// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.2) (token/ERC721/ERC721.sol)
pragma solidity ^0.8.0;
import "./IERC721.sol";
import "./IERC721Receiver.sol";
import "./extensions/IERC721Metadata.sol";
import "../../utils/Address.sol";
import "../../utils/Context.sol";
import "../../utils/Strings.sol";
import "../../utils/introspection/ERC165.sol";
/**
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
* the Metadata extension, but not including the Enumerable extension, which is available separately as
* {ERC721Enumerable}.
*/
contract ERC721 is Context, ERC165, IERC721, IERC721Metadata {
using Address for address;
using Strings for uint256;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Mapping from token ID to owner address
mapping(uint256 => address) private _owners;
// Mapping owner address to token count
mapping(address => uint256) private _balances;
// Mapping from token ID to approved address
mapping(uint256 => address) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC721).interfaceId ||
interfaceId == type(IERC721Metadata).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
require(owner != address(0), "ERC721: address zero is not a valid owner");
return _balances[owner];
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
address owner = _ownerOf(tokenId);
require(owner != address(0), "ERC721: invalid token ID");
return owner;
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
_requireMinted(tokenId);
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return "";
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual override {
address owner = ERC721.ownerOf(tokenId);
require(to != owner, "ERC721: approval to current owner");
require(
_msgSender() == owner || isApprovedForAll(owner, _msgSender()),
"ERC721: approve caller is not token owner or approved for all"
);
_approve(to, tokenId);
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
_requireMinted(tokenId);
return _tokenApprovals[tokenId];
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) public virtual override {
//solhint-disable-next-line max-line-length
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
_transfer(from, to, tokenId);
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public virtual override {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory data
) public virtual override {
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
_safeTransfer(from, to, tokenId, data);
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* `data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(
address from,
address to,
uint256 tokenId,
bytes memory data
) internal virtual {
_transfer(from, to, tokenId);
require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
}
/**
* @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
*/
function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
return _owners[tokenId];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted (`_mint`),
* and stop existing when they are burned (`_burn`).
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return _ownerOf(tokenId) != address(0);
}
/**
* @dev Returns whether `spender` is allowed to manage `tokenId`.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
address owner = ERC721.ownerOf(tokenId);
return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
}
/**
* @dev Safely mints `tokenId` and transfers it to `to`.
*
* Requirements:
*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 tokenId) internal virtual {
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeMint(
address to,
uint256 tokenId,
bytes memory data
) internal virtual {
_mint(to, tokenId);
require(
_checkOnERC721Received(address(0), to, tokenId, data),
"ERC721: transfer to non ERC721Receiver implementer"
);
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/
function _mint(address to, uint256 tokenId) internal virtual {
require(to != address(0), "ERC721: mint to the zero address");
require(!_exists(tokenId), "ERC721: token already minted");
_beforeTokenTransfer(address(0), to, tokenId, 1);
// Check that tokenId was not minted by `_beforeTokenTransfer` hook
require(!_exists(tokenId), "ERC721: token already minted");
unchecked {
// Will not overflow unless all 2**256 token ids are minted to the same owner.
// Given that tokens are minted one by one, it is impossible in practice that
// this ever happens. Might change if we allow batch minting.
// The ERC fails to describe this case.
_balances[to] += 1;
}
_owners[tokenId] = to;
emit Transfer(address(0), to, tokenId);
_afterTokenTransfer(address(0), to, tokenId, 1);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
* This is an internal function that does not check if the sender is authorized to operate on the token.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal virtual {
address owner = ERC721.ownerOf(tokenId);
_beforeTokenTransfer(owner, address(0), tokenId, 1);
// Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook
owner = ERC721.ownerOf(tokenId);
// Clear approvals
delete _tokenApprovals[tokenId];
unchecked {
// Cannot overflow, as that would require more tokens to be burned/transferred
// out than the owner initially received through minting and transferring in.
_balances[owner] -= 1;
}
delete _owners[tokenId];
emit Transfer(owner, address(0), tokenId);
_afterTokenTransfer(owner, address(0), tokenId, 1);
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(
address from,
address to,
uint256 tokenId
) internal virtual {
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
require(to != address(0), "ERC721: transfer to the zero address");
_beforeTokenTransfer(from, to, tokenId, 1);
// Check that tokenId was not transferred by `_beforeTokenTransfer` hook
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
// Clear approvals from the previous owner
delete _tokenApprovals[tokenId];
unchecked {
// `_balances[from]` cannot overflow for the same reason as described in `_burn`:
// `from`'s balance is the number of token held, which is at least one before the current
// transfer.
// `_balances[to]` could overflow in the conditions described in `_mint`. That would require
// all 2**256 token ids to be minted, which in practice is impossible.
_balances[from] -= 1;
_balances[to] += 1;
}
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
_afterTokenTransfer(from, to, tokenId, 1);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* Emits an {Approval} event.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_tokenApprovals[tokenId] = to;
emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(
address owner,
address operator,
bool approved
) internal virtual {
require(owner != operator, "ERC721: approve to caller");
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Reverts if the `tokenId` has not been minted yet.
*/
function _requireMinted(uint256 tokenId) internal view virtual {
require(_exists(tokenId), "ERC721: invalid token ID");
}
/**
* @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
* The call is not executed if the target address is not a contract.
*
* @param from address representing the previous owner of the given token ID
* @param to target address that will receive the tokens
* @param tokenId uint256 ID of the token to be transferred
* @param data bytes optional data to send along with the call
* @return bool whether the call correctly returned the expected magic value
*/
function _checkOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory data
) private returns (bool) {
if (to.isContract()) {
try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
return retval == IERC721Receiver.onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert("ERC721: transfer to non ERC721Receiver implementer");
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
} else {
return true;
}
}
/**
* @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is
* used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`.
* - When `from` is zero, the tokens will be minted for `to`.
* - When `to` is zero, ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
* - `batchSize` is non-zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 firstTokenId,
uint256 batchSize
) internal virtual {}
/**
* @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is
* used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`.
* - When `from` is zero, the tokens were minted for `to`.
* - When `to` is zero, ``from``'s tokens were burned.
* - `from` and `to` are never both zero.
* - `batchSize` is non-zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 firstTokenId,
uint256 batchSize
) internal virtual {}
/**
* @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
*
* WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant
* being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such
* that `ownerOf(tokenId)` is `a`.
*/
// solhint-disable-next-line func-name-mixedcase
function __unsafe_increaseBalance(address account, uint256 amount) internal {
_balances[account] += amount;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/extensions/ERC721Enumerable.sol)
pragma solidity ^0.8.0;
import "../ERC721.sol";
import "./IERC721Enumerable.sol";
/**
* @dev This implements an optional extension of {ERC721} defined in the EIP that adds
* enumerability of all the token ids in the contract as well as all token ids owned by each
* account.
*/
abstract contract ERC721Enumerable is ERC721, IERC721Enumerable {
// Mapping from owner to list of owned token IDs
mapping(address => mapping(uint256 => uint256)) private _ownedTokens;
// Mapping from token ID to index of the owner tokens list
mapping(uint256 => uint256) private _ownedTokensIndex;
// Array with all token ids, used for enumeration
uint256[] private _allTokens;
// Mapping from token id to position in the allTokens array
mapping(uint256 => uint256) private _allTokensIndex;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC721) returns (bool) {
return interfaceId == type(IERC721Enumerable).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721Enumerable-tokenOfOwnerByIndex}.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual override returns (uint256) {
require(index < ERC721.balanceOf(owner), "ERC721Enumerable: owner index out of bounds");
return _ownedTokens[owner][index];
}
/**
* @dev See {IERC721Enumerable-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _allTokens.length;
}
/**
* @dev See {IERC721Enumerable-tokenByIndex}.
*/
function tokenByIndex(uint256 index) public view virtual override returns (uint256) {
require(index < ERC721Enumerable.totalSupply(), "ERC721Enumerable: global index out of bounds");
return _allTokens[index];
}
/**
* @dev See {ERC721-_beforeTokenTransfer}.
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 firstTokenId,
uint256 batchSize
) internal virtual override {
super._beforeTokenTransfer(from, to, firstTokenId, batchSize);
if (batchSize > 1) {
// Will only trigger during construction. Batch transferring (minting) is not available afterwards.
revert("ERC721Enumerable: consecutive transfers not supported");
}
uint256 tokenId = firstTokenId;
if (from == address(0)) {
_addTokenToAllTokensEnumeration(tokenId);
} else if (from != to) {
_removeTokenFromOwnerEnumeration(from, tokenId);
}
if (to == address(0)) {
_removeTokenFromAllTokensEnumeration(tokenId);
} else if (to != from) {
_addTokenToOwnerEnumeration(to, tokenId);
}
}
/**
* @dev Private function to add a token to this extension's ownership-tracking data structures.
* @param to address representing the new owner of the given token ID
* @param tokenId uint256 ID of the token to be added to the tokens list of the given address
*/
function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private {
uint256 length = ERC721.balanceOf(to);
_ownedTokens[to][length] = tokenId;
_ownedTokensIndex[tokenId] = length;
}
/**
* @dev Private function to add a token to this extension's token tracking data structures.
* @param tokenId uint256 ID of the token to be added to the tokens list
*/
function _addTokenToAllTokensEnumeration(uint256 tokenId) private {
_allTokensIndex[tokenId] = _allTokens.length;
_allTokens.push(tokenId);
}
/**
* @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that
* while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for
* gas optimizations e.g. when performing a transfer operation (avoiding double writes).
* This has O(1) time complexity, but alters the order of the _ownedTokens array.
