// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
pragma solidity ^0.6.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
pragma solidity ^0.6.2;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
pragma solidity ^0.6.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
pragma solidity ^0.6.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
pragma solidity ^0.6.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
/**
* @dev Timelock execute transaction of the contract.
* Can only be called by the current owner.
*/
function executeTransaction(address target, bytes memory data) public payable onlyOwner returns (bytes memory) {
(bool success, bytes memory returnData) = target.call{value:msg.value}(data);
// solium-disable-next-line security/no-call-value
require(success, "Timelock::executeTransaction: Transaction execution reverted.");
return returnData;
}
}
pragma solidity ^0.6.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IFarmToken {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
function mint(address _to, uint256 _amount) external;
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
pragma solidity >=0.5.0;
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}
pragma solidity >=0.6.2;
interface IUniswapV2Router01 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);
function removeLiquidityETH(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);
function removeLiquidityETHWithPermit(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}
pragma solidity >=0.6.2;
interface IUniswapV2Router02 is IUniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountETH);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
}
pragma solidity >=0.5.0;
interface IWETH {
function deposit() external payable;
function transfer(address to, uint value) external returns (bool);
function withdraw(uint) external;
}
pragma solidity 0.6.12;
interface IMigratorFarm {
// Perform LP token migration from legacy UniswapV2 to FarmSwap.
// Take the current LP token address and return the new LP token address.
// Migrator should have full access to the caller's LP token.
// Return the new LP token address.
//
// XXX Migrator must have allowance access to UniswapV2 LP tokens.
// FarmSwap must mint EXACTLY the same amount of FarmSwap LP tokens or
// else something bad will happen. Traditional UniswapV2 does not
// do that so be careful!
function migrate(IERC20 token) external returns (IERC20);
}
// Farm is the master of FarmToken. He can make FarmToken and he is a fair guy.
//
// Note that it's ownable and the owner wields tremendous power. The ownership
// will be transferred to a governance smart contract once the FarmToken is
// sufficiently distributed and the community can show to govern itself.
//
// Have fun reading it. Hopefully it's bug-free. God bless.
contract PumpFarm is Ownable {
using SafeMath for uint256;
using SafeERC20 for IERC20;
// Info of each user.
struct UserInfo {
uint256 amount; // How many LP tokens the user has provided.
uint256 rewardDebt; // Reward debt. See explanation below.
uint256 unlockDate; // Unlock date.
uint256 liqAmount; // ETH/Single token split, swap and addLiq.
//
// We do some fancy math here. Basically, any point in time, the amount of FarmTokens
// entitled to a user but is pending to be distributed is:
//
// pending reward = (user.amount * pool.accFarmTokenPerShare) - user.rewardDebt
//
// Whenever a user deposits or withdraws LP tokens to a pool. Here's what happens:
// 1. The pool's `accFarmTokenPerShare` (and `lastRewardBlock`) gets updated.
// 2. User receives the pending reward sent to his/her address.
// 3. User's `amount` gets updated.
// 4. User's `rewardDebt` gets updated.
}
// Info of each pool.
struct PoolInfo {
IERC20 lpToken; // Address of LP token contract.
uint256 allocPoint; // How many allocation points assigned to this pool. FarmTokens to distribute per block.
uint256 lockSec; // Lock seconds, 0 means no lock.
uint256 pumpRatio; // Pump ratio, 0 means no ratio. 5 means 0.5%
uint256 tokenType; // Pool type, 0 - Token/ETH(default), 1 - Single Token(include ETH), 2 - Uni/LP
uint256 lpAmount; // Lp amount
uint256 tmpAmount; // ETH/Token convert to uniswap liq amount, remove latter.
uint256 lastRewardBlock; // Last block number that FarmTokens distribution occurs.
uint256 accFarmTokenPerShare; // Accumulated FarmTokens per share, times 1e12. See below.
}
// ===========================================================================================
// Pump
address public pairaddr;
// mainnet
address public constant WETHADDR = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
address public constant UNIV2ROUTER2 = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D;
// Pump End
// ===========================================================================================
// The FarmToken.
IFarmToken public farmToken;
// FarmTokens created per block.
uint256 public farmTokenPerBlock;
// The migrator contract. It has a lot of power. Can only be set through governance (owner).
