toUint112();
// Calculate earned delegated rewards if the staker is an operator
if (isOperator) {
// Multipliers do not apply to the delegation reward, i.e. always treat them as
// multiplied by the max multiplier, which is 1.
stakerReward.vestedDelegatedReward += _calculateEarnedDelegatedReward({
stakerReward: stakerReward,
stakerPrincipal: stakerPrincipal,
operatorDelegatedRewardPerToken: s_rewardBuckets.operatorDelegated.vestedRewardPerToken
}).toUint112();
}
// Update the staker's earned reward per token
_updateStakerRewardPerToken(stakerReward, isOperator);
return stakerReward;
}
/// @notice Helper function for calculating the available reward per token and the reclaimable
/// reward
/// @dev If the pool the staker is in is empty and we can't calculate the reward per token, we
/// allow the staker to reclaim the forfeited reward.
/// @param forfeitedReward The amount of forfeited reward
/// @param amountOfRecipientTokens The amount of tokens that the forfeited rewards should be
/// shared to
/// @return uint256 The amount of shared forfeited reward
/// @return uint256 The shared forfeited reward per token
/// @return uint256 The amount of reclaimable reward
function _calculateForfeitedRewardDistribution(
uint256 forfeitedReward,
uint256 amountOfRecipientTokens
) private pure returns (uint256, uint256, uint256) {
if (forfeitedReward == 0) return (0, 0, 0);
uint256 vestedReward;
uint256 vestedRewardPerToken;
uint256 reclaimableReward;
if (amountOfRecipientTokens != 0) {
vestedReward = forfeitedReward;
vestedRewardPerToken = forfeitedReward.divWadDown(amountOfRecipientTokens);
} else {
reclaimableReward = forfeitedReward;
}
return (vestedReward, vestedRewardPerToken, reclaimableReward);
}
/// @notice Updates the staker's base and/or delegated reward per token values
/// @dev This function is called when staking, unstaking, claiming rewards, finalizing rewards for
/// removed operators, and slashing operators.
/// @param stakerReward The staker reward struct
/// @param isOperator Whether the staker is an operator or not
function _updateStakerRewardPerToken(
StakerReward memory stakerReward,
bool isOperator
) private view {
if (isOperator) {
stakerReward.baseRewardPerToken = s_rewardBuckets.operatorBase.vestedRewardPerToken;
stakerReward.operatorDelegatedRewardPerToken =
s_rewardBuckets.operatorDelegated.vestedRewardPerToken;
} else {
stakerReward.baseRewardPerToken = s_rewardBuckets.communityBase.vestedRewardPerToken;
}
}
/// @notice Calculates a staker's earned rewards
/// @param staker The staker
/// @return The staker reward info
/// @return The forfeited reward
function _getReward(
address staker,
uint256 stakerPrincipal,
bool isOperator
) private view returns (StakerReward memory, uint256) {
StakerReward memory stakerReward = s_rewards[staker];
// Calculate latest reward per token for the pools
(
uint256 communityRewardPerToken,
uint256 operatorRewardPerToken,
uint256 operatorDelegatedRewardPerToken
) = _calculatePoolsRewardPerToken();
// Calculate earned base rewards
stakerReward.unvestedBaseReward += _calculateEarnedBaseReward({
stakerReward: stakerReward,
stakerPrincipal: stakerPrincipal,
baseRewardPerToken: isOperator ? operatorRewardPerToken : communityRewardPerToken
}).toUint112();
// If operator Calculate earned delegated rewards
if (isOperator) {
// Multipliers do not apply to the delegation reward, i.e. always treat them as
// multiplied by the max multiplier, which is 1.
stakerReward.vestedDelegatedReward += _calculateEarnedDelegatedReward({
stakerReward: stakerReward,
stakerPrincipal: stakerPrincipal,
operatorDelegatedRewardPerToken: operatorDelegatedRewardPerToken
}).toUint112();
}
uint112 newVestedBaseRewards = _calculateNewVestedBaseRewards({
stakerReward: stakerReward,
multiplier: _getMultiplier(
_getStakerStakedAtTime(
staker,
isOperator ? IStakingPool(i_operatorStakingPool) : IStakingPool(i_communityStakingPool)
)
)
});
stakerReward.vestedBaseReward += newVestedBaseRewards;
uint256 forfeitedRewards = stakerReward.unvestedBaseReward - newVestedBaseRewards;
// Forfeit rewards
delete stakerReward.unvestedBaseReward;
return (stakerReward, forfeitedRewards);
}
/// @notice Calculates the amount of unvested rewards in a reward bucket
/// @param bucket The bucket to calculate unvested rewards for
/// @return uint256 The amount of unvested rewards in the bucket
function _getUnvestedRewards(RewardBucket memory bucket) private view returns (uint256) {
return bucket.rewardDurationEndsAt <= block.timestamp
? 0
: bucket.emissionRate * (bucket.rewardDurationEndsAt - block.timestamp);
}
/// @notice Returns whether or not an address is currently an operator or
/// is a removed operator
/// @param staker The staker address
/// @return bool True if the staker is either an operator or a removed operator.
function _isOperator(address staker) private view returns (bool) {
return i_operatorStakingPool.isOperator(staker) || i_operatorStakingPool.isRemoved(staker);
}
// =========
// Modifiers
// =========
/// @dev Reverts if the msg.sender doesn't have the rewarder role.
modifier onlyRewarder() {
if (!hasRole(REWARDER_ROLE, msg.sender)) {
revert AccessForbidden();
}
_;
}
/// @dev Reverts if the msg.sender is not a valid staking pool
modifier onlyStakingPool() {
if (
msg.sender != address(i_operatorStakingPool) && msg.sender != address(i_communityStakingPool)
) {
revert AccessForbidden();
}
_;
}
/// @dev Reverts if the reward vault has been closed
modifier whenOpen() {
if (!s_vaultConfig.isOpen) revert VaultAlreadyClosed();
_;
}
// =======================
// TypeAndVersionInterface
// =======================
/// @inheritdoc TypeAndVersionInterface
function typeAndVersion() external pure virtual override returns (string memory) {
return "RewardVault 1.0.0";
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.0;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*
* Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
* all math on `uint256` and `int256` and then downcasting.