* @param from address representing the previous owner of the given token ID
* @param tokenId uint256 ID of the token to be removed from the tokens list of the given address
*/
function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private {
// To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and
// then delete the last slot (swap and pop).
uint256 lastTokenIndex = ERC721.balanceOf(from) - 1;
uint256 tokenIndex = _ownedTokensIndex[tokenId];
// When the token to delete is the last token, the swap operation is unnecessary
if (tokenIndex != lastTokenIndex) {
uint256 lastTokenId = _ownedTokens[from][lastTokenIndex];
_ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
_ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
}
// This also deletes the contents at the last position of the array
delete _ownedTokensIndex[tokenId];
delete _ownedTokens[from][lastTokenIndex];
}
/**
* @dev Private function to remove a token from this extension's token tracking data structures.
* This has O(1) time complexity, but alters the order of the _allTokens array.
* @param tokenId uint256 ID of the token to be removed from the tokens list
*/
function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private {
// To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and
// then delete the last slot (swap and pop).
uint256 lastTokenIndex = _allTokens.length - 1;
uint256 tokenIndex = _allTokensIndex[tokenId];
// When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so
// rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding
// an 'if' statement (like in _removeTokenFromOwnerEnumeration)
uint256 lastTokenId = _allTokens[lastTokenIndex];
_allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
_allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
// This also deletes the contents at the last position of the array
delete _allTokensIndex[tokenId];
_allTokens.pop();
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
import '@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol';
import '@openzeppelin/contracts/access/Ownable.sol';
import './HexamillenniaAlgorithm.sol';
contract Hexamillennia is ERC721Enumerable, Ownable {
uint256 public constant MAX_SUPPLY = 1000;
bool public active;
mapping(uint256 => uint256) public randomSource;
constructor() ERC721('Hexamillennia', 'HXMLLNN') {}
function activate() external onlyOwner {
active = true;
}
function mintTiling() external {
require(active, 'Mint not active');
uint256 tokenId = totalSupply();
require(tokenId < MAX_SUPPLY, 'Max supply reached');
randomSource[tokenId] = uint256(keccak256(abi.encodePacked(msg.sender, blockhash(block.number - 1), tokenId)));
_mint(msg.sender, tokenId);
}
function tokenURI(uint256 tokenId) public view override returns (string memory) {
_requireMinted(tokenId);
return HexamillenniaAlgorithm.tokenURI(tokenId, randomSource[tokenId]);
}
function tokenSVG(uint256 tokenId) public view returns (string memory) {
_requireMinted(tokenId);
return HexamillenniaAlgorithm.tokenSVG(tokenId, randomSource[tokenId]);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
uint256 constant MASK_4 = 2 ** 4 - 1;
uint256 constant MASK_6 = 2 ** 6 - 1;
uint256 constant MASK_8 = 2 ** 8 - 1;
uint256 constant MASK_12 = 2 ** 12 - 1;
uint256 constant MASK_16 = 2 ** 16 - 1;
uint256 constant MASK_32 = 2 ** 32 - 1;
uint256 constant HEXAGON_PERP_WALK_MASK = 2 ** 6;
uint256 constant HEXAGON_PERP_2_WALK_MASK = 2 ** 8;
uint256 constant HEXAGON_PERP_3_WALK_MASK = 2 ** 9;
uint256 constant HEXAGON_PAINT_OFFSET = 12;
uint256 constant SQUARE_PAINT_OFFSET = 16;
uint256 constant SQUARE_2_PAINT_OFFSET = 24;
uint256 constant TRIANGLE_PAINT_OFFSET = 28;
uint256 constant TRIANGLE_1_PAINT_OFFSET = 32;
uint256 constant HEXAGON_PAINT_MASK = 0xf000;
uint256 constant SQUARE_PAINT_MASK = 0xf0000;
uint256 constant TRIANGLE_PAINT_MASK = 0xf0000000;
uint256 constant TRIANGLE_1_PAINT_MASK = 0xf00000000;
uint256 constant SQUARE_2_WALK_PAINT_MASK = 0xf000100;
uint256 constant HEXAGON_EXPAND_OFFSET = 36;
uint256 constant HEXAGON_PERP_EXPAND_OFFSET = 42;
uint256 constant HEXAGON_EXPAND_MASK = 0x1000000000;
uint256 constant HEXAGON_PERP_EXPAND_MASK = 0x40000000000;
uint256 constant HEXAGON_FULL_BOUNDARY_MASK = 0x3f000000000;
uint256 constant SQUARE_HALF_BOUNDARY_MASK = 0x41000000000;
uint256 constant VERTEX_013_EXPAND_MASK = 0x82143021810c086043;
uint256 constant EXPAND_ROOT_OFFSET = 48;
uint256 constant SELF_OFFSET = 52;
uint256 constant ROW_COL_OFFSET = 68;
uint256 constant STATE_OFFSET = 84;
uint256 constant STATE_1_OFFSET = 100;
uint256 constant STATE_3_OFFSET = 132;
uint256 constant STATE_5_OFFSET = 164;
uint256 constant ANGLE_TO_HEXAGON = 0x0100010100017f007f7f007f;
uint256 constant ANGLE_TO_HEXAGON_PLUS = 0x020102020102000100000100;
uint256 constant ANGLE_TO_VERTEX_X = 0x000003e8000007d0000003e8fffffc18fffff830fffffc18;
uint256 constant ANGLE_TO_VERTEX_Y = 0xfffff93c00000000000006c4000006c400000000fffff93c;
uint256 constant POPCOUNT_6 = 0x6554544354434332544343324332322154434332433232214332322132212110;
// These memory locations are above the area that Solidity allocates for the 3 string constants below, and this is the only area that Solidity
// allocates when this library is used as intended.
uint256 constant LOG2_DIM_M = 0x680;
uint256 constant DIM_M = 0x6a0;
uint256 constant UNROLLED_GRID_M = 0x6c0;
uint256 constant OPEN_M = 0x6e0;
uint256 constant MARGIN_M = 0x700;
uint256 constant UNROLLED_GRID_ROWS_M = 0x720;
uint256 constant UNROLLED_GRID_COLS_M = 0x740;
uint256 constant STACK_M = 0x760;
uint256 constant STACK_IDX_M = 0x780;
uint256 constant CACHE_M = 0x7a0;
uint256 constant CACHE_IDX_M = 0x7c0;
uint256 constant OUTPUT_M = 0x7e0;
uint256 constant OUTPUT_IDX_M = 0x800;
uint256 constant STATE_M_M = 0x820;
uint256 constant ANGLE_M = 0x840;
uint256 constant STEPS_IDX_M = 0x860;
uint256 constant STEPS_M = 0x880;
uint256 constant PALETTE_IDX_M = 0x8a0;
uint256 constant PALETTE_M = 0x8c0;
uint256 constant NUM_COLORS_M = 0x8e0;
uint256 constant COLOR_M = 0x900;
uint256 constant EDGE_COUNT_M = 0x920;
uint256 constant SVG_STRING_LOOKUP_M = 0x940;
uint256 constant OPEN_VIEW_BOX_X_DECIMAL_M = 0x960;
uint256 constant OPEN_VIEW_BOX_X_DECIMAL_LENGTH_M = 0x980;
uint256 constant OPEN_VIEW_BOX_Y_DECIMAL_M = 0x9a0;
uint256 constant OPEN_VIEW_BOX_Y_DECIMAL_LENGTH_M = 0x9c0;
uint256 constant OPEN_VIEW_BOX_WIDTH_DECIMAL_M = 0x9e0;
uint256 constant OPEN_VIEW_BOX_WIDTH_DECIMAL_LENGTH_M = 0xa00;
uint256 constant OPEN_VIEW_BOX_HEIGHT_DECIMAL_M = 0xa20;
uint256 constant OPEN_VIEW_BOX_HEIGHT_DECIMAL_LENGTH_M = 0xa40;
uint256 constant DOMAIN_WIDTH_DECIMAL_M = 0xa60;
uint256 constant DOMAIN_WIDTH_DECIMAL_LENGTH_M = 0xa80;
uint256 constant DOMAIN_HEIGHT_DECIMAL_M = 0xaa0;
uint256 constant DOMAIN_HEIGHT_DECIMAL_LENGTH_M = 0xac0;
uint256 constant SVG_START_M = 0xae0;
uint256 constant SVG_END_M = 0xb00;
uint256 constant JSON_STRING_LOOKUP_M = 0xb20;
uint256 constant TOKEN_ID_M = 0xb40;
uint256 constant TOKEN_ID_DECIMAL_M = 0xb60;
uint256 constant TOKEN_ID_DECIMAL_LENGTH_M = 0xb80;
uint256 constant DIM_DECIMAL_M = 0xba0;
uint256 constant DIM_DECIMAL_LENGTH_M = 0xbc0;
uint256 constant PALETTE_IDX_DECIMAL_M = 0xbe0;
uint256 constant PALETTE_IDX_DECIMAL_LENGTH_M = 0xc00;
uint256 constant ANGLE_EDGE_TO_VECTOR = 0xcc0;
uint256 constant ANGLE_EDGE_TO_VECTOR_OFFSET = 0xece4dcd1c7bbb0a69b90867f7770695e52483d31261b0f0700;