IMigratorFarm public migrator;
// Farm
uint256 public blocksPerHalvingCycle;
// Info of each pool.
PoolInfo[] public poolInfo;
// Info of each user that stakes LP tokens.
mapping (uint256 => mapping (address => UserInfo)) public userInfo;
// Total allocation points. Must be the sum of all allocation points in all pools.
uint256 public totalAllocPoint = 0;
// The block number when FarmToken mining starts.
uint256 public startBlock;
event Deposit(address indexed user, uint256 indexed pid, uint256 amount, uint256 pumpAmount, uint256 liquidity);
event Withdraw(address indexed user, uint256 indexed pid, uint256 amount, uint256 pumpAmount, uint256 liquidity);
event EmergencyWithdraw(address indexed user, uint256 indexed pid, uint256 amount);
constructor(
IFarmToken _farmToken,
uint256 _farmTokenPerBlock,
uint256 _startBlock,
uint256 _blocksPerHalvingCycle
) public {
farmToken = _farmToken;
farmTokenPerBlock = _farmTokenPerBlock;
startBlock = _startBlock;
blocksPerHalvingCycle = _blocksPerHalvingCycle;
}
receive() external payable {
assert(msg.sender == WETHADDR); // only accept ETH via fallback from the WETH contract
}
function setPair(address _pairaddr) public onlyOwner {
pairaddr = _pairaddr;
// trust UNISWAP approve max.
IERC20(pairaddr).safeApprove(UNIV2ROUTER2, 0);
IERC20(pairaddr).safeApprove(UNIV2ROUTER2, uint(-1));
IERC20(WETHADDR).safeApprove(UNIV2ROUTER2, 0);
IERC20(WETHADDR).safeApprove(UNIV2ROUTER2, uint(-1));
IERC20(address(farmToken)).safeApprove(UNIV2ROUTER2, 0);
IERC20(address(farmToken)).safeApprove(UNIV2ROUTER2, uint(-1));
}
function poolLength() external view returns (uint256) {
return poolInfo.length;
}
// Add a new lp to the pool. Can only be called by the owner.
// XXX DO NOT add the same LP token more than once. Rewards will be messed up if you do.
function add(uint256 _allocPoint, IERC20 _lpToken, bool _withUpdate, uint256 _lockSec, uint256 _pumpRatio, uint256 _type) public onlyOwner {
if (_withUpdate) {
massUpdatePools();
}
uint256 lastRewardBlock = block.number > startBlock ? block.number : startBlock;
totalAllocPoint = totalAllocPoint.add(_allocPoint);
poolInfo.push(PoolInfo({
lpToken: _lpToken,
allocPoint: _allocPoint,
lockSec: _lockSec,
pumpRatio: _pumpRatio,
tokenType: _type,
lpAmount: 0,
tmpAmount: 0,
lastRewardBlock: lastRewardBlock,
accFarmTokenPerShare: 0
}));
// trust UNISWAP approve max.
_lpToken.safeApprove(UNIV2ROUTER2, 0);
_lpToken.safeApprove(UNIV2ROUTER2, uint(-1));
if (_type == 2) {
address token0 = IUniswapV2Pair(address(_lpToken)).token0();
address token1 = IUniswapV2Pair(address(_lpToken)).token1();
// need to approve token0 and token1 for UNISWAP, in
IERC20(token0).safeApprove(UNIV2ROUTER2, 0);
IERC20(token0).safeApprove(UNIV2ROUTER2, uint(-1));
IERC20(token1).safeApprove(UNIV2ROUTER2, 0);
IERC20(token1).safeApprove(UNIV2ROUTER2, uint(-1));
}
}
// Update the given pool's FarmToken allocation point. Can only be called by the owner.
function set(uint256 _pid, uint256 _allocPoint, bool _withUpdate, uint256 _lockSec, uint256 _pumpRatio) public onlyOwner {
if (_withUpdate) {
massUpdatePools();
}
totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
poolInfo[_pid].allocPoint = _allocPoint;
poolInfo[_pid].lockSec = _lockSec;
poolInfo[_pid].pumpRatio = _pumpRatio;
}
// Set the migrator contract. Can only be called by the owner.
function setMigrator(IMigratorFarm _migrator) public onlyOwner {
migrator = _migrator;
}
// Migrate lp token to another lp contract. Can be called by anyone. We trust that migrator contract is good.