*/
library SafeCast {
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*
* _Available since v4.7._
*/
function toUint248(uint256 value) internal pure returns (uint248) {
require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*
* _Available since v4.7._
*/
function toUint240(uint256 value) internal pure returns (uint240) {
require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*
* _Available since v4.7._
*/
function toUint232(uint256 value) internal pure returns (uint232) {
require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*
* _Available since v4.2._
*/
function toUint224(uint256 value) internal pure returns (uint224) {
require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*
* _Available since v4.7._
*/
function toUint216(uint256 value) internal pure returns (uint216) {
require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*
* _Available since v4.7._
*/
function toUint208(uint256 value) internal pure returns (uint208) {
require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*
* _Available since v4.7._
*/
function toUint200(uint256 value) internal pure returns (uint200) {
require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*
* _Available since v4.7._
*/
function toUint192(uint256 value) internal pure returns (uint192) {
require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*
* _Available since v4.7._
*/
function toUint184(uint256 value) internal pure returns (uint184) {
require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*
* _Available since v4.7._
*/
function toUint176(uint256 value) internal pure returns (uint176) {
require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*
* _Available since v4.7._
*/
function toUint168(uint256 value) internal pure returns (uint168) {
require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*
* _Available since v4.7._
*/
function toUint160(uint256 value) internal pure returns (uint160) {
require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*
* _Available since v4.7._
*/
function toUint152(uint256 value) internal pure returns (uint152) {
require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*
* _Available since v4.7._
*/
function toUint144(uint256 value) internal pure returns (uint144) {
require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*
* _Available since v4.7._
*/
function toUint136(uint256 value) internal pure returns (uint136) {
require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v2.5._
*/
function toUint128(uint256 value) internal pure returns (uint128) {
require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*
* _Available since v4.7._
*/
function toUint120(uint256 value) internal pure returns (uint120) {
require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*
* _Available since v4.7._
*/
function toUint112(uint256 value) internal pure returns (uint112) {
require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*
* _Available since v4.7._
*/
function toUint104(uint256 value) internal pure returns (uint104) {
require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*
* _Available since v4.2._
*/
function toUint96(uint256 value) internal pure returns (uint96) {
require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*
* _Available since v4.7._
*/
function toUint88(uint256 value) internal pure returns (uint88) {
require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*
* _Available since v4.7._
*/
function toUint80(uint256 value) internal pure returns (uint80) {
require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*
* _Available since v4.7._
*/
function toUint72(uint256 value) internal pure returns (uint72) {
require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v2.5._
*/
function toUint64(uint256 value) internal pure returns (uint64) {
require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*
* _Available since v4.7._
*/
function toUint56(uint256 value) internal pure returns (uint56) {
require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*
* _Available since v4.7._
*/
function toUint48(uint256 value) internal pure returns (uint48) {
require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*
* _Available since v4.7._
*/
function toUint40(uint256 value) internal pure returns (uint40) {
require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v2.5._
*/
function toUint32(uint256 value) internal pure returns (uint32) {
require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*
* _Available since v4.7._
*/
function toUint24(uint256 value) internal pure returns (uint24) {
require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v2.5._
*/
function toUint16(uint256 value) internal pure returns (uint16) {
require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*
* _Available since v2.5._
*/
function toUint8(uint256 value) internal pure returns (uint8) {
require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*
* _Available since v3.0._
*/
function toUint256(int256 value) internal pure returns (uint256) {
require(value >= 0, "SafeCast: value must be positive");
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*
* _Available since v4.7._
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
require(downcasted == value, "SafeCast: value doesn't fit in 248 bits");
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*
* _Available since v4.7._
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
require(downcasted == value, "SafeCast: value doesn't fit in 240 bits");
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*
* _Available since v4.7._
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
require(downcasted == value, "SafeCast: value doesn't fit in 232 bits");
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*
* _Available since v4.7._
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
require(downcasted == value, "SafeCast: value doesn't fit in 224 bits");
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*
* _Available since v4.7._
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
require(downcasted == value, "SafeCast: value doesn't fit in 216 bits");
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*
* _Available since v4.7._
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
require(downcasted == value, "SafeCast: value doesn't fit in 208 bits");
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*
* _Available since v4.7._
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
require(downcasted == value, "SafeCast: value doesn't fit in 200 bits");
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*
* _Available since v4.7._
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
require(downcasted == value, "SafeCast: value doesn't fit in 192 bits");
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*
* _Available since v4.7._
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
require(downcasted == value, "SafeCast: value doesn't fit in 184 bits");
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*
* _Available since v4.7._
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
require(downcasted == value, "SafeCast: value doesn't fit in 176 bits");
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*
* _Available since v4.7._
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
require(downcasted == value, "SafeCast: value doesn't fit in 168 bits");
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*
* _Available since v4.7._
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
require(downcasted == value, "SafeCast: value doesn't fit in 160 bits");
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*
* _Available since v4.7._
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
require(downcasted == value, "SafeCast: value doesn't fit in 152 bits");
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*
* _Available since v4.7._
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
require(downcasted == value, "SafeCast: value doesn't fit in 144 bits");
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*
* _Available since v4.7._
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
require(downcasted == value, "SafeCast: value doesn't fit in 136 bits");
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*
* _Available since v3.1._
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
require(downcasted == value, "SafeCast: value doesn't fit in 128 bits");
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*
* _Available since v4.7._
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
require(downcasted == value, "SafeCast: value doesn't fit in 120 bits");
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*
* _Available since v4.7._
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
require(downcasted == value, "SafeCast: value doesn't fit in 112 bits");
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*
* _Available since v4.7._
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
require(downcasted == value, "SafeCast: value doesn't fit in 104 bits");
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*
* _Available since v4.7._
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
require(downcasted == value, "SafeCast: value doesn't fit in 96 bits");
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*
* _Available since v4.7._
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
require(downcasted == value, "SafeCast: value doesn't fit in 88 bits");
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*
* _Available since v4.7._
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
require(downcasted == value, "SafeCast: value doesn't fit in 80 bits");
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*
* _Available since v4.7._
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
require(downcasted == value, "SafeCast: value doesn't fit in 72 bits");
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*
* _Available since v3.1._
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
require(downcasted == value, "SafeCast: value doesn't fit in 64 bits");
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*
* _Available since v4.7._
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
require(downcasted == value, "SafeCast: value doesn't fit in 56 bits");
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*
* _Available since v4.7._
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
require(downcasted == value, "SafeCast: value doesn't fit in 48 bits");
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*
* _Available since v4.7._
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
require(downcasted == value, "SafeCast: value doesn't fit in 40 bits");
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*
* _Available since v3.1._
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
require(downcasted == value, "SafeCast: value doesn't fit in 32 bits");
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*
* _Available since v4.7._
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
require(downcasted == value, "SafeCast: value doesn't fit in 24 bits");
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*
* _Available since v3.1._
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
require(downcasted == value, "SafeCast: value doesn't fit in 16 bits");
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*
* _Available since v3.1._
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
require(downcasted == value, "SafeCast: value doesn't fit in 8 bits");
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*
* _Available since v3.0._
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
return int256(value);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import {ERC677ReceiverInterface} from
"@chainlink/contracts/src/v0.8/interfaces/ERC677ReceiverInterface.sol";
import {LinkTokenInterface} from "@chainlink/contracts/src/v0.8/interfaces/LinkTokenInterface.sol";
import {IERC165} from "@openzeppelin/contracts/interfaces/IERC165.sol";
import {Checkpoints} from "@openzeppelin/contracts/utils/Checkpoints.sol";
import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {IMigratable} from "../interfaces/IMigratable.sol";
import {IRewardVault} from "../interfaces/IRewardVault.sol";
import {IStakingOwner} from "../interfaces/IStakingOwner.sol";
import {IStakingPool} from "../interfaces/IStakingPool.sol";
import {Migratable} from "../Migratable.sol";
import {PausableWithAccessControl} from "../PausableWithAccessControl.sol";
/// @notice This contract is the base contract for staking pools. Each staking pool extends this
/// contract.