uint256 constant BASE64 = 0xda1;
uint256 constant RANDOM_SOURCE = 0xe00;
uint256 constant SHIFT_M = 0xe20;
uint256 constant GRID = 0xe40;
string constant PALETTES = 'FF87CA7FAEFAB07676FCDED4F7ABD4CCA3A3B8D1FFA555ECC47AFFFDFF00FFF8BC38E54DCFFF8DFF731DF7A76CE5DFD6FBF8F4807E7D633E35A27B5C9FC088F4DFBAFFFEA9379237BA3A33D85C2BF1F582FB6B337D3D443F2828FEE1830280C0253978B6E6FFD3E0EFA1F7FF84A1C9EDF5FC540375FF7000FF4949FFFD8C824C96F2D0A3D0A369B46F37A70A0D800004BF040AB51212EFEFEFDFDEDEFFFFFFFEFF9F393E465D697AF3CCFFF9DEFCD3B5F5F6EBFA012106210101200D073412115F3D36F4E1BCE3C69DB5918852230E864123F2BD77';
uint256 constant PALETTES_OFFSET = 0x473e3835312b261f18130d0700;
uint256 constant NUM_PALETTES = 12;
string constant SVG_STRING_LOOKUP = '<svg xmlns="http://www.w3.org/2000/svg" viewBox=""><rect x="-2732" y="-2732" width="" height="" fill="white"/><g stroke="black" stroke-width="100" stroke-linejoin="round" stroke-linecap="round" fill-rule="evenodd"><path d="" fill="#"/></g></svg> 0 0 -2732 -2732 M-2732 -2732l0 ';
string constant JSON_STRING_LOOKUP = 'data:application/json,%7B%22name%22:%22Tiling%20%22,%22description%22:%22Hexamillennia%20is%20generated%20entirely%20on%20the%20EVM.%20Released%20under%20CC0.%22,%22attributes%22:%5B%7B%22trait_type%22:%22%22,%22value%22:%22%22%7D,%7B%22trait_type%22:%22%22,%22value%22:%22%22%7D%5D,%22image%22:%22data:image/svg+xml;base64,%22%7DSizeFormStepsPaletteClosedOpenLowMediumHigh';
library HexamillenniaAlgorithm {
function tokenURI(uint256 tokenId, uint256 randomSource) internal pure returns (string memory) {
generateSVG(tokenId, randomSource);
resetOutput();
writeJSON();
returnOutput();
}
function tokenSVG(uint256 tokenId, uint256 randomSource) internal pure returns (string memory) {
generateSVG(tokenId, randomSource);
returnOutput();
}
function generateSVG(uint256 tokenId, uint256 randomSource) internal pure {
initializeKnownData(tokenId, randomSource);
chooseAttributes();
initializeVariables();
prepareGrid();
walk();
paint();
prepareUnrolledGrid();
writeDecimalLookup();
resetOutput();
writePreExpand();
expand();
writePostExpand();
}
function initializeKnownData(uint256 tokenId, uint256 randomSource) internal pure {
string memory palettes = PALETTES;
string memory svgStringLookup = SVG_STRING_LOOKUP;
string memory jsonStringLookup = JSON_STRING_LOOKUP;
assembly {
mstore(TOKEN_ID_M, tokenId)
mstore(RANDOM_SOURCE, randomSource)
mstore(PALETTE_M, add(palettes, 0x20))
mstore(SVG_STRING_LOOKUP_M, add(svgStringLookup, 0x20))
mstore(JSON_STRING_LOOKUP_M, add(jsonStringLookup, 0x20))
mstore(0xcc0, ' 2000 0 0 -2000 -1732 -1000 -100')
mstore(0xce0, '0 1732 1000 -1732 -1732 -1000 -1')
mstore(0xd00, '732 1000 1000 1732 -1000 -1732 -')
mstore(0xd20, '1732 1000 0 2000 2000 0 -2000 0 ')
mstore(0xd40, '0 2000 1732 1000 1000 -1732 -100')
mstore(0xd60, '0 1732 1732 1000 1732 -1000 -100')
mstore(0xd80, '0 -1732 1000 1732 1732 -1000 0 -')
mstore(0xda0, '2000 -2000 0')
mstore(0xdc0, 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef')
mstore(0xde0, 'ghijklmnopqrstuvwxyz0123456789+/')
}
}
function chooseAttributes() internal pure {
assembly {
function updateRandomSource() {
let shift := mload(SHIFT_M)
shift := add(shift, 8)
if eq(shift, 256) {
mstore(RANDOM_SOURCE, keccak256(RANDOM_SOURCE, 0x20))
shift := 0
}
mstore(SHIFT_M, shift)
}
// log2Dim can be at most 4 in this implementation
let log2Dim := add(shr(6, and(shr(mload(SHIFT_M), mload(RANDOM_SOURCE)), MASK_8)), 1)
let dim := shl(log2Dim, 1)
mstore(LOG2_DIM_M, log2Dim)
mstore(DIM_M, dim)
updateRandomSource()
mstore(OPEN_M, shr(7, and(shr(mload(SHIFT_M), mload(RANDOM_SOURCE)), MASK_8)))
updateRandomSource()
mstore(STATE_M_M, add(GRID, shl(5, shr(8, mul(mul(dim, dim), and(shr(mload(SHIFT_M), mload(RANDOM_SOURCE)), MASK_8))))))
updateRandomSource()
mstore(ANGLE_M, shr(8, mul(6, and(shr(mload(SHIFT_M), mload(RANDOM_SOURCE)), MASK_8))))
updateRandomSource()
let stepsIdx := shr(8, mul(3, and(shr(mload(SHIFT_M), mload(RANDOM_SOURCE)), MASK_8)))
mstore(STEPS_IDX_M, stepsIdx)
mstore(STEPS_M, shl(add(add(stepsIdx, 4), shl(1, log2Dim)), 1))
updateRandomSource()
let paletteIdx := shr(8, mul(NUM_PALETTES, and(shr(mload(SHIFT_M), mload(RANDOM_SOURCE)), MASK_8)))
mstore(PALETTE_IDX_M, paletteIdx)
let adjusted := shr(shl(3, paletteIdx), PALETTES_OFFSET)
let offset := and(adjusted, MASK_8)
mstore(PALETTE_M, add(mload(PALETTE_M), mul(offset, 0x6)))
mstore(NUM_COLORS_M, sub(and(shr(8, adjusted), MASK_8), offset))
updateRandomSource()
}
}
function initializeVariables() internal pure {
assembly {
let dim := mload(DIM_M)
let open := mload(OPEN_M)
let margin := mul(sub(mload(LOG2_DIM_M), 1), open)
let hexagonCount
switch open
case 0 {
hexagonCount := mul(shr(1, add(dim, 2)), add(shl(1, dim), 3))
}
case 1 {
hexagonCount := mul(dim, dim)
}
mstore(UNROLLED_GRID_M, add(GRID, shl(5, mul(dim, dim))))
mstore(MARGIN_M, margin)
mstore(UNROLLED_GRID_ROWS_M, add(add(add(dim, shr(1, dim)), 4), shl(1, margin)))
mstore(UNROLLED_GRID_COLS_M, add(add(dim, 4), shl(1, margin)))
mstore(STACK_M, add(mload(UNROLLED_GRID_M), shl(5, mul(mload(UNROLLED_GRID_ROWS_M), mload(UNROLLED_GRID_COLS_M)))))
mstore(STACK_IDX_M, mload(STACK_M))
mstore(CACHE_M, add(mload(STACK_M), add(mul(hexagonCount, 18), 0x20)))
mstore(CACHE_IDX_M, mload(CACHE_M))
mstore(OUTPUT_M, add(mload(CACHE_M), add(mul(hexagonCount, 39), 0x20)))
mstore(OUTPUT_IDX_M, mload(OUTPUT_M))
}
}
function prepareGrid() internal pure {
assembly {
let log2Dim := mload(LOG2_DIM_M)
let dim := mload(DIM_M)
let gridCount := mul(dim, dim)
for {
let gridIdx
} lt(gridIdx, gridCount) {
gridIdx := add(gridIdx, 1)
} {
let stateM := add(GRID, shl(5, gridIdx))
mstore(stateM, shl(SELF_OFFSET, stateM))
let row := shr(log2Dim, gridIdx)
let col := and(gridIdx, sub(dim, 1))
switch and(and(and(gt(row, 0), lt(row, sub(dim, 1))), gt(col, 0)), lt(col, sub(dim, 1)))
case 0 {
for {
let angle
} lt(angle, 6) {
angle := add(angle, 1)
} {
let hexagonR0 := add(or(shl(8, col), row), shr(shl(4, angle), ANGLE_TO_HEXAGON))
let col0 := shr(8, hexagonR0)
mstore(
stateM,
or(
mload(stateM),
shl(
add(shl(4, angle), STATE_OFFSET),
add(
add(GRID, shl(add(log2Dim, 5), and(sub(hexagonR0, mul(shr(log2Dim, col0), shr(1, dim))), sub(dim, 1)))),
shl(5, and(col0, sub(dim, 1)))
)
)
)
)
}
}
case 1 {
mstore(
stateM,
or(
mload(stateM),
shl(
STATE_OFFSET,
or(
or(
or(
or(
or(
shl(80, add(add(GRID, shl(add(log2Dim, 5), row)), shl(5, add(col, 1)))),
shl(64, add(add(GRID, shl(add(log2Dim, 5), add(row, 1))), shl(5, add(col, 1))))
),
shl(48, add(add(GRID, shl(add(log2Dim, 5), add(row, 1))), shl(5, col)))
),
shl(32, add(add(GRID, shl(add(log2Dim, 5), row)), shl(5, sub(col, 1))))
),
shl(16, add(add(GRID, shl(add(log2Dim, 5), sub(row, 1))), shl(5, sub(col, 1))))
),
add(add(GRID, shl(add(log2Dim, 5), sub(row, 1))), shl(5, col))
)
)
)
)
}
}
}
}
function walk() internal pure {
assembly {
let stateM := mload(STATE_M_M)
let angle := mload(ANGLE_M)
let steps := mload(STEPS_M)
for {
let i
} lt(i, steps) {
i := add(i, 1)
} {
let shift := mload(add(RANDOM_SOURCE, 0x20))
switch shr(6, and(shr(shift, mload(RANDOM_SOURCE)), MASK_8))
case 0 {
mstore(stateM, or(mload(stateM), shl(angle, 1)))
angle := addmod(angle, 5, 6)
}
case 1 {
mstore(stateM, or(mload(stateM), shl(angle, HEXAGON_PERP_WALK_MASK)))
stateM := and(shr(add(shl(4, angle), STATE_OFFSET), mload(stateM)), MASK_16)
angle := addmod(angle, 2, 6)
}
case 2 {