function migrate(uint256 _pid) public {
require(address(migrator) != address(0), "migrate: no migrator");
PoolInfo storage pool = poolInfo[_pid];
IERC20 lpToken = pool.lpToken;
uint256 bal = lpToken.balanceOf(address(this));
lpToken.safeApprove(address(migrator), bal);
IERC20 newLpToken = migrator.migrate(lpToken);
require(bal == newLpToken.balanceOf(address(this)), "migrate: bad");
pool.lpToken = newLpToken;
}
// need test
function getMultiplier(uint256 _to) public view returns (uint256) {
uint256 blockCount = _to.sub(startBlock);
uint256 weekCount = blockCount.div(blocksPerHalvingCycle);
uint256 multiplierPart1 = 0;
uint256 multiplierPart2 = 0;
uint256 divisor = 1;
for (uint256 i = 0; i < weekCount; ++i) {
multiplierPart1 = multiplierPart1.add(blocksPerHalvingCycle.div(divisor));
divisor = divisor.mul(2);
}
multiplierPart2 = blockCount.mod(blocksPerHalvingCycle).div(divisor);
return multiplierPart1.add(multiplierPart2);
}
// Return reward multiplier over the given _from to _to block.
function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) {
if (_to <= _from) {
return 0;
}
return getMultiplier(_to).sub(getMultiplier(_from));
}
// View function to see pending FarmTokens on frontend.
function pendingFarmToken(uint256 _pid, address _user) external view returns (uint256) {
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][_user];
uint256 accFarmTokenPerShare = pool.accFarmTokenPerShare;
//uint256 lpSupply = pool.lpToken.balanceOf(address(this));
uint256 lpSupply = pool.lpAmount;
if (block.number > pool.lastRewardBlock && lpSupply != 0) {
uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
uint256 farmTokenReward = multiplier.mul(farmTokenPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
accFarmTokenPerShare = accFarmTokenPerShare.add(farmTokenReward.mul(1e12).div(lpSupply));
}
return user.amount.mul(accFarmTokenPerShare).div(1e12).sub(user.rewardDebt);
}
// Update reward variables for all pools. Be careful of gas spending!
function massUpdatePools() public {
uint256 length = poolInfo.length;
for (uint256 pid = 0; pid < length; ++pid) {
updatePool(pid);
}
}
// Update reward variables of the given pool to be up-to-date.
function updatePool(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
if (block.number <= pool.lastRewardBlock) {
return;
}
uint256 lpSupply = pool.lpAmount;
if (lpSupply == 0) {
pool.lastRewardBlock = block.number;
return;
}
uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
uint256 farmTokenReward = multiplier.mul(farmTokenPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
farmToken.mint(address(this), farmTokenReward);
pool.accFarmTokenPerShare = pool.accFarmTokenPerShare.add(farmTokenReward.mul(1e12).div(lpSupply));
pool.lastRewardBlock = block.number;
}
// Deposit LP tokens to Farm for FarmToken allocation.
function deposit(uint256 _pid, uint256 _amount) public payable {
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
uint256 pumpAmount;
uint256 liquidity;
updatePool(_pid);
if (user.amount > 0) {
uint256 pending = user.amount.mul(pool.accFarmTokenPerShare).div(1e12).sub(user.rewardDebt);
if(pending > 0) {
safeFarmTokenTransfer(msg.sender, pending);
}
}
if (msg.value > 0) {
IWETH(WETHADDR).deposit{value: msg.value}();
_amount = msg.value;
} else if(_amount > 0) {
pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount);
}
if(_amount > 0) {
// _amount == 0 or pumpRatio == 0
pumpAmount = _amount.mul(pool.pumpRatio).div(1000);
if (pool.tokenType == 0 && pumpAmount > 0) {
pump(pumpAmount);
} else if (pool.tokenType == 1) {
// use the actually pumpAmount