/// @dev This contract is abstract and must be inherited.
/// @dev invariant maxPoolSize must be greater than or equal to the totalPrincipal.
/// @dev invariant maxPoolSize must be greater than or equal to the maxPrincipalPerStaker.
/// @dev invariant contract's LINK token balance should be greater than or equal to the
/// totalPrincipal.
/// @dev invariant The migrated staked LINK amount must be less than or equal to the staker's staked
/// LINK amount +
/// rewards from the v0.1 staking pool.
/// @dev invariant The migrated staked LINK amount must be less than or equal to the
/// maxPrincipalPerStaker.
/// @dev We only support LINK token in v0.2 staking. Rebasing tokens, ERC777 tokens, fee-on-transfer
/// tokens or tokens that do not have 18 decimal places are not supported.
abstract contract StakingPoolBase is
ERC677ReceiverInterface,
IStakingPool,
IStakingOwner,
Migratable,
PausableWithAccessControl
{
using Checkpoints for Checkpoints.History;
using SafeCast for uint256;
/// @notice This error is thrown when the staking pool is not active.
error PoolNotActive();
/// @notice This error is thrown when the unbonding period is set to 0
error InvalidUnbondingPeriod();
/// @notice This error is thrown when the claim period is set to 0
error InvalidClaimPeriod();
/// @notice This error is thrown whenever a staker tries to unbond during
/// their unbonding period.
/// @param unbondingPeriodEndsAt The time the unbonding period is finished
error UnbondingOrClaimPeriodActive(uint256 unbondingPeriodEndsAt);
/// @notice This error is thrown whenever a staker tries to unstake outside
/// the claim period
/// @param staker The staker trying to unstake
error StakerNotInClaimPeriod(address staker);
/// @notice This error is thrown when an invalid claim period range is provided
/// @param minClaimPeriod The min claim period
/// @param maxClaimPeriod The max claim period
error InvalidClaimPeriodRange(uint256 minClaimPeriod, uint256 maxClaimPeriod);
/// @notice This error is thrown when an invalid max unbonding period is provided
/// @param maxUnbondingPeriod The max unbonding period
error InvalidMaxUnbondingPeriod(uint256 maxUnbondingPeriod);
/// @notice This error is thrown when a staker tries to stake and the reward vault connected to
/// this pool is not open or is paused
error RewardVaultNotActive();
/// @notice This error is thrown when admin tries to open the pool and the reward vault connected
/// to this pool has not had rewards added to it.
error RewardVaultHasNoRewards();
/// @notice This error is thrown when admin tries to set a new reward vault and the old reward
/// vault is not closed yet.
error RewardVaultNotClosed();
/// @notice This event is emitted whenever a staker initiates the unbonding
/// period.
/// @param staker The staker that has started their unbonding period.
event UnbondingPeriodStarted(address indexed staker);
/// @notice This event is emitted when a staker's unbonding period is reset
/// @param staker The staker that has reset their unbonding period
event UnbondingPeriodReset(address indexed staker);
/// @notice This event is emitted when the unbonding period has been changed
/// @param oldUnbondingPeriod The old unbonding period
/// @param newUnbondingPeriod The new unbonding period
event UnbondingPeriodSet(uint256 oldUnbondingPeriod, uint256 newUnbondingPeriod);
/// @notice This event is emitted when the claim period is set
/// @param oldClaimPeriod The old claim period
/// @param newClaimPeriod The new claim period
event ClaimPeriodSet(uint256 oldClaimPeriod, uint256 newClaimPeriod);
/// @notice This event is emitted when the reward vault is set
/// @param oldRewardVault The old reward vault
/// @param newRewardVault The new reward vault
event RewardVaultSet(address indexed oldRewardVault, address indexed newRewardVault);
/// @notice This event is emitted when the staker is migrated to the migration target
/// @param migrationTarget The migration target
/// @param amount The staker's staked LINK amount that was migrated in juels
/// @param migrationData The migration data
event StakerMigrated(address indexed migrationTarget, uint256 amount, bytes migrationData);
/// @notice This struct defines the params required by the Staking contract's
/// constructor.
struct ConstructorParamsBase {
/// @notice The LINK Token
LinkTokenInterface LINKAddress;
/// @notice The initial maximum total stake amount for all stakers in the
/// pool
uint96 initialMaxPoolSize;
/// @notice The initial maximum stake amount for a staker
uint96 initialMaxPrincipalPerStaker;
/// @notice The minimum stake amount that a staker must stake
uint96 minPrincipalPerStaker;
/// @notice The initial unbonding period
uint32 initialUnbondingPeriod;
/// @notice The max value that the unbonding period can be set to
uint32 maxUnbondingPeriod;
/// @notice The initial claim period
uint32 initialClaimPeriod;
/// @notice The min value that the claim period can be set to
uint32 minClaimPeriod;
/// @notice The max value that the claim period can be set to
uint32 maxClaimPeriod;
/// @notice The time it requires to transfer admin role
uint48 adminRoleTransferDelay;
}
/// @notice This struct defines the params that the pool is configured with
struct PoolConfigs {
/// @notice The max amount of staked LINK allowed in the pool in juels. The max value of this
/// field is expected to be less than 1 billion (10^9 * 10^18), which is less than the max value
/// that can be represented by a uint96 (~7.9*10^28).
uint96 maxPoolSize;
/// @notice The max amount of LINK a staker can stake in juels. The max value of this field is
/// expected to be less than 1 million (10^6 * 10^18), which is less than the max value that can
/// be represented by a uint96 (~7.9*10^28).
uint96 maxPrincipalPerStaker;
/// @notice The length of the unbonding period in seconds. The max value of this field is
/// expected to be less than a year, or 30 million (3.2*10^7), which is less than the max value
/// that can be represented by a uint32 (~4.2*10^9).
uint32 unbondingPeriod;
/// @notice The length of the claim period in seconds. The max value of this field is
/// expected to be less than a year, or 30 million (3.2*10^7), which is less than the max value
/// that can be represented by a uint32 (~4.2*10^9).
uint32 claimPeriod;
}
/// @notice This struct defines the state of the staking pool
struct PoolState {
/// @notice The total staked LINK amount amount in the pool
uint256 totalPrincipal;
/// @notice The time that the pool was closed
uint256 closedAt;
}
/// @notice This struct defines the global state and configuration of the pool
struct Pool {
/// @notice The pool's configuration
PoolConfigs configs;
/// @notice The pool's state
PoolState state;
}
/// @notice This is the ID for the initiator role, which is given to the
/// addresses that will add open the pools, and set the merkle root for the community pool.