stateM := and(shr(add(shl(4, addmod(angle, 1, 6)), STATE_OFFSET), mload(stateM)), MASK_16)
angle := addmod(angle, 4, 6)
mstore(stateM, or(mload(stateM), shl(angle, HEXAGON_PERP_WALK_MASK)))
}
case 3 {
angle := addmod(angle, 1, 6)
mstore(stateM, or(mload(stateM), shl(angle, 1)))
}
if eq(shift, 248) {
mstore(RANDOM_SOURCE, keccak256(RANDOM_SOURCE, 0x20))
mstore(SHIFT_M, 0)
continue
}
mstore(SHIFT_M, add(shift, 8))
}
}
}
function paint() internal pure {
assembly {
function paintDF() {
for {
} gt(mload(STACK_IDX_M), mload(STACK_M)) {
} {
mstore(STACK_IDX_M, sub(mload(STACK_IDX_M), 0x3))
let top := shr(232, mload(mload(STACK_IDX_M)))
switch shr(20, top)
case 0 {
for {
let angle
} lt(angle, 3) {
angle := add(angle, 1)
} {
if iszero(and(mload(top), or(shl(angle, 1), shl(shl(2, angle), SQUARE_PAINT_MASK)))) {
mstore(top, or(mload(top), shl(add(shl(2, angle), SQUARE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x100000, shl(16, angle)), top)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
let stateR3M := and(shr(add(shl(4, add(angle, 3)), STATE_OFFSET), mload(top)), MASK_16)
if iszero(or(and(mload(top), shl(add(angle, 3), 1)), and(mload(stateR3M), shl(shl(2, angle), SQUARE_PAINT_MASK)))) {
mstore(stateR3M, or(mload(stateR3M), shl(add(shl(2, angle), SQUARE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x100000, shl(16, angle)), stateR3M)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
}
}
case 1 {
let angle := and(shr(16, top), MASK_4)
let stateM := and(top, MASK_16)
if iszero(and(mload(stateM), or(shl(angle, 1), HEXAGON_PAINT_MASK))) {
mstore(stateM, or(mload(stateM), shl(HEXAGON_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, stateM))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
let stateR0M := and(shr(add(shl(4, angle), STATE_OFFSET), mload(stateM)), MASK_16)
if iszero(and(mload(stateR0M), or(shl(add(angle, 3), 1), HEXAGON_PAINT_MASK))) {
mstore(stateR0M, or(mload(stateR0M), shl(HEXAGON_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, stateR0M))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
switch eq(angle, 2)
case 0 {
if iszero(and(mload(stateM), or(shl(angle, HEXAGON_PERP_WALK_MASK), shl(shl(2, angle), TRIANGLE_PAINT_MASK)))) {
mstore(stateM, or(mload(stateM), shl(add(shl(2, angle), TRIANGLE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x200000, shl(16, angle)), stateM)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
}
case 1 {
let state3M := and(shr(STATE_3_OFFSET, mload(stateM)), MASK_16)
if iszero(or(and(mload(stateM), HEXAGON_PERP_2_WALK_MASK), and(mload(state3M), TRIANGLE_PAINT_MASK))) {
mstore(state3M, or(mload(state3M), shl(TRIANGLE_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(0x200000, state3M)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
}
switch eq(angle, 0)
case 0 {
if iszero(
or(
and(mload(stateR0M), shl(add(angle, 3), HEXAGON_PERP_WALK_MASK)),
and(mload(stateM), shl(shl(2, sub(angle, 1)), TRIANGLE_PAINT_MASK))
)
) {
mstore(stateM, or(mload(stateM), shl(add(shl(2, sub(angle, 1)), TRIANGLE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x200000, shl(16, sub(angle, 1))), stateM)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
}
case 1 {
let state5M := and(shr(STATE_5_OFFSET, mload(stateM)), MASK_16)
if iszero(or(and(mload(stateR0M), HEXAGON_PERP_3_WALK_MASK), and(mload(state5M), TRIANGLE_1_PAINT_MASK))) {
mstore(state5M, or(mload(state5M), shl(TRIANGLE_1_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(0x210000, state5M)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
}
}
case 2 {
let angle := and(shr(16, top), MASK_4)
let stateM := and(top, MASK_16)
let stateR1M := and(shr(add(shl(4, add(angle, 1)), STATE_OFFSET), mload(stateM)), MASK_16)
if iszero(and(mload(stateM), or(shl(angle, HEXAGON_PERP_WALK_MASK), shl(shl(2, angle), SQUARE_PAINT_MASK)))) {
mstore(stateM, or(mload(stateM), shl(add(shl(2, angle), SQUARE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x100000, shl(16, angle)), stateM)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
if iszero(
or(
and(mload(stateR1M), shl(add(angle, 4), HEXAGON_PERP_WALK_MASK)),
and(mload(stateM), shl(shl(2, add(angle, 1)), SQUARE_PAINT_MASK))
)
) {
mstore(stateM, or(mload(stateM), shl(add(shl(2, add(angle, 1)), SQUARE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x100000, shl(16, add(angle, 1))), stateM)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
switch angle
case 0 {
let state0M := and(shr(STATE_OFFSET, mload(stateM)), MASK_16)
if iszero(and(mload(state0M), SQUARE_2_WALK_PAINT_MASK)) {
mstore(state0M, or(mload(state0M), shl(SQUARE_2_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(0x120000, state0M)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
}
case 1 {
if iszero(
or(
and(mload(and(shr(STATE_1_OFFSET, mload(stateM)), MASK_16)), HEXAGON_PERP_3_WALK_MASK),
and(mload(stateR1M), SQUARE_PAINT_MASK)
)
) {
mstore(stateR1M, or(mload(stateR1M), shl(SQUARE_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(0x100000, stateR1M)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
}
}
}
}
function chooseColor() {
let shift := mload(SHIFT_M)
mstore(COLOR_M, add(shr(8, mul(mload(NUM_COLORS_M), and(shr(shift, mload(RANDOM_SOURCE)), MASK_8))), 1))
shift := add(shift, 8)
if eq(shift, 256) {
mstore(RANDOM_SOURCE, keccak256(RANDOM_SOURCE, 0x20))
shift := 0
}
mstore(SHIFT_M, shift)
}
let gridEnd := mload(UNROLLED_GRID_M)
for {
let stateM := GRID
} lt(stateM, gridEnd) {
stateM := add(stateM, 0x20)
} {
if iszero(and(mload(stateM), HEXAGON_PAINT_MASK)) {
chooseColor()
mstore(stateM, or(mload(stateM), shl(HEXAGON_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, stateM))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
paintDF()
}
for {
let angle
} lt(angle, 3) {
angle := add(angle, 1)
} {
if iszero(and(mload(stateM), shl(shl(2, angle), SQUARE_PAINT_MASK))) {
chooseColor()
mstore(stateM, or(mload(stateM), shl(add(shl(2, angle), SQUARE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x100000, shl(16, angle)), stateM)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
paintDF()
}
if and(lt(angle, 2), iszero(and(mload(stateM), shl(shl(2, angle), TRIANGLE_PAINT_MASK)))) {
chooseColor()
mstore(stateM, or(mload(stateM), shl(add(shl(2, angle), TRIANGLE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x200000, shl(16, angle)), stateM)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
paintDF()
}
}
}
}
}
function prepareUnrolledGrid() internal pure {
assembly {
let dim := mload(DIM_M)
let unrolledGrid := mload(UNROLLED_GRID_M)
let margin := mload(MARGIN_M)
let cols := mload(UNROLLED_GRID_COLS_M)
let gridCount := mul(mload(UNROLLED_GRID_ROWS_M), cols)
for {
let gridIdx
} lt(gridIdx, gridCount) {
gridIdx := add(gridIdx, 1)
} {
let stateM := add(unrolledGrid, shl(5, gridIdx))
let row := div(gridIdx, cols)
let col := mod(gridIdx, cols)
if and(
and(and(gt(col, 0), lt(col, add(add(shl(1, margin), 3), dim))), gt(add(shl(1, row), 1), col)),
lt(shl(1, row), add(add(add(shl(1, margin), 3), shl(1, dim)), col))
) {
let colN := sub(col, add(margin, 2))
mstore(
stateM,
or(
and(
mload(
add(
add(
GRID,
shl(
add(mload(LOG2_DIM_M), 5),
and(sub(sub(row, add(margin, 2)), mul(shr(mload(LOG2_DIM_M), colN), shr(1, dim))), sub(dim, 1))
)
),
shl(5, and(colN, sub(dim, 1)))
)
),
0xfffffffffffffffff
),
shl(
EXPAND_ROOT_OFFSET,
or(
iszero(mload(OPEN_M)),
and(
and(
and(gt(col, add(margin, 1)), lt(col, add(add(margin, 2), dim))),
gt(shl(1, row), add(add(margin, 1), col))
),
lt(shl(1, row), add(add(add(margin, 2), shl(1, dim)), col))
)
)
)
)
)
if iszero(mload(OPEN_M)) {
mstore(stateM, or(and(mload(stateM), 0xfffffffffffff), shl(SELF_OFFSET, stateM)))
}
}
mstore(stateM, or(mload(stateM), shl(ROW_COL_OFFSET, or(shl(8, col), row))))
for {
let angle
} lt(angle, 6) {
angle := add(angle, 1)
} {
let hexagonR0Plus := and(add(or(shl(8, col), row), shr(shl(4, angle), ANGLE_TO_HEXAGON_PLUS)), MASK_16)
mstore(
stateM,
or(
mload(stateM),
shl(
add(shl(4, angle), STATE_OFFSET),
add(add(unrolledGrid, mul(cols, shl(5, sub(and(hexagonR0Plus, MASK_8), 1)))), shl(5, sub(shr(8, hexagonR0Plus), 1)))
)
)
)
}
}
}
}
function expand() internal pure {
assembly {
function expandDF() {
for {
} gt(mload(STACK_IDX_M), mload(STACK_M)) {
} {
mstore(STACK_IDX_M, sub(mload(STACK_IDX_M), 0x3))
let top := shr(232, mload(mload(STACK_IDX_M)))
switch shr(20, top)
case 0 {
let colorStateM := and(shr(SELF_OFFSET, mload(top)), MASK_16)
for {
let angle
} lt(angle, 3) {
angle := add(angle, 1)
} {
if eq(and(shr(add(shl(2, angle), SQUARE_PAINT_OFFSET), mload(colorStateM)), MASK_4), mload(COLOR_M)) {
mstore(colorStateM, xor(mload(colorStateM), shl(add(shl(2, angle), SQUARE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x100000, shl(16, angle)), top)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
let stateR3M := and(shr(add(shl(4, add(angle, 3)), STATE_OFFSET), mload(top)), MASK_16)
let colorStateR3M := and(shr(SELF_OFFSET, mload(stateR3M)), MASK_16)
if and(
gt(colorStateR3M, 0),
eq(and(shr(add(shl(2, angle), SQUARE_PAINT_OFFSET), mload(colorStateR3M)), MASK_4), mload(COLOR_M))
) {
mstore(colorStateR3M, xor(mload(colorStateR3M), shl(add(shl(2, angle), SQUARE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x100000, shl(16, angle)), stateR3M)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
}
mstore(top, xor(mload(top), HEXAGON_FULL_BOUNDARY_MASK))
mstore(
EDGE_COUNT_M,
sub(
add(
mload(EDGE_COUNT_M),
shl(1, and(shr(shl(2, and(shr(HEXAGON_EXPAND_OFFSET, mload(top)), MASK_6)), POPCOUNT_6), MASK_4))
),
6
)
)
mstore(mload(CACHE_IDX_M), shl(232, top))
mstore(CACHE_IDX_M, add(mload(CACHE_IDX_M), 0x3))
mstore(mload(CACHE_IDX_M), shl(232, or(0x20000, top)))
mstore(CACHE_IDX_M, add(mload(CACHE_IDX_M), 0x3))
mstore(mload(CACHE_IDX_M), shl(232, or(0x40000, top)))
mstore(CACHE_IDX_M, add(mload(CACHE_IDX_M), 0x3))
}
case 1 {
let angle := and(shr(16, top), MASK_4)
let stateM := and(top, MASK_16)
let colorStateM := and(shr(SELF_OFFSET, mload(stateM)), MASK_16)
if eq(and(shr(HEXAGON_PAINT_OFFSET, mload(colorStateM)), MASK_4), mload(COLOR_M)) {
mstore(colorStateM, xor(mload(colorStateM), shl(HEXAGON_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, stateM))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
let stateR0M := and(shr(add(shl(4, angle), STATE_OFFSET), mload(stateM)), MASK_16)
let colorStateR0M := and(shr(SELF_OFFSET, mload(stateR0M)), MASK_16)
if and(gt(colorStateR0M, 0), eq(and(shr(HEXAGON_PAINT_OFFSET, mload(colorStateR0M)), MASK_4), mload(COLOR_M))) {
mstore(colorStateR0M, xor(mload(colorStateR0M), shl(HEXAGON_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, stateR0M))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
switch eq(angle, 2)
case 0 {
if eq(and(shr(add(shl(2, angle), TRIANGLE_PAINT_OFFSET), mload(colorStateM)), MASK_4), mload(COLOR_M)) {
mstore(colorStateM, xor(mload(colorStateM), shl(add(shl(2, angle), TRIANGLE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x200000, shl(16, angle)), stateM)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
}
case 1 {
let state3M := and(shr(STATE_3_OFFSET, mload(stateM)), MASK_16)
let colorState3M := and(shr(SELF_OFFSET, mload(state3M)), MASK_16)
if and(gt(colorState3M, 0), eq(and(shr(TRIANGLE_PAINT_OFFSET, mload(colorState3M)), MASK_4), mload(COLOR_M))) {
mstore(colorState3M, xor(mload(colorState3M), shl(TRIANGLE_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(0x200000, state3M)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
}
switch eq(angle, 0)
case 0 {
if eq(and(shr(add(shl(2, sub(angle, 1)), TRIANGLE_PAINT_OFFSET), mload(colorStateM)), MASK_4), mload(COLOR_M)) {
mstore(colorStateM, xor(mload(colorStateM), shl(add(shl(2, sub(angle, 1)), TRIANGLE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x200000, shl(16, sub(angle, 1))), stateM)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
}
case 1 {
let state5M := and(shr(STATE_5_OFFSET, mload(stateM)), MASK_16)
let colorState5M := and(shr(SELF_OFFSET, mload(state5M)), MASK_16)
if and(gt(colorState5M, 0), eq(and(shr(TRIANGLE_1_PAINT_OFFSET, mload(colorState5M)), MASK_4), mload(COLOR_M))) {
mstore(colorState5M, xor(mload(colorState5M), shl(TRIANGLE_1_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(0x210000, state5M)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
}
let angle3 := add(angle, 3)
mstore(stateM, xor(mload(stateM), shl(angle, SQUARE_HALF_BOUNDARY_MASK)))
mstore(stateR0M, xor(mload(stateR0M), shl(angle3, SQUARE_HALF_BOUNDARY_MASK)))
mstore(
EDGE_COUNT_M,
sub(
add(
mload(EDGE_COUNT_M),
shl(
1,
add(
add(
add(
and(shr(add(angle, HEXAGON_EXPAND_OFFSET), mload(stateM)), 1),
and(shr(add(angle, HEXAGON_PERP_EXPAND_OFFSET), mload(stateM)), 1)
),
and(shr(add(angle3, HEXAGON_EXPAND_OFFSET), mload(stateR0M)), 1)
),
and(shr(add(angle3, HEXAGON_PERP_EXPAND_OFFSET), mload(stateR0M)), 1)
)
)
),
4
)
)
mstore(mload(CACHE_IDX_M), shl(232, or(shl(16, angle), stateM)))
mstore(CACHE_IDX_M, add(mload(CACHE_IDX_M), 0x3))
mstore(mload(CACHE_IDX_M), shl(232, or(shl(16, angle3), stateR0M)))
mstore(CACHE_IDX_M, add(mload(CACHE_IDX_M), 0x3))
}
case 2 {
let angle := and(shr(16, top), MASK_4)
let stateM := and(top, MASK_16)
let stateR0M := and(shr(add(shl(4, angle), STATE_OFFSET), mload(stateM)), MASK_16)
let stateR1M := and(shr(add(shl(4, add(angle, 1)), STATE_OFFSET), mload(stateM)), MASK_16)
let colorStateM := and(shr(SELF_OFFSET, mload(stateM)), MASK_16)
if eq(and(shr(add(shl(2, angle), SQUARE_PAINT_OFFSET), mload(colorStateM)), MASK_4), mload(COLOR_M)) {
mstore(colorStateM, xor(mload(colorStateM), shl(add(shl(2, angle), SQUARE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x100000, shl(16, angle)), stateM)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
if eq(and(shr(add(shl(2, add(angle, 1)), SQUARE_PAINT_OFFSET), mload(colorStateM)), MASK_4), mload(COLOR_M)) {
mstore(colorStateM, xor(mload(colorStateM), shl(add(shl(2, add(angle, 1)), SQUARE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x100000, shl(16, add(angle, 1))), stateM)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
switch angle
case 0 {
let colorStateR0M := and(shr(SELF_OFFSET, mload(stateR0M)), MASK_16)
if and(gt(colorStateR0M, 0), eq(and(shr(SQUARE_2_PAINT_OFFSET, mload(colorStateR0M)), MASK_4), mload(COLOR_M))) {
mstore(colorStateR0M, xor(mload(colorStateR0M), shl(SQUARE_2_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(0x120000, stateR0M)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
}
case 1 {
let colorStateR1M := and(shr(SELF_OFFSET, mload(stateR1M)), MASK_16)
if and(gt(colorStateR1M, 0), eq(and(shr(SQUARE_PAINT_OFFSET, mload(colorStateR1M)), MASK_4), mload(COLOR_M))) {
mstore(colorStateR1M, xor(mload(colorStateR1M), shl(SQUARE_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(0x100000, stateR1M)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
}
}
let angle2 := add(angle, 2)
let angle4 := add(angle, 4)
mstore(stateM, xor(mload(stateM), shl(angle, HEXAGON_PERP_EXPAND_MASK)))
mstore(stateR0M, xor(mload(stateR0M), shl(angle2, HEXAGON_PERP_EXPAND_MASK)))
mstore(stateR1M, xor(mload(stateR1M), shl(angle4, HEXAGON_PERP_EXPAND_MASK)))
mstore(
EDGE_COUNT_M,
sub(
add(
mload(EDGE_COUNT_M),
shl(
1,
add(
add(
and(shr(add(angle, HEXAGON_PERP_EXPAND_OFFSET), mload(stateM)), 1),
and(shr(add(angle2, HEXAGON_PERP_EXPAND_OFFSET), mload(stateR0M)), 1)
),
and(shr(add(angle4, HEXAGON_PERP_EXPAND_OFFSET), mload(stateR1M)), 1)
)
)
),
3
)
)
mstore(mload(CACHE_IDX_M), shl(232, or(shl(16, angle), stateM)))
mstore(CACHE_IDX_M, add(mload(CACHE_IDX_M), 0x3))
mstore(mload(CACHE_IDX_M), shl(232, or(shl(16, angle2), stateR0M)))
mstore(CACHE_IDX_M, add(mload(CACHE_IDX_M), 0x3))
}
}
}
function writeBoundary() {
let outputIdx := mload(OUTPUT_IDX_M)
mstore(outputIdx, '<path d="')
outputIdx := add(outputIdx, 0x9)
let cacheEnd := mload(CACHE_IDX_M)
for {
let cacheIdx := mload(CACHE_M)
} lt(cacheIdx, cacheEnd) {
cacheIdx := add(cacheIdx, 0x3)
} {
let vertex := shr(232, mload(cacheIdx))
let stateM := and(vertex, MASK_16)
let angle := and(shr(16, vertex), MASK_4)
if iszero(and(mload(stateM), shl(HEXAGON_EXPAND_OFFSET, and(shr(mul(angle, 12), VERTEX_013_EXPAND_MASK), MASK_12)))) {
continue
}
mstore8(outputIdx, 0x4d)
outputIdx := add(outputIdx, 0x1)
let hexagon := and(shr(ROW_COL_OFFSET, mload(stateM)), MASK_16)
{
let vx := and(add(mul(sub(shr(8, hexagon), add(mload(MARGIN_M), 2)), 4732), shr(shl(5, angle), ANGLE_TO_VERTEX_X)), MASK_32)
if shr(31, vx) {
vx := and(add(not(vx), 1), MASK_32)
mstore8(outputIdx, 0x2d)
outputIdx := add(outputIdx, 0x1)
}
let length := 1
let a := vx
if gt(a, 9999) {
length := add(length, 4)
a := div(a, 10000)
}
if gt(a, 99) {
length := add(length, 2)
a := div(a, 100)
}
if gt(a, 9) {
length := add(length, 1)
}
let p := add(outputIdx, length)
for {
} gt(p, outputIdx) {
} {
p := sub(p, 0x1)
mstore8(p, add(mod(vx, 10), 48))
vx := div(vx, 10)
}
outputIdx := add(outputIdx, length)
}
mstore8(outputIdx, 0x20)
outputIdx := add(outputIdx, 0x1)
{
let vy := and(
add(
mul(sub(sub(shl(1, and(hexagon, MASK_8)), shr(8, hexagon)), add(mload(MARGIN_M), 2)), 2732),
shr(shl(5, angle), ANGLE_TO_VERTEX_Y)
),
MASK_32
)
if shr(31, vy) {
vy := and(add(not(vy), 1), MASK_32)
mstore8(outputIdx, 0x2d)
outputIdx := add(outputIdx, 0x1)
}
let length := 1
let a := vy
if gt(a, 9999) {
length := add(length, 4)
a := div(a, 10000)
}
if gt(a, 99) {
length := add(length, 2)
a := div(a, 100)
}
if gt(a, 9) {
length := add(length, 1)
}
let p := add(outputIdx, length)
for {
} gt(p, outputIdx) {
} {
p := sub(p, 0x1)
mstore8(p, add(mod(vy, 10), 48))
vy := div(vy, 10)
}
outputIdx := add(outputIdx, length)
}
mstore8(outputIdx, 0x6c)
outputIdx := add(outputIdx, 0x1)
let edgeCount := mload(EDGE_COUNT_M)
for {
} 1 {
} {
if and(mload(stateM), shl(angle, HEXAGON_EXPAND_MASK)) {
let adjusted := shr(shl(5, angle), ANGLE_EDGE_TO_VECTOR_OFFSET)
let offset := and(adjusted, MASK_8)
mstore(outputIdx, mload(add(ANGLE_EDGE_TO_VECTOR, offset)))
outputIdx := add(outputIdx, sub(and(shr(8, adjusted), MASK_8), offset))
mstore(stateM, xor(mload(stateM), shl(angle, HEXAGON_EXPAND_MASK)))
angle := addmod(angle, 5, 6)
edgeCount := sub(edgeCount, 1)
continue
}
if and(mload(stateM), shl(angle, HEXAGON_PERP_EXPAND_MASK)) {
let adjusted := shr(add(shl(5, angle), 8), ANGLE_EDGE_TO_VECTOR_OFFSET)
let offset := and(adjusted, MASK_8)
mstore(outputIdx, mload(add(ANGLE_EDGE_TO_VECTOR, offset)))
outputIdx := add(outputIdx, sub(and(shr(8, adjusted), MASK_8), offset))
mstore(stateM, xor(mload(stateM), shl(angle, HEXAGON_PERP_EXPAND_MASK)))
stateM := and(shr(add(shl(4, angle), STATE_OFFSET), mload(stateM)), MASK_16)
angle := addmod(angle, 2, 6)
edgeCount := sub(edgeCount, 1)
continue
}
let stateR1M := and(shr(add(shl(4, addmod(angle, 1, 6)), STATE_OFFSET), mload(stateM)), MASK_16)
if and(mload(stateR1M), shl(addmod(angle, 4, 6), HEXAGON_PERP_EXPAND_MASK)) {
let adjusted := shr(add(shl(5, angle), 16), ANGLE_EDGE_TO_VECTOR_OFFSET)
let offset := and(adjusted, MASK_8)
mstore(outputIdx, mload(add(ANGLE_EDGE_TO_VECTOR, offset)))
outputIdx := add(outputIdx, sub(and(shr(8, adjusted), MASK_8), offset))
stateM := stateR1M
angle := addmod(angle, 4, 6)
mstore(stateM, xor(mload(stateM), shl(angle, HEXAGON_PERP_EXPAND_MASK)))
edgeCount := sub(edgeCount, 1)
continue
}
if and(mload(stateM), shl(addmod(angle, 1, 6), HEXAGON_EXPAND_MASK)) {
let adjusted := shr(add(shl(5, angle), 24), ANGLE_EDGE_TO_VECTOR_OFFSET)
let offset := and(adjusted, MASK_8)
mstore(outputIdx, mload(add(ANGLE_EDGE_TO_VECTOR, offset)))
outputIdx := add(outputIdx, sub(and(shr(8, adjusted), MASK_8), offset))
angle := addmod(angle, 1, 6)
mstore(stateM, xor(mload(stateM), shl(angle, HEXAGON_EXPAND_MASK)))
edgeCount := sub(edgeCount, 1)
continue
}
break
}
mstore(EDGE_COUNT_M, edgeCount)
if iszero(edgeCount) {
break
}
}
mstore(outputIdx, '" fill="#')
outputIdx := add(outputIdx, 0x9)
mstore(outputIdx, mload(add(mload(PALETTE_M), mul(sub(mload(COLOR_M), 1), 0x6))))
outputIdx := add(outputIdx, 0x6)
mstore(outputIdx, '"/>')
outputIdx := add(outputIdx, 0x3)
mstore(OUTPUT_IDX_M, outputIdx)
}
if mload(OPEN_M) {
mstore(RANDOM_SOURCE, keccak256(RANDOM_SOURCE, 0x20))
mstore(SHIFT_M, 0)
let sampleCount := mul(mload(DIM_M), mload(DIM_M))
for {
let i
} lt(i, sampleCount) {
i := add(i, 1)
} {
let shift := mload(SHIFT_M)
let stateM := add(
mload(UNROLLED_GRID_M),
shl(
5,
shr(
16,
mul(mul(mload(UNROLLED_GRID_ROWS_M), mload(UNROLLED_GRID_COLS_M)), and(shr(shift, mload(RANDOM_SOURCE)), MASK_16))
)
)
)
shift := add(shift, 16)
if eq(shift, 256) {
mstore(RANDOM_SOURCE, keccak256(RANDOM_SOURCE, 0x20))
shift := 0
}
mstore(SHIFT_M, shift)
let colorStateM := and(shr(SELF_OFFSET, mload(stateM)), MASK_16)
if and(gt(colorStateM, 0), gt(and(mload(colorStateM), HEXAGON_PAINT_MASK), 0)) {
mstore(COLOR_M, and(shr(HEXAGON_PAINT_OFFSET, mload(colorStateM)), MASK_4))
mstore(colorStateM, xor(mload(colorStateM), shl(HEXAGON_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, stateM))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
mstore(CACHE_IDX_M, mload(CACHE_M))
expandDF()
writeBoundary()
}
}
}
let unrolledGridEnd := mload(STACK_M)
for {
let stateM := mload(UNROLLED_GRID_M)
} lt(stateM, unrolledGridEnd) {
stateM := add(stateM, 0x20)
} {
if iszero(and(mload(stateM), shl(EXPAND_ROOT_OFFSET, 1))) {
continue
}
let colorStateM := and(shr(SELF_OFFSET, mload(stateM)), MASK_16)
if and(mload(colorStateM), HEXAGON_PAINT_MASK) {
mstore(COLOR_M, and(shr(HEXAGON_PAINT_OFFSET, mload(colorStateM)), MASK_4))
mstore(colorStateM, xor(mload(colorStateM), shl(HEXAGON_PAINT_OFFSET, mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, stateM))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
mstore(CACHE_IDX_M, mload(CACHE_M))
expandDF()
writeBoundary()
}
for {
let angle
} lt(angle, 3) {
angle := add(angle, 1)
} {
if and(mload(colorStateM), shl(shl(2, angle), SQUARE_PAINT_MASK)) {
mstore(COLOR_M, and(shr(add(shl(2, angle), SQUARE_PAINT_OFFSET), mload(colorStateM)), MASK_4))
mstore(colorStateM, xor(mload(colorStateM), shl(add(shl(2, angle), SQUARE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x100000, shl(16, angle)), stateM)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
mstore(CACHE_IDX_M, mload(CACHE_M))
expandDF()
writeBoundary()