liquidity = investTokenToLp(pool.lpToken, _amount, pool.pumpRatio);
user.liqAmount = user.liqAmount.add(liquidity);
} else if (pool.tokenType == 2) {
pumpLp(pool.lpToken, pumpAmount);
}
_amount = _amount.sub(pumpAmount);
if (pool.tokenType == 1) {
pool.tmpAmount = pool.tmpAmount.add(liquidity);
}
pool.lpAmount = pool.lpAmount.add(_amount);
// once pumpRatio == 0, single token/eth should addLiq
user.amount = user.amount.add(_amount);
user.unlockDate = block.timestamp.add(pool.lockSec);
}
user.rewardDebt = user.amount.mul(pool.accFarmTokenPerShare).div(1e12);
emit Deposit(msg.sender, _pid, _amount, pumpAmount, liquidity);
}
function safeTransferETH(address to, uint value) internal {
(bool success,) = to.call{value:value}(new bytes(0));
require(success, 'TransferHelper: ETH_TRANSFER_FAILED');
}
function _swapExactTokensForTokens(address fromToken, address toToken, uint256 fromAmount) internal returns (uint256) {
if (fromToken == toToken || fromAmount == 0) return fromAmount;
address[] memory path = new address[](2);
path[0] = fromToken;
path[1] = toToken;
uint[] memory amount = IUniswapV2Router02(UNIV2ROUTER2).swapExactTokensForTokens(
fromAmount, 0, path, address(this), now.add(60));
return amount[amount.length - 1];
}
function investTokenToLp(IERC20 lpToken, uint256 _amount, uint256 _pumpRatio) internal returns (uint256 liq) {
// ETH, ETH/2->buy FarmToken, FarmTokenAmount
if (_amount == 0) return 0;
if (address(lpToken) != WETHADDR) {
// IERC20(lpToken).safeApprove(UNIV2ROUTER2, 0);
// IERC20(lpToken).safeApprove(UNIV2ROUTER2, _amount);
_amount = _swapExactTokensForTokens(address(lpToken), WETHADDR, _amount);
}
uint256 amountEth = _amount.sub(_amount.mul(_pumpRatio).div(1000)).div(2);
uint256 amountBuy = _amount.sub(amountEth);
address[] memory path = new address[](2);
path[0] = WETHADDR;
path[1] = address(farmToken);
// buy token use another half amount.
uint256[] memory amounts = IUniswapV2Router02(UNIV2ROUTER2).swapExactTokensForTokens(
amountBuy, 0, path, address(this), now.add(60));
uint256 amountToken = amounts[1];
// IERC20(WETHADDR).safeApprove(UNIV2ROUTER2, 0);
// IERC20(WETHADDR).safeApprove(UNIV2ROUTER2, amountEth);
// IERC20(farmToken).safeApprove(UNIV2ROUTER2, 0);
// IERC20(farmToken).safeApprove(UNIV2ROUTER2, amountToken);
uint256 amountEthReturn;
(amountEthReturn,, liq) = IUniswapV2Router02(UNIV2ROUTER2).addLiquidity(
WETHADDR, address(farmToken), amountEth, amountToken, 0, 0, address(this), now.add(60));
if (amountEth > amountEthReturn) {
// this is ETH left(hard to see). then swap all eth to token
// IERC20(WETHADDR).safeApprove(UNIV2ROUTER2, 0);
// IERC20(WETHADDR).safeApprove(UNIV2ROUTER2, amountEth.sub(amountEthReturn));
_swapExactTokensForTokens(WETHADDR, address(farmToken), amountEth.sub(amountEthReturn));
}
}
function lpToInvestToken(IERC20 lpToken, uint256 _liquidity, uint256 _pumpRatio) internal returns (uint256 amountInvest){
// removeLiq all
if (_liquidity == 0) return 0;
// IERC20(pairaddr).safeApprove(UNIV2ROUTER2, 0);
// IERC20(pairaddr).safeApprove(UNIV2ROUTER2, IERC20(pairaddr).balanceOf(address(this)));
(uint256 amountToken, uint256 amountEth) = IUniswapV2Router02(UNIV2ROUTER2).removeLiquidity(
address(farmToken), WETHADDR, _liquidity, 0, 0, address(this), now.add(60));
uint256 pumpAmount = amountToken.mul(_pumpRatio).mul(2).div(1000);
amountEth = amountEth.add(_swapExactTokensForTokens(address(farmToken), WETHADDR, amountToken.sub(pumpAmount)));
if (address(lpToken) == WETHADDR) {
amountInvest = amountEth;
} else {
address[] memory path = new address[](2);