/// @dev Hash: 6b8b15f1c11543d8280deaa7c24d12fffba6a357e4428e8c43e4234790186bff
bytes32 public constant INITIATOR_ROLE = keccak256("INITIATOR_ROLE");
/// @notice The LINK token
LinkTokenInterface internal immutable i_LINK;
/// @notice The staking pool state and configuration
Pool internal s_pool;
/// @notice Mapping of a staker's address to their staker state
mapping(address staker => IStakingPool.Staker) internal s_stakers;
/// @notice Migration proxy address
address internal s_migrationProxy;
/// @notice The latest reward vault address
IRewardVault internal s_rewardVault;
/// @notice The min amount of LINK that a staker can stake
uint96 internal immutable i_minPrincipalPerStaker;
/// @notice The min value that the claim period can be set to
uint32 private immutable i_minClaimPeriod;
/// @notice The max value that the claim period can be set to
uint32 private immutable i_maxClaimPeriod;
/// @notice The max value that the unbonding period can be set to
uint32 private immutable i_maxUnbondingPeriod;
/// @notice Flag that signals if the staking pool is open for staking
bool internal s_isOpen;
constructor(ConstructorParamsBase memory params)
PausableWithAccessControl(params.adminRoleTransferDelay, msg.sender)
{
if (address(params.LINKAddress) == address(0)) revert InvalidZeroAddress();
if (params.minPrincipalPerStaker == 0) revert InvalidMinStakeAmount();
if (params.minPrincipalPerStaker >= params.initialMaxPrincipalPerStaker) {
revert InvalidMinStakeAmount();
}
if (params.maxUnbondingPeriod == 0) {
revert InvalidMaxUnbondingPeriod(params.maxUnbondingPeriod);
}
if (params.minClaimPeriod == 0 || params.minClaimPeriod >= params.maxClaimPeriod) {
revert InvalidClaimPeriodRange(params.minClaimPeriod, params.maxClaimPeriod);
}
i_LINK = params.LINKAddress;
i_minPrincipalPerStaker = params.minPrincipalPerStaker;
i_maxUnbondingPeriod = params.maxUnbondingPeriod;
_setUnbondingPeriod(params.initialUnbondingPeriod);
_setPoolConfig(params.initialMaxPoolSize, params.initialMaxPrincipalPerStaker);
i_minClaimPeriod = params.minClaimPeriod;
i_maxClaimPeriod = params.maxClaimPeriod;
_setClaimPeriod(params.initialClaimPeriod);
}
/// @inheritdoc IMigratable
/// @dev This will migrate the staker's staked LINK
/// @dev precondition This contract must be closed and upgraded to a new pool.
/// @dev precondition The migration target must be set.
/// @dev precondition The caller must be staked in the pool.
function migrate(bytes calldata data) external whenClosed validateMigrationTargetSet {
// must be in storage to get access to latest()
IStakingPool.Staker storage staker = s_stakers[msg.sender];
uint224 history = staker.history.latest();
uint112 stakerPrincipal = uint112(history >> 112);
uint112 stakerStakedAtTime = uint112(history);
if (stakerPrincipal == 0) revert StakeNotFound(msg.sender);
bytes memory migrationData = abi.encode(msg.sender, stakerStakedAtTime, data);
// Finalize staker's rewards to include any rewards they have earned before resetting the
// principal and stakedAtTime.
s_rewardVault.concludeRewardPeriod({
staker: msg.sender,
oldPrincipal: stakerPrincipal,
stakedAt: stakerStakedAtTime,
unstakedAmount: stakerPrincipal,
shouldForfeit: false
});
s_pool.state.totalPrincipal -= stakerPrincipal;
// do not reset staked at time to not reset the multiplier because staker is not forfeiting
// rewards when migrating
_updateStakerHistory({
staker: staker,
latestPrincipal: 0,
latestStakedAtTime: stakerStakedAtTime
});
// The return value is not checked since the call will revert if any balance, allowance or
// receiver conditions fail.
i_LINK.transferAndCall({to: s_migrationTarget, value: stakerPrincipal, data: migrationData});
emit StakerMigrated(s_migrationTarget, stakerPrincipal, migrationData);
}
/// @notice Starts the unbonding period for the staker. A staker may unstake
/// their staked LINK during the claim period that follows the unbonding period.
/// @dev precondition The caller must be staked in the pool.
/// @dev precondition The caller must not be in an unbonding period.
/// @dev precondition The caller must not be in a claim period.
function unbond() external virtual {
Staker storage staker = s_stakers[msg.sender];
uint224 history = staker.history.latest();
uint112 stakerPrincipal = uint112(history >> 112);
if (stakerPrincipal == 0) revert StakeNotFound(msg.sender);
_unbond(staker);
}
/// @notice Sets the new unbonding period for the pool. Stakers that are
/// already unbonding will not be affected.
/// @param newUnbondingPeriod The new unbonding period
/// @dev precondition The caller must have the default admin role.
/// @dev precondition Cannot be called after the pool is closed.
function setUnbondingPeriod(uint256 newUnbondingPeriod)
external
onlyRole(DEFAULT_ADMIN_ROLE)
whenBeforeClosing
{
_setUnbondingPeriod(newUnbondingPeriod);
}
/// @notice Returns the max unbonding period
/// @return uint256 The max value that the unbonding period can be set to
function getMaxUnbondingPeriod() external view returns (uint256) {
return (i_maxUnbondingPeriod);
}
/// @notice Set the claim period
/// @param claimPeriod The claim period
/// @dev precondition Cannot be called after the pool is closed.
function setClaimPeriod(uint256 claimPeriod)
external
onlyRole(DEFAULT_ADMIN_ROLE)
whenBeforeClosing
{
_setClaimPeriod(claimPeriod);
}
/// @notice Sets the new reward vault for the pool
/// @param newRewardVault The new reward vault
/// @dev precondition The caller must have the default admin role.
/// @dev precondition Cannot be called after the pool is closed.
function setRewardVault(IRewardVault newRewardVault)
external
onlyRole(DEFAULT_ADMIN_ROLE)
whenBeforeClosing
{
if (address(newRewardVault) == address(0)) revert InvalidZeroAddress();
address oldRewardVault = address(s_rewardVault);
if (oldRewardVault == address(newRewardVault)) return;
if (address(s_rewardVault) != address(0) && s_rewardVault.isOpen()) {
revert RewardVaultNotClosed();
}
if (
address(s_rewardVault) != address(0)
&& (!newRewardVault.isOpen() || newRewardVault.isPaused())
) revert RewardVaultNotActive();
if (address(s_rewardVault) != address(0) && !newRewardVault.hasRewardAdded()) {
revert RewardVaultHasNoRewards();
}
s_rewardVault = newRewardVault;
emit RewardVaultSet(oldRewardVault, address(newRewardVault));
}
/// @notice LINK transfer callback function called when transferAndCall is called with this
/// contract as a target.
/// @param sender staker's address if they stake into the pool by calling transferAndCall on the
/// LINK token, or MigrationProxy contract when a staker migrates from V0.1 to V0.2
/// @param amount Amount of LINK token transferred
/// @param data Bytes data received, represents migration path
/// @inheritdoc ERC677ReceiverInterface
/// @dev precondition The migration proxy must be set.
/// @dev precondition This contract must be open and not paused.
/// @dev precondition The reward vault must be open and not paused.
function onTokenTransfer(
address sender,
uint256 amount,
bytes calldata data
) external validateFromLINK validateMigrationProxySet whenOpen whenRewardVaultOpen whenNotPaused {
if (amount == 0) return;
// Check if this call was forwarded from the migration proxy.
address staker = sender == s_migrationProxy ? _getStakerAddress(data) : sender;
if (staker == address(0)) revert InvalidZeroAddress();
// includes access check for non migration proxy
_validateOnTokenTransfer(sender, staker, data);
Staker storage stakerState = s_stakers[staker];
uint224 history = stakerState.history.latest();
uint256 stakerPrincipal = uint256(history >> 112);
uint256 stakedAt = uint112(history);
_resetUnbondingPeriod(stakerState, staker);
s_rewardVault.concludeRewardPeriod({
staker: staker,
oldPrincipal: stakerPrincipal,
unstakedAmount: 0,
shouldForfeit: false,
stakedAt: stakedAt
});
_increaseStake(staker, stakerPrincipal + amount, amount);
}
/// @notice Returns the minimum and maximum claim periods that can be set by the owner
/// @return uint256 minimum claim period
/// @return uint256 maximum claim period
function getClaimPeriodLimits() external view returns (uint256, uint256) {
return (i_minClaimPeriod, i_maxClaimPeriod);
}
// =================
// IStakingOwner
// =================
/// @inheritdoc IStakingOwner
/// @dev precondition The caller must have the default admin role.
function setPoolConfig(
uint256 maxPoolSize,
uint256 maxPrincipalPerStaker
) external virtual onlyRole(DEFAULT_ADMIN_ROLE) whenOpen {
_setPoolConfig(maxPoolSize, maxPrincipalPerStaker);
}
/// @inheritdoc IStakingOwner
/// @dev precondition The caller must have the initiator role.
function open()
external
onlyRole(INITIATOR_ROLE)
whenBeforeOpening
validateRewardVaultSet
whenRewardVaultOpen
whenRewardVaultHasRewards
{
_validateBeforeOpen();
s_isOpen = true;
emit PoolOpened();
}
/// @inheritdoc IStakingOwner
/// @dev precondition The caller must have the default admin role.
function close() external onlyRole(DEFAULT_ADMIN_ROLE) whenOpen {
s_isOpen = false;
s_pool.state.closedAt = block.timestamp;
emit PoolClosed();
}
/// @inheritdoc IStakingOwner
/// @dev precondition The caller must have the default admin role.
function setMigrationProxy(address migrationProxy)
external
onlyRole(DEFAULT_ADMIN_ROLE)
whenBeforeClosing
{
if (migrationProxy == address(0)) revert InvalidZeroAddress();
if (s_migrationProxy == migrationProxy) return;
address oldMigrationProxy = s_migrationProxy;
s_migrationProxy = migrationProxy;
emit MigrationProxySet(oldMigrationProxy, migrationProxy);
}
// =================
// IStakingPool
// =================
/// @inheritdoc IStakingPool
/// @dev precondition The caller must be staked in the pool.
/// @dev precondition The caller must be in the claim period or the pool must be closed or paused.
/// @dev There is a possible reentrancy attack here where a malicious admin
/// can point this pool to a malicious reward vault that calls unstake on the
/// pool again. This reentrancy attack is possible as the pool updates the
/// staker's staked LINK amount after it calls concludeRewardPeriod on the configured reward
/// vault. This scenario is mitigated by forcing the admin to go through
/// a timelock period that is longer than the unbonding period, which will
/// provide stakers sufficient time to withdraw their staked LINK from the
/// pool before a malicious reward vault is set.
function unstake(uint256 amount) external {
// cannot unstake 0
if (amount == 0) revert UnstakeZeroAmount();
Staker storage staker = s_stakers[msg.sender];
if (!_canUnstake(staker)) {
revert StakerNotInClaimPeriod(msg.sender);
}
uint224 history = staker.history.latest();
uint256 stakerPrincipal = uint256(history >> 112);
uint256 stakedAt = uint112(history);
// verify that the staker has enough staked LINK amount to unstake
if (amount > stakerPrincipal) revert UnstakeExceedsPrincipal();
uint256 updatedPrincipal = stakerPrincipal - amount;
// in the case of a partial withdrawal, verify new staked LINK amount is above minimum
if (amount < stakerPrincipal && updatedPrincipal < i_minPrincipalPerStaker) {
revert UnstakePrincipalBelowMinAmount();
}
s_rewardVault.concludeRewardPeriod({
staker: msg.sender,
oldPrincipal: stakerPrincipal,
unstakedAmount: amount,
shouldForfeit: true,
stakedAt: stakedAt
});
s_pool.state.totalPrincipal -= amount;
// Reset the staker's staked at time to 0 to prevent the multiplier
// from growing if the staker has unstaked all their staked LINK
_updateStakerHistory({
staker: staker,
latestPrincipal: updatedPrincipal,
latestStakedAtTime: updatedPrincipal == 0 ? 0 : block.timestamp
});
// The return value is not checked since the call will revert if any balance, allowance or
// receiver conditions fail.
i_LINK.transfer(msg.sender, amount);
emit Unstaked(msg.sender, amount, updatedPrincipal, s_pool.state.totalPrincipal);
}
/// @inheritdoc IStakingPool
function getTotalPrincipal() external view returns (uint256) {
return s_pool.state.totalPrincipal;
}
/// @inheritdoc IStakingPool
function getStakerPrincipal(address staker) external view returns (uint256) {
return uint112(s_stakers[staker].history.latest() >> 112);
}
/// @inheritdoc IStakingPool
function getStakerPrincipalAt(
address staker,
uint256 blockNumber
) external view returns (uint256) {
// `Checkpoints` requires to exclude the current block when calling `getAtBlock`
return (blockNumber == block.number)
? uint112(s_stakers[staker].history.latest() >> 112)
: uint112(s_stakers[staker].history.getAtBlock(blockNumber) >> 112);
}
/// @inheritdoc IStakingPool
function getStakerStakedAtTime(address staker) external view returns (uint256) {
return uint112(s_stakers[staker].history.latest());
}
/// @inheritdoc IStakingPool
function getStakerStakedAtTimeAt(
address staker,
uint256 blockNumber
) external view returns (uint256) {
// `Checkpoints` requires to exclude the current block when calling `getAtBlock`
return (blockNumber == block.number)
? uint112(s_stakers[staker].history.latest())
: uint112(s_stakers[staker].history.getAtBlock(blockNumber));
}
/// @inheritdoc IStakingPool
function getRewardVault() external view returns (IRewardVault) {
return s_rewardVault;
}
/// @inheritdoc IStakingPool
function getChainlinkToken() external view returns (address) {
return address(i_LINK);
}
/// @inheritdoc IStakingPool
function getMigrationProxy() external view returns (address) {
return s_migrationProxy;
}
/// @inheritdoc IStakingPool
function isOpen() external view returns (bool) {
return s_isOpen;
}
/// @inheritdoc IStakingPool
function isActive() external view returns (bool) {
return _isActive();
}
/// @inheritdoc IStakingPool
function getStakerLimits() external view returns (uint256, uint256) {
return (i_minPrincipalPerStaker, s_pool.configs.maxPrincipalPerStaker);
}
/// @inheritdoc IStakingPool
function getMaxPoolSize() external view returns (uint256) {
return s_pool.configs.maxPoolSize;
}
/// @notice Returns the time a staker's unbonding period ends
/// @param staker The address of the staker to query
/// @return uint256 The timestamp of when the staker's unbonding period ends.
/// This value will be 0 if the unbonding period is not active.
function getUnbondingEndsAt(address staker) external view returns (uint256) {
return s_stakers[staker].unbondingPeriodEndsAt;
}
/// @notice Returns the pool's unbonding parameters
/// @return uint256 The pool's unbonding period
/// @return uint256 The pools's claim period
function getUnbondingParams() external view returns (uint256, uint256) {
return (s_pool.configs.unbondingPeriod, s_pool.configs.claimPeriod);
}
/// @notice Returns the time a staker's claim period ends
/// @param staker The staker trying to unstake their staked LINK
/// @return uint256 The timestamp of when the staker's claim period ends.
/// This value will be 0 if the unbonding period has not started.
function getClaimPeriodEndsAt(address staker) external view returns (uint256) {
return s_stakers[staker].claimPeriodEndsAt;
}
// ===============
// ERC165
// ===============
/// @notice This function allows the calling contract to
/// check if the contract deployed at this address is a valid
/// LINKTokenReceiver. A contract is a valid LINKTokenReceiver
/// if it implements the onTokenTransfer function.
/// @param interfaceID The ID of the interface to check against
/// @return bool True if the contract is a valid LINKTokenReceiver.
function supportsInterface(bytes4 interfaceID) public view override returns (bool) {
return interfaceID == this.onTokenTransfer.selector || super.supportsInterface(interfaceID);
}
// =========
// Helpers
// =========
/// @notice Resets a staker's unbonding period
/// @param stakerState The staker's current state
/// @param staker The address of the staker to reset the unbonding period for
/// @dev This sets the stakerState's unbondingPeriodEndsAt and
/// claimPeriodEndsAt to 0
function _resetUnbondingPeriod(Staker storage stakerState, address staker) internal {
if (stakerState.unbondingPeriodEndsAt != 0) {
delete stakerState.unbondingPeriodEndsAt;
delete stakerState.claimPeriodEndsAt;
emit UnbondingPeriodReset(staker);
}
}
/// @inheritdoc Migratable
/// @dev precondition The migration target must implement the onTokenTransfer function.
/// @dev precondition Cannot be called after the pool is closed.
function _validateMigrationTarget(address newMigrationTarget) internal override whenBeforeClosing {
Migratable._validateMigrationTarget(newMigrationTarget);
if (
!IERC165(newMigrationTarget).supportsInterface(
ERC677ReceiverInterface.onTokenTransfer.selector
)
) {
revert InvalidMigrationTarget();
}
}
/// @notice Validate for when LINK is staked or migrated into the pool
/// @param sender The address transferring LINK into the pool. Could be the migration proxy
/// contract or the staker.
/// @param staker The address staking or migrating LINK into the pool
/// @param data Arbitrary data passed when staking or migrating
function _validateOnTokenTransfer(
address sender,
address staker,
bytes calldata data
) internal view virtual;
/// @notice Validates pool state before opening
function _validateBeforeOpen() internal view virtual;
/// @notice Util function for setting the pool config
/// @param maxPoolSize The max amount of staked LINK allowed in the pool
/// @param maxPrincipalPerStaker The max amount of LINK a staker can stake
/// in the pool.
function _setPoolConfig(uint256 maxPoolSize, uint256 maxPrincipalPerStaker) internal {
PoolConfigs storage configs = s_pool.configs;
// only allow increasing the maxPoolSize
if (maxPoolSize == 0 || maxPoolSize < configs.maxPoolSize) {
revert InvalidPoolSize(maxPoolSize);
}
// only allow increasing the maxPrincipalPerStaker
if (
maxPrincipalPerStaker == 0 || maxPrincipalPerStaker > maxPoolSize
|| configs.maxPrincipalPerStaker > maxPrincipalPerStaker
) revert InvalidMaxStakeAmount(maxPrincipalPerStaker);
if (configs.maxPoolSize != maxPoolSize) {
configs.maxPoolSize = maxPoolSize.toUint96();
emit PoolSizeIncreased(maxPoolSize);
}
if (configs.maxPrincipalPerStaker != maxPrincipalPerStaker) {
configs.maxPrincipalPerStaker = maxPrincipalPerStaker.toUint96();
emit MaxPrincipalAmountIncreased(maxPrincipalPerStaker);
}
}
/// @notice Util function for setting the unbonding period
/// @param unbondingPeriod The unbonding period
function _setUnbondingPeriod(uint256 unbondingPeriod) internal {
if (unbondingPeriod == 0 || unbondingPeriod > i_maxUnbondingPeriod) {
revert InvalidUnbondingPeriod();
}
if (s_pool.configs.unbondingPeriod == unbondingPeriod) return;
uint256 oldUnbondingPeriod = s_pool.configs.unbondingPeriod;
s_pool.configs.unbondingPeriod = unbondingPeriod.toUint32();
emit UnbondingPeriodSet(oldUnbondingPeriod, unbondingPeriod);
}
/// @notice Updates the staking pool state and the staker state
/// @param sender The staker address
/// @param newPrincipal The staker's staked LINK amount after staking
/// @param amount The amount to stake
function _increaseStake(address sender, uint256 newPrincipal, uint256 amount) internal {
Staker storage staker = s_stakers[sender];
// validate staking limits
if (newPrincipal < i_minPrincipalPerStaker) {
revert InsufficientStakeAmount();
}
if (newPrincipal > s_pool.configs.maxPrincipalPerStaker) {
revert ExceedsMaxStakeAmount();
}
uint256 newTotalPrincipal = s_pool.state.totalPrincipal + amount;
if (newTotalPrincipal > s_pool.configs.maxPoolSize) {
revert ExceedsMaxPoolSize();
}
// update the pool state
s_pool.state.totalPrincipal = newTotalPrincipal;
// update the staker state
_updateStakerHistory({
staker: staker,
latestPrincipal: newPrincipal,
latestStakedAtTime: block.timestamp
});
emit Staked(sender, amount, newPrincipal, newTotalPrincipal);
}
/// @notice Gets the staker address from the data passed by the MigrationProxy contract
/// @param data The data passed by the MigrationProxy contract
/// @return The staker address
function _getStakerAddress(bytes calldata data) internal pure returns (address) {
if (data.length == 0) revert InvalidData();
// decode the data
(address staker) = abi.decode(data, (address));
return staker;
}
/// @notice Checks to see whether or not a staker is eligible to
/// unstake their staked LINK amount (when the pool is closed or, when the pool is open and they
/// are in the claim period or, when pool is paused)
/// @param staker The staker trying to unstake their staked LINK
/// @return bool True if the staker is eligible to unstake
function _canUnstake(Staker storage staker) internal view returns (bool) {
return s_pool.state.closedAt != 0 || _inClaimPeriod(staker) || paused();
}
/// @notice Updates the staker's staked LINK amount history
/// @param staker The staker to update
/// @param latestPrincipal The staker's latest staked LINK amount
/// @param latestStakedAtTime The staker's latest average staked at time
function _updateStakerHistory(
Staker storage staker,
uint256 latestPrincipal,
uint256 latestStakedAtTime
) internal {
staker.history.push(
(uint224(uint112(latestPrincipal)) << 112) | uint224(uint112(latestStakedAtTime))
);
}
/// @notice Starts the unbonding period for the staker
/// @param staker The staker trying to unbond
function _unbond(Staker storage staker) internal {
if (staker.unbondingPeriodEndsAt != 0 && block.timestamp <= staker.claimPeriodEndsAt) {
revert UnbondingOrClaimPeriodActive(staker.unbondingPeriodEndsAt);
}
staker.unbondingPeriodEndsAt = (block.timestamp + s_pool.configs.unbondingPeriod).toUint128();
staker.claimPeriodEndsAt = staker.unbondingPeriodEndsAt + s_pool.configs.claimPeriod;
emit UnbondingPeriodStarted(msg.sender);
}
/// @notice Checks to see whether or not a staker is within the claim period
/// to unstake their staked LINK
/// @param staker The staker trying to unstake their staked LINK
/// @return bool True if the staker is inside the claim period
function _inClaimPeriod(Staker storage staker) private view returns (bool) {
if (staker.unbondingPeriodEndsAt == 0 || block.timestamp < staker.unbondingPeriodEndsAt) {
return false;
}
return block.timestamp <= staker.claimPeriodEndsAt;
}
/// @notice Util function for setting the claim period
/// @param claimPeriod The claim period
function _setClaimPeriod(uint256 claimPeriod) private {
if (claimPeriod < i_minClaimPeriod || claimPeriod > i_maxClaimPeriod) {
revert InvalidClaimPeriod();
}
if (s_pool.configs.claimPeriod == claimPeriod) return;
uint256 oldClaimPeriod = s_pool.configs.claimPeriod;
s_pool.configs.claimPeriod = claimPeriod.toUint32();
emit ClaimPeriodSet(oldClaimPeriod, claimPeriod);
}
/// @notice Util function to check if the reward vault connected to this pool has rewards added to
/// it
/// @return bool True if the reward vault has rewards added to it, false otherwise
function _hasRewardVaultRewardAdded() internal view virtual returns (bool) {
return s_rewardVault.hasRewardAdded();
}
/// @notice Util function to check if the pool is active
/// @return bool True if the pool is active, false otherwise
function _isActive() internal view returns (bool) {
return s_isOpen && !s_rewardVault.hasRewardDurationEnded(address(this));
}
// =========
// Modifiers
// =========
/// @dev Reverts if not sent from the LINK token
modifier validateFromLINK() {
if (msg.sender != address(i_LINK)) revert SenderNotLinkToken();
_;
}
/// @dev Reverts if migration proxy is not set
modifier validateMigrationProxySet() {
if (s_migrationProxy == address(0)) revert MigrationProxyNotSet();
_;
}
/// @dev Reverts if reward vault is not set
modifier validateRewardVaultSet() {
if (address(s_rewardVault) == address(0)) revert RewardVaultNotSet();
_;
}
/// @dev Reverts if pool is after an opening
modifier whenBeforeOpening() {
if (s_isOpen) revert PoolHasBeenOpened();
if (s_pool.state.closedAt != 0) revert PoolHasBeenClosed();
_;
}
/// @dev Reverts if the pool is already closed
modifier whenBeforeClosing() {
if (s_pool.state.closedAt != 0) revert PoolHasBeenClosed();
_;
}
/// @dev Reverts if pool is not open
modifier whenOpen() {
if (!s_isOpen) revert PoolNotOpen();
_;
}
/// @dev Reverts if pool is not active (is open and rewards are available for this pool)
modifier whenActive() {
if (!_isActive()) revert PoolNotActive();
_;
}
/// @dev Reverts if pool is not closed
modifier whenClosed() {
if (s_pool.state.closedAt == 0) revert PoolNotClosed();
_;
}
/// @dev Reverts if reward vault is not open or is paused
modifier whenRewardVaultOpen() {
if (!s_rewardVault.isOpen() || s_rewardVault.isPaused()) revert RewardVaultNotActive();
_;
}
/// @dev Reverts if reward vault has not had rewards added to it
modifier whenRewardVaultHasRewards() {
if (!_hasRewardVaultRewardAdded()) revert RewardVaultHasNoRewards();
_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
abstract contract TypeAndVersionInterface {
function typeAndVersion() external pure virtual returns (string memory);
}
{
"compilationTarget": {
"src/rewards/RewardVault.sol": "RewardVault"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":@chainlink/=lib/chainlink/",
":@openzeppelin/=lib/openzeppelin-contracts/",
":@solmate/=lib/solmate/src/",
":chainlink/=lib/chainlink/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
":solmate/=lib/solmate/src/",
"lib/forge-std:ds-test/=lib/forge-std/lib/ds-test/src/",
"lib/openzeppelin-contracts:ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
"lib/openzeppelin-contracts:erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"lib/openzeppelin-contracts:forge-std/=lib/openzeppelin-contracts/lib/forge-std/src/",
"lib/openzeppelin-contracts:openzeppelin/=lib/openzeppelin-contracts/contracts/",
"lib/solmate:ds-test/=lib/solmate/lib/ds-test/src/"
]
}
[{"inputs":[{"components":[{"internalType":"contract LinkTokenInterface","name":"linkToken","type":"address"},{"internalType":"contract CommunityStakingPool","name":"communityStakingPool","type":"address"},{"internalType":"contract OperatorStakingPool","name":"operatorStakingPool","type":"address"},{"internalType":"uint32","name":"delegationRate","type":"uint32"},{"internalType":"uint32","name":"multiplierDuration","type":"uint32"},{"internalType":"uint48","name":"adminRoleTransferDelay","type":"uint48"}],"internalType":"struct RewardVault.ConstructorParams","name":"params","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessForbidden","type":"error"},{"inputs":[],"name":"InsufficentRewardsForDelegationRate","type":"error"},{"inputs":[],"name":"InvalidDelegationRate","type":"error"},{"inputs":[],"name":"InvalidEmissionRate","type":"error"},{"inputs":[],"name":"InvalidPool","type":"error"},{"inputs":[],"name":"InvalidRewardAmount","type":"error"},{"inputs":[],"name":"InvalidZeroAddress","type":"error"},{"inputs":[],"name":"NoRewardToClaim","type":"error"},{"inputs":[],"name":"RewardDurationTooShort","type":"error"},{"inputs":[],"name":"VaultAlreadyClosed","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"baseRewardPerToken","type":"uint256"}],"name":"CommunityPoolRewardUpdated","type":"event"},{"anonymous":false,"inputs":[],"name":"DefaultAdminDelayChangeCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint48","name":"newDelay","type":"uint48"},{"indexed":false,"internalType":"uint48","name":"effectSchedule","type":"uint48"}],"name":"DefaultAdminDelayChangeScheduled","type":"event"},{"anonymous":false,"inputs":[],"name":"DefaultAdminTransferCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newAdmin","type":"address"},{"indexed":false,"internalType":"uint48","name":"acceptSchedule","type":"uint48"}],"name":"DefaultAdminTransferScheduled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldDelegationRate","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newDelegationRate","type":"uint256"}],"name":"DelegationRateSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"vestedReward","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"vestedRewardPerToken","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"reclaimedReward","type":"uint256"},{"indexed":false,"internalType":"bool","name":"isOperatorReward","type":"bool"}],"name":"ForfeitedRewardDistributed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"baseRewardPerToken","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"delegatedRewardPerToken","type":"uint256"}],"name":"OperatorPoolRewardUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"emissionRate","type":"uint256"}],"name":"RewardAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"staker","type":"address"},{"indexed":false,"internalType":"uint256","name":"claimedRewards","type":"uint256"}],"name":"RewardClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"staker","type":"address"},{"indexed":false,"internalType":"bool","name":"shouldForfeit","type":"bool"}],"name":"RewardFinalized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"staker","type":"address"},{"indexed":false,"internalType":"uint256","name":"vestedBaseReward","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"vestedDelegatedReward","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"baseRewardPerToken","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"operatorDelegatedRewardPerToken","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"claimedBaseRewardsInPeriod","type":"uint256"}],"name":"StakerRewardUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"totalUnvestedRewards","type":"uint256"}],"name":"VaultClosed","type":"event"},{"anonymous":false,"inputs":[],"name":"VaultOpened","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PAUSER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"REWARDER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptDefaultAdminTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"pool","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"emissionRate","type":"uint256"}],"name":"addReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newAdmin","type":"address"}],"name":"beginDefaultAdminTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"}],"name":"calculateLatestStakerReward","outputs":[{"components":[{"internalType":"uint112","name":"vestedBaseReward","type":"uint112"},{"internalType":"uint112","name":"vestedDelegatedReward","type":"uint112"},{"internalType":"uint112","name":"baseRewardPerToken","type":"uint112"},{"internalType":"uint112","name":"operatorDelegatedRewardPerToken","type":"uint112"},{"internalType":"enum IRewardVault.StakerType","name":"stakerType","type":"uint8"},{"internalType":"uint112","name":"claimedBaseRewardsInPeriod","type":"uint112"},{"internalType":"uint112","name":"unvestedBaseReward","type":"uint112"}],"internalType":"struct IRewardVault.StakerReward","name":"","type":"tuple"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cancelDefaultAdminTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint48","name":"newDelay","type":"uint48"}],"name":"changeDefaultAdminDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"close","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"},{"internalType":"uint256","name":"oldPrincipal","type":"uint256"},{"internalType":"uint256","name":"stakedAt","type":"uint256"},{"internalType":"uint256","name":"unstakedAmount","type":"uint256"},{"internalType":"bool","name":"shouldForfeit","type":"bool"}],"name":"concludeRewardPeriod","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"defaultAdmin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"defaultAdminDelay","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"defaultAdminDelayIncreaseWait","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"emergencyPause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"emergencyUnpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getDelegationRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getFinalVestingCheckpointData","outputs":[{"components":[{"internalType":"uint256","name":"operatorPoolTotalPrincipal","type":"uint256"},{"internalType":"uint256","name":"communityPoolTotalPrincipal","type":"uint256"},{"internalType":"uint256","name":"finalBlockNumber","type":"uint256"}],"internalType":"struct RewardVault.VestingCheckpointData","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"}],"name":"getMultiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMultiplierDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"}],"name":"getReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRewardBuckets","outputs":[{"components":[{"components":[{"internalType":"uint80","name":"emissionRate","type":"uint80"},{"internalType":"uint80","name":"rewardDurationEndsAt","type":"uint80"},{"internalType":"uint80","name":"vestedRewardPerToken","type":"uint80"}],"internalType":"struct RewardVault.RewardBucket","name":"operatorBase","type":"tuple"},{"components":[{"internalType":"uint80","name":"emissionRate","type":"uint80"},{"internalType":"uint80","name":"rewardDurationEndsAt","type":"uint80"},{"internalType":"uint80","name":"vestedRewardPerToken","type":"uint80"}],"internalType":"struct RewardVault.RewardBucket","name":"communityBase","type":"tuple"},{"components":[{"internalType":"uint80","name":"emissionRate","type":"uint80"},{"internalType":"uint80","name":"rewardDurationEndsAt","type":"uint80"},{"internalType":"uint80","name":"vestedRewardPerToken","type":"uint80"}],"internalType":"struct RewardVault.RewardBucket","name":"operatorDelegated","type":"tuple"}],"internalType":"struct RewardVault.RewardBuckets","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRewardPerTokenUpdatedAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getStakingPools","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"}],"name":"getStoredReward","outputs":[{"components":[{"internalType":"uint112","name":"vestedBaseReward","type":"uint112"},{"internalType":"uint112","name":"vestedDelegatedReward","type":"uint112"},{"internalType":"uint112","name":"baseRewardPerToken","type":"uint112"},{"internalType":"uint112","name":"operatorDelegatedRewardPerToken","type":"uint112"},{"internalType":"enum IRewardVault.StakerType","name":"stakerType","type":"uint8"},{"internalType":"uint112","name":"claimedBaseRewardsInPeriod","type":"uint112"},{"internalType":"uint112","name":"unvestedBaseReward","type":"uint112"}],"internalType":"struct IRewardVault.StakerReward","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getUnvestedRewards","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"hasRewardAdded","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"stakingPool","type":"address"}],"name":"hasRewardDurationEnded","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isOpen","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingDefaultAdmin","outputs":[{"internalType":"address","name":"newAdmin","type":"address"},{"internalType":"uint48","name":"schedule","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingDefaultAdminDelay","outputs":[{"internalType":"uint48","name":"newDelay","type":"uint48"},{"internalType":"uint48","name":"schedule","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rollbackDefaultAdminDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newDelegationRate","type":"uint256"}],"name":"setDelegationRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"typeAndVersion","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"},{"internalType":"uint256","name":"stakerPrincipal","type":"uint256"}],"name":"updateReward","outputs":[],"stateMutability":"nonpayable","type":"function"}]