}
if and(lt(angle, 2), gt(and(mload(colorStateM), shl(shl(2, angle), TRIANGLE_PAINT_MASK)), 0)) {
mstore(COLOR_M, and(shr(add(shl(2, angle), TRIANGLE_PAINT_OFFSET), mload(colorStateM)), MASK_4))
mstore(colorStateM, xor(mload(colorStateM), shl(add(shl(2, angle), TRIANGLE_PAINT_OFFSET), mload(COLOR_M))))
mstore(mload(STACK_IDX_M), shl(232, or(or(0x200000, shl(16, angle)), stateM)))
mstore(STACK_IDX_M, add(mload(STACK_IDX_M), 0x3))
mstore(CACHE_IDX_M, mload(CACHE_M))
expandDF()
writeBoundary()
}
}
}
}
}
function writeDecimalLookup() internal pure {
assembly {
// Assume z is signed 32-bit and |z| < 10 ** 8
function writeDecimal(z, decimalM, decimalLengthM) {
let outputIdx := mload(OUTPUT_IDX_M)
mstore(decimalM, outputIdx)
if shr(31, z) {
z := and(add(not(z), 1), MASK_32)
mstore8(outputIdx, 0x2d)
outputIdx := add(outputIdx, 0x1)
}
let length := 1
let a := z
if gt(a, 9999) {
length := add(length, 4)
a := div(a, 10000)
}
if gt(a, 99) {
length := add(length, 2)
a := div(a, 100)
}
if gt(a, 9) {
length := add(length, 1)
}
let p := add(outputIdx, length)
for {
} gt(p, outputIdx) {
} {
p := sub(p, 0x1)
mstore8(p, add(mod(z, 10), 48))
z := div(z, 10)
}
outputIdx := add(outputIdx, length)
mstore(decimalLengthM, sub(outputIdx, mload(decimalM)))
mstore(OUTPUT_IDX_M, outputIdx)
}
writeDecimal(mul(sub(0, add(mload(MARGIN_M), 2)), 4732), OPEN_VIEW_BOX_X_DECIMAL_M, OPEN_VIEW_BOX_X_DECIMAL_LENGTH_M)
writeDecimal(mul(sub(0, add(mload(MARGIN_M), 4)), 2732), OPEN_VIEW_BOX_Y_DECIMAL_M, OPEN_VIEW_BOX_Y_DECIMAL_LENGTH_M)
writeDecimal(
mul(add(add(mload(DIM_M), 3), shl(1, mload(MARGIN_M))), 4732),
OPEN_VIEW_BOX_WIDTH_DECIMAL_M,
OPEN_VIEW_BOX_WIDTH_DECIMAL_LENGTH_M
)
writeDecimal(mul(add(add(mload(DIM_M), 3), mload(MARGIN_M)), 5464), OPEN_VIEW_BOX_HEIGHT_DECIMAL_M, OPEN_VIEW_BOX_HEIGHT_DECIMAL_LENGTH_M)
writeDecimal(mul(mload(DIM_M), 4732), DOMAIN_WIDTH_DECIMAL_M, DOMAIN_WIDTH_DECIMAL_LENGTH_M)
writeDecimal(mul(mload(DIM_M), 5464), DOMAIN_HEIGHT_DECIMAL_M, DOMAIN_HEIGHT_DECIMAL_LENGTH_M)
writeDecimal(mload(TOKEN_ID_M), TOKEN_ID_DECIMAL_M, TOKEN_ID_DECIMAL_LENGTH_M)
writeDecimal(mload(DIM_M), DIM_DECIMAL_M, DIM_DECIMAL_LENGTH_M)
writeDecimal(mload(PALETTE_IDX_M), PALETTE_IDX_DECIMAL_M, PALETTE_IDX_DECIMAL_LENGTH_M)
}
}
function writePreExpand() internal pure {
assembly {
let outputIdx := mload(OUTPUT_IDX_M)
// '<svg xmlns="http://www.w3.org/2000/svg" viewBox="'
mstore(outputIdx, mload(mload(SVG_STRING_LOOKUP_M)))
outputIdx := add(outputIdx, 0x20)
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x20)))
outputIdx := add(outputIdx, 0x11)
switch mload(OPEN_M)
case 0 {
// '-2732 -2732 '
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0xfa)))
outputIdx := add(outputIdx, 0xc)
mstore(outputIdx, mload(mload(DOMAIN_WIDTH_DECIMAL_M)))
outputIdx := add(outputIdx, mload(DOMAIN_WIDTH_DECIMAL_LENGTH_M))
mstore8(outputIdx, 0x20)
outputIdx := add(outputIdx, 0x1)
mstore(outputIdx, mload(mload(DOMAIN_HEIGHT_DECIMAL_M)))
outputIdx := add(outputIdx, mload(DOMAIN_HEIGHT_DECIMAL_LENGTH_M))
// '">'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x31)))
outputIdx := add(outputIdx, 0x2)
}
case 1 {
mstore(outputIdx, mload(mload(OPEN_VIEW_BOX_X_DECIMAL_M)))
outputIdx := add(outputIdx, mload(OPEN_VIEW_BOX_X_DECIMAL_LENGTH_M))
mstore8(outputIdx, 0x20)
outputIdx := add(outputIdx, 0x1)
mstore(outputIdx, mload(mload(OPEN_VIEW_BOX_Y_DECIMAL_M)))
outputIdx := add(outputIdx, mload(OPEN_VIEW_BOX_Y_DECIMAL_LENGTH_M))
mstore8(outputIdx, 0x20)
outputIdx := add(outputIdx, 0x1)
mstore(outputIdx, mload(mload(OPEN_VIEW_BOX_WIDTH_DECIMAL_M)))
outputIdx := add(outputIdx, mload(OPEN_VIEW_BOX_WIDTH_DECIMAL_LENGTH_M))
mstore8(outputIdx, 0x20)
outputIdx := add(outputIdx, 0x1)
mstore(outputIdx, mload(mload(OPEN_VIEW_BOX_HEIGHT_DECIMAL_M)))
outputIdx := add(outputIdx, mload(OPEN_VIEW_BOX_HEIGHT_DECIMAL_LENGTH_M))
// '"><rect x="'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x31)))
outputIdx := add(outputIdx, 0xb)
mstore(outputIdx, mload(mload(OPEN_VIEW_BOX_X_DECIMAL_M)))
outputIdx := add(outputIdx, mload(OPEN_VIEW_BOX_X_DECIMAL_LENGTH_M))
// '" y="'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x41)))
outputIdx := add(outputIdx, 0x5)
mstore(outputIdx, mload(mload(OPEN_VIEW_BOX_Y_DECIMAL_M)))
outputIdx := add(outputIdx, mload(OPEN_VIEW_BOX_Y_DECIMAL_LENGTH_M))
// '" width="'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x4b)))
outputIdx := add(outputIdx, 0x9)
mstore(outputIdx, mload(mload(OPEN_VIEW_BOX_WIDTH_DECIMAL_M)))
outputIdx := add(outputIdx, mload(OPEN_VIEW_BOX_WIDTH_DECIMAL_LENGTH_M))
// '" height="'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x54)))
outputIdx := add(outputIdx, 0xa)
mstore(outputIdx, mload(mload(OPEN_VIEW_BOX_HEIGHT_DECIMAL_M)))
outputIdx := add(outputIdx, mload(OPEN_VIEW_BOX_HEIGHT_DECIMAL_LENGTH_M))
// '" fill="white"/>'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x5e)))
outputIdx := add(outputIdx, 0x10)
// '<rect x="-2732" y="-2732" width='
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x33)))
outputIdx := add(outputIdx, 0x20)
mstore8(outputIdx, 0x22)
outputIdx := add(outputIdx, 0x1)
mstore(outputIdx, mload(mload(DOMAIN_WIDTH_DECIMAL_M)))
outputIdx := add(outputIdx, mload(DOMAIN_WIDTH_DECIMAL_LENGTH_M))
// '" height="'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x54)))
outputIdx := add(outputIdx, 0xa)
mstore(outputIdx, mload(mload(DOMAIN_HEIGHT_DECIMAL_M)))
outputIdx := add(outputIdx, mload(DOMAIN_HEIGHT_DECIMAL_LENGTH_M))
// '" '
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x5e)))
outputIdx := add(outputIdx, 0x2)
// 'stroke="black" stroke-width="100'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x71)))
outputIdx := add(outputIdx, 0x20)
// '" fill="white"/>'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x5e)))
outputIdx := add(outputIdx, 0x10)
}
// '<g stroke="black" stroke-width="100" stroke-linejoin="round" stroke-linecap="round" fill-rule="evenodd">'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x6e)))
outputIdx := add(outputIdx, 0x20)
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x8e)))
outputIdx := add(outputIdx, 0x20)
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0xae)))
outputIdx := add(outputIdx, 0x20)
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0xce)))
outputIdx := add(outputIdx, 0x8)
mstore(OUTPUT_IDX_M, outputIdx)
}
}
function writePostExpand() internal pure {
assembly {
let outputIdx := mload(OUTPUT_IDX_M)
// '</g>'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0xeb)))
outputIdx := add(outputIdx, 0x4)
if iszero(mload(OPEN_M)) {
// '<path d="'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0xd6)))
outputIdx := add(outputIdx, 0x9)
mstore8(outputIdx, 0x4d)
outputIdx := add(outputIdx, 0x1)
mstore(outputIdx, mload(mload(OPEN_VIEW_BOX_X_DECIMAL_M)))
outputIdx := add(outputIdx, mload(OPEN_VIEW_BOX_X_DECIMAL_LENGTH_M))
mstore8(outputIdx, 0x20)
outputIdx := add(outputIdx, 0x1)
mstore(outputIdx, mload(mload(OPEN_VIEW_BOX_Y_DECIMAL_M)))
outputIdx := add(outputIdx, mload(OPEN_VIEW_BOX_Y_DECIMAL_LENGTH_M))
mstore8(outputIdx, 0x6c)
outputIdx := add(outputIdx, 0x1)
mstore(outputIdx, mload(mload(OPEN_VIEW_BOX_WIDTH_DECIMAL_M)))
outputIdx := add(outputIdx, mload(OPEN_VIEW_BOX_WIDTH_DECIMAL_LENGTH_M))
// ' 0 0 '
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0xf5)))
outputIdx := add(outputIdx, 0x5)
mstore(outputIdx, mload(mload(OPEN_VIEW_BOX_HEIGHT_DECIMAL_M)))