path[0] = WETHADDR;
path[1] = address(lpToken);
// IERC20(farmToken).safeApprove(UNIV2ROUTER2, 0);
// IERC20(farmToken).safeApprove(UNIV2ROUTER2, amountToken);
uint256[] memory amounts = IUniswapV2Router02(UNIV2ROUTER2).swapExactTokensForTokens(
amountEth, 0, path, address(this), now.add(60));
amountInvest = amounts[1];
}
}
function _pumpLp(address token0, address token1, uint256 _amount) internal {
if (_amount == 0) return;
// IERC20(_lpToken).safeApprove(UNIV2ROUTER2, _amount);
(uint256 amount0, uint256 amount1) = IUniswapV2Router02(UNIV2ROUTER2).removeLiquidity(
token0, token1, _amount, 0, 0, address(this), now.add(60));
amount0 = _swapExactTokensForTokens(token0, WETHADDR, amount0);
amount1 = _swapExactTokensForTokens(token1, WETHADDR, amount1);
_swapExactTokensForTokens(WETHADDR, address(farmToken), amount0.add(amount1));
}
function pump(uint256 _amount) internal {
if (_amount == 0) return;
// IERC20(_pairToken).safeApprove(UNIV2ROUTER2, _amount);
(,uint256 amountEth) = IUniswapV2Router02(UNIV2ROUTER2).removeLiquidity(
address(farmToken), WETHADDR, _amount, 0, 0, address(this), now.add(60));
_swapExactTokensForTokens(WETHADDR, address(farmToken), amountEth);
}
function pumpLp(IERC20 _lpToken, uint256 _amount) internal {
address token0 = IUniswapV2Pair(address(_lpToken)).token0();
address token1 = IUniswapV2Pair(address(_lpToken)).token1();
return _pumpLp(token0, token1, _amount);
}
function getWithdrawableBalance(uint256 _pid, address _user) public view returns (uint256) {
UserInfo storage user = userInfo[_pid][_user];
if (user.unlockDate > block.timestamp) {
return 0;
}
return user.amount;
}
// Withdraw LP tokens from Farm.
function withdraw(uint256 _pid, uint256 _amount) public {
uint256 withdrawable = getWithdrawableBalance(_pid, msg.sender);
require(_amount <= withdrawable, 'Your attempting to withdraw more than you have available');
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
require(user.amount >= _amount, "withdraw: not good");
updatePool(_pid);
uint256 pending = user.amount.mul(pool.accFarmTokenPerShare).div(1e12).sub(user.rewardDebt);
if(pending > 0) {
safeFarmTokenTransfer(msg.sender, pending);
}
uint256 pumpAmount;
uint256 liquidity;
if(_amount > 0) {
pumpAmount = _amount.mul(pool.pumpRatio).div(1000);
user.amount = user.amount.sub(_amount);
pool.lpAmount = pool.lpAmount.sub(_amount);
if (pool.tokenType == 0 && pumpAmount > 0) {
pump(pumpAmount);
_amount = _amount.sub(pumpAmount);
} else if (pool.tokenType == 1) {
liquidity = user.liqAmount.mul(_amount).div(user.amount.add(_amount));
_amount = lpToInvestToken(pool.lpToken, liquidity, pool.pumpRatio);
user.liqAmount = user.liqAmount.sub(liquidity);
} else if (pool.tokenType == 2) {
pumpLp(pool.lpToken, pumpAmount);
_amount = _amount.sub(pumpAmount);
}
if (pool.tokenType == 1) {
pool.tmpAmount = pool.tmpAmount.sub(liquidity);
}
if (address(pool.lpToken) == WETHADDR) {
IWETH(WETHADDR).withdraw(_amount);
safeTransferETH(address(msg.sender), _amount);
} else {
pool.lpToken.safeTransfer(address(msg.sender), _amount);
}
}
user.rewardDebt = user.amount.mul(pool.accFarmTokenPerShare).div(1e12);
emit Withdraw(msg.sender, _pid, _amount, pumpAmount, liquidity);
}
// Safe FarmToken transfer function, just in case if rounding error causes pool to not have enough FarmTokens.
function safeFarmTokenTransfer(address _to, uint256 _amount) internal {
uint256 farmTokenBal = farmToken.balanceOf(address(this));
if (_amount > farmTokenBal) {
farmToken.transfer(_to, farmTokenBal);
} else {
farmToken.transfer(_to, _amount);
}
}
}
{
"compilationTