// SPDX-License-Identifier: MIT
pragma solidity 0.8.3;
/*
For libraries Roles, SafeMath, Address, SafeERC20 and interface IERC20:
The MIT License (MIT)
Copyright (c) 2016-2020 zOS Global Limited
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
library Roles {
struct Role {
mapping (address => bool) bearer;
}
/**
* @dev give an account access to this role
*/
function add(Role storage role, address account) internal {
require(account != address(0));
require(!has(role, account));
role.bearer[account] = true;
}
/**
* @dev remove an account's access to this role
*/
function remove(Role storage role, address account) internal {
require(account != address(0));
require(has(role, account));
role.bearer[account] = false;
}
/**
* @dev check if an account has this role
* @return bool
*/
function has(Role storage role, address account) internal view returns (bool) {
require(account != address(0));
return role.bearer[account];
}
}
abstract contract YieldRoles {
using Roles for Roles.Role;
constructor() {
_addOwner(msg.sender);
}
/*
* Owner functions
*/
event OwnerAdded(address indexed account);
event OwnerRemoved(address indexed account);
Roles.Role private _owners;
modifier onlyOwner() {
require(isOwner(msg.sender), "Sender is not owner");
_;
}
function isOwner(address account) public view returns (bool) {
return _owners.has(account);
}
function addOwner(address account) public onlyOwner {
_addOwner(account);
}
function renounceOwner() public {
_removeOwner(msg.sender);
}
function _addOwner(address account) internal {
_owners.add(account);
emit OwnerAdded(account);
}
function _removeOwner(address account) internal {
_owners.remove(account);
emit OwnerRemoved(account);
}
}
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{value: weiValue}(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
/**
* @dev A token holder contract that will allow a beneficiary to extract the
* tokens after a given release time.
*
* Useful for simple vesting schedules like "advisors get all of their tokens
* after 1 year".
*/
contract YieldContract is YieldRoles {
using SafeERC20 for IERC20;
IERC20 token;
// Timeframe in which it it possible to deposit tokens
uint256 public endDepositTime;
// Max tokens to be deposited
uint256 internal maxTokens;
// Originating wallet for yield payments
address internal yieldWallet;
// Yield rates in 1e18 granularity
uint256 public nineMonthPercentage;
uint256 public twelveMonthPercentage;
uint256 public twentyfourMonthPercentage;
// Main struct for lockup
struct LockBoxStruct {
address beneficiary;
uint balance;
uint releaseTime;
}
LockBoxStruct[] public lockBoxStructs; // This could be a mapping by address, but these numbered lockBoxes support possibility of multiple tranches per address
event LogLockupDeposit(address sender, address beneficiary, uint amount, uint releaseTime);
event LogLockupWithdrawal(address receiver, uint amount);
constructor(address tokenContract, uint256 _endDepositTime, address _yieldWallet, uint256 _maxTokens) {
token = IERC20(tokenContract);
endDepositTime = _endDepositTime;
yieldWallet = _yieldWallet;
maxTokens = _maxTokens;
}
function getLockBoxBeneficiary(uint256 lockBoxNumber) public view returns(address) {
return lockBoxStructs[lockBoxNumber].beneficiary;
}
function getLockBoxesForAddress(address query) public view returns(uint256[] memory) {
// Get length of return array
uint256 arrayLength = 0;
for (uint256 i = 0; i < lockBoxStructs.length; ++i) {
if (lockBoxStructs[i].beneficiary == query) {
arrayLength++;
}
}
uint256[] memory output = new uint256[](arrayLength);
uint256 j = 0;
for (uint256 i = 0; i < lockBoxStructs.length; ++i) {
if (lockBoxStructs[i].beneficiary == query) {
output[j] = i;
j++;
}
}
return output;
}
// Deposit for 9, 12 or 24 months
function deposit9m(address beneficiary, uint256 amount) external {
deposit(beneficiary, amount, 270 days);
}
function deposit12m(address beneficiary, uint256 amount) external {
deposit(beneficiary, amount, 360 days);
}
function deposit24m(address beneficiary, uint256 amount) external {
deposit(beneficiary, amount, 720 days);
}
function deposit(address beneficiary, uint256 amount, uint256 duration) internal {
require(block.timestamp < endDepositTime, "Deposit time has ended.");
require(amount < maxTokens, "Token deposit too high, limit breached.");
maxTokens -= amount;
// Define and get amount of yield
uint256 yieldAmount;
if (duration == 270 days) {
yieldAmount = (nineMonthPercentage * amount) / 1e20;
} else if (duration == 360 days) {
yieldAmount = (twelveMonthPercentage * amount) / 1e20;
} else if (duration == 720 days) {
yieldAmount = (twentyfourMonthPercentage * amount) / 1e20;
} else {
revert("Error: duration not allowed!");
}
require(token.transferFrom(yieldWallet, address(this), yieldAmount));
// Get lockable tokens from user
require(token.transferFrom(msg.sender, address(this), amount));
// Build lockbox
LockBoxStruct memory l;
l.beneficiary = beneficiary;
l.balance = amount + yieldAmount;
l.releaseTime = block.timestamp + duration;
lockBoxStructs.push(l);
emit LogLockupDeposit(msg.sender, l.beneficiary, l.balance, l.releaseTime);
}
// Beneficiaries can update the receiver wallet
function updateBeneficiary(uint256 lockBoxNumber, address newBeneficiary) public {
LockBoxStruct storage l = lockBoxStructs[lockBoxNumber];
require(msg.sender == l.beneficiary);
l.beneficiary = newBeneficiary;
}
function withdraw(uint lockBoxNumber) public {
LockBoxStruct storage l = lockBoxStructs[lockBoxNumber];
require(l.releaseTime <= block.timestamp);
uint amount = l.balance;
l.balance = 0;
emit LogLockupWithdrawal(l.beneficiary, amount);
require(token.transfer(l.beneficiary, amount));
}
// Helper function to release everything
function triggerWithdrawAll() public {
for (uint256 i = 0; i < lockBoxStructs.length; ++i) {
if (lockBoxStructs[i].releaseTime <= block.timestamp && lockBoxStructs[i].balance > 0) {
withdraw(i);
}
}
}
// Admin update functions
function updateEndDepositTime (uint256 newEndTime) public onlyOwner {
endDepositTime = newEndTime;
}
function updateYieldWallet(address newWallet) public onlyOwner {
yieldWallet = newWallet;
}
function updateYields(uint256 nineMonths, uint256 twelveMonths, uint256 twentyfourMonths) public onlyOwner {
nineMonthPercentage = nineMonths;
twelveMonthPercentage = twelveMonths;
twentyfourMonthPercentage = twentyfourMonths;
}
function updateMaxTokens(uint256 newMaxTokens) public onlyOwner {
maxTokens = newMaxTokens;
}
}
{
"compilationTarget": {
"contracts/DIAStaking.sol": "YieldContract"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"tokenContract","type":"address"},{"internalType":"uint256","name":"_endDepositTime","type":"uint256"},{"internalType":"address","name":"_yieldWallet","type":"address"},{"internalType":"uint256","name":"_maxTokens","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"address","name":"beneficiary","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"releaseTime","type":"uint256"}],"name":"LogLockupDeposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"LogLockupWithdrawal","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"OwnerAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"OwnerRemoved","type":"event"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"addOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"beneficiary","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit12m","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"beneficiary","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit24m","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"beneficiary","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit9m","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"endDepositTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"lockBoxNumber","type":"uint256"}],"name":"getLockBoxBeneficiary","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"query","type":"address"}],"name":"getLockBoxesForAddress","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isOwner","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"lockBoxStructs","outputs":[{"internalType":"address","name":"beneficiary","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"releaseTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nineMonthPercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"triggerWithdrawAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"twelveMonthPercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"twentyfourMonthPercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"lockBoxNumber","type":"uint256"},{"internalType":"address","name":"newBeneficiary","type":"address"}],"name":"updateBeneficiary","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newEndTime","type":"uint256"}],"name":"updateEndDepositTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newMaxTokens","type":"uint256"}],"name":"updateMaxTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newWallet","type":"address"}],"name":"updateYieldWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"nineMonths","type":"uint256"},{"internalType":"uint256","name":"twelveMonths","type":"uint256"},{"internalType":"uint256","name":"twentyfourMonths","type":"uint256"}],"name":"updateYields","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"lockBoxNumber","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]