outputIdx := add(outputIdx, mload(OPEN_VIEW_BOX_HEIGHT_DECIMAL_LENGTH_M))
// ' -'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0xf9)))
outputIdx := add(outputIdx, 0x2)
mstore(outputIdx, mload(mload(OPEN_VIEW_BOX_WIDTH_DECIMAL_M)))
outputIdx := add(outputIdx, mload(OPEN_VIEW_BOX_WIDTH_DECIMAL_LENGTH_M))
// ' 0 0 -'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0xf5)))
outputIdx := add(outputIdx, 0x6)
mstore(outputIdx, mload(mload(OPEN_VIEW_BOX_HEIGHT_DECIMAL_M)))
outputIdx := add(outputIdx, mload(OPEN_VIEW_BOX_HEIGHT_DECIMAL_LENGTH_M))
// 'M-2732 -2732l0 '
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x106)))
outputIdx := add(outputIdx, 0xf)
mstore(outputIdx, mload(mload(DOMAIN_HEIGHT_DECIMAL_M)))
outputIdx := add(outputIdx, mload(DOMAIN_HEIGHT_DECIMAL_LENGTH_M))
mstore8(outputIdx, 0x20)
outputIdx := add(outputIdx, 0x1)
mstore(outputIdx, mload(mload(DOMAIN_WIDTH_DECIMAL_M)))
outputIdx := add(outputIdx, mload(DOMAIN_WIDTH_DECIMAL_LENGTH_M))
// ' 0 0 -'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0xf5)))
outputIdx := add(outputIdx, 0x6)
mstore(outputIdx, mload(mload(DOMAIN_HEIGHT_DECIMAL_M)))
outputIdx := add(outputIdx, mload(DOMAIN_HEIGHT_DECIMAL_LENGTH_M))
// ' -'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0xf9)))
outputIdx := add(outputIdx, 0x2)
mstore(outputIdx, mload(mload(DOMAIN_WIDTH_DECIMAL_M)))
outputIdx := add(outputIdx, mload(DOMAIN_WIDTH_DECIMAL_LENGTH_M))
// ' 0'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0xf5)))
outputIdx := add(outputIdx, 0x2)
// '" fill="white"/>'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0x5e)))
outputIdx := add(outputIdx, 0x10)
}
// '</svg>'
mstore(outputIdx, mload(add(mload(SVG_STRING_LOOKUP_M), 0xef)))
outputIdx := add(outputIdx, 0x6)
mstore(outputIdx, 0)
mstore(OUTPUT_IDX_M, outputIdx)
mstore(SVG_START_M, mload(OUTPUT_M))
mstore(SVG_END_M, outputIdx)
}
}
function writeJSON() internal pure {
assembly {
let outputIdx := mload(OUTPUT_IDX_M)
// 'data:application/json,%7B%22name%22:%22Tiling%20'
mstore(outputIdx, mload(mload(JSON_STRING_LOOKUP_M)))
outputIdx := add(outputIdx, 0x20)
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x20)))
outputIdx := add(outputIdx, 0x10)
mstore(outputIdx, mload(mload(TOKEN_ID_DECIMAL_M)))
outputIdx := add(outputIdx, mload(TOKEN_ID_DECIMAL_LENGTH_M))
// '%22,%22description%22:%22Hexamillennia%20is%20generated%20entirely%20on%20the%20EVM.%20Released%20under%20CC0.%22,%22attributes%22:%5B%7B%22trait_type%22:%22'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x30)))
outputIdx := add(outputIdx, 0x20)
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x50)))
outputIdx := add(outputIdx, 0x20)
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x70)))
outputIdx := add(outputIdx, 0x20)
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x90)))
outputIdx := add(outputIdx, 0x20)
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0xb0)))
outputIdx := add(outputIdx, 0x1d)
// 'Size'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x14a)))
outputIdx := add(outputIdx, 0x4)
// '%22,%22value%22:%22'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0xcd)))
outputIdx := add(outputIdx, 0x13)
mstore(outputIdx, mload(mload(DIM_DECIMAL_M)))
outputIdx := add(outputIdx, mload(DIM_DECIMAL_LENGTH_M))
// '%22%7D,%7B%22trait_type%22:%22'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0xe0)))
outputIdx := add(outputIdx, 0x1e)
// 'Form'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x14e)))
outputIdx := add(outputIdx, 0x4)
// '%22,%22value%22:%22'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0xcd)))
outputIdx := add(outputIdx, 0x13)
switch mload(OPEN_M)
case 0 {
// 'Closed'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x15e)))
outputIdx := add(outputIdx, 0x6)
}
case 1 {
// 'Open'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x164)))
outputIdx := add(outputIdx, 0x4)
}
// '%22%7D,%7B%22trait_type%22:%22'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0xe0)))
outputIdx := add(outputIdx, 0x1e)
// 'Steps'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x152)))
outputIdx := add(outputIdx, 0x5)
// '%22,%22value%22:%22'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0xcd)))
outputIdx := add(outputIdx, 0x13)
switch mload(STEPS_IDX_M)
case 0 {
// 'Low'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x168)))
outputIdx := add(outputIdx, 0x3)
}
case 1 {
// 'Medium'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x16b)))
outputIdx := add(outputIdx, 0x6)
}
case 2 {
// 'High'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x171)))
outputIdx := add(outputIdx, 0x4)
}
// '%22%7D,%7B%22trait_type%22:%22'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0xe0)))
outputIdx := add(outputIdx, 0x1e)
// 'Palette'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x157)))
outputIdx := add(outputIdx, 0x7)
// '%22,%22value%22:%22'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0xcd)))
outputIdx := add(outputIdx, 0x13)
mstore(outputIdx, mload(mload(PALETTE_IDX_DECIMAL_M)))
outputIdx := add(outputIdx, mload(PALETTE_IDX_DECIMAL_LENGTH_M))
// '%22%7D%5D,%22image%22:%22data:image/svg+xml;base64,'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x111)))
outputIdx := add(outputIdx, 0x20)
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x131)))
outputIdx := add(outputIdx, 0x13)
// Base64 encode
//
// Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Base64.sol
let end := sub(mload(SVG_END_M), 0x20)
for {
let svgIdx := sub(mload(SVG_START_M), 0x20)
} lt(svgIdx, end) {
} {
svgIdx := add(svgIdx, 0x3)
let input := mload(svgIdx)
mstore8(outputIdx, mload(add(BASE64, and(shr(18, input), MASK_6))))
mstore8(add(outputIdx, 0x1), mload(add(BASE64, and(shr(12, input), MASK_6))))
mstore8(add(outputIdx, 0x2), mload(add(BASE64, and(shr(6, input), MASK_6))))
mstore8(add(outputIdx, 0x3), mload(add(BASE64, and(input, MASK_6))))
outputIdx := add(outputIdx, 0x4)
}
switch mod(sub(mload(SVG_END_M), mload(SVG_START_M)), 3)
case 1 {
mstore8(sub(outputIdx, 0x1), 0x3d)
mstore8(sub(outputIdx, 0x2), 0x3d)
}
case 2 {
mstore8(sub(outputIdx, 0x1), 0x3d)
}
// '%22%7D'
mstore(outputIdx, mload(add(mload(JSON_STRING_LOOKUP_M), 0x144)))
outputIdx := add(outputIdx, 0x6)
mstore(outputIdx, 0)
mstore(OUTPUT_IDX_M, outputIdx)
}
}
function resetOutput() internal pure {
assembly {
mstore(OUTPUT_M, add(mload(OUTPUT_IDX_M), 0x40))
mstore(OUTPUT_IDX_M, mload(OUTPUT_M))
}
}
function returnOutput() internal pure {
assembly {
let output := mload(OUTPUT_M)
let length := sub(mload(OUTPUT_IDX_M), output)
mstore(sub(output, 0x40), 0x20)
mstore(sub(output, 0x20), length)
return(sub(output, 0x40), add(shl(5, shr(5, add(length, 31))), 0x40))
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
{
"compilationTarget": {
"contracts/Hexamillennia.sol": "Hexamillennia"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 1000
},
"remappings": []
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"MAX_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"activate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"active","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintTiling","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"randomSource","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenOfOwnerByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenSVG","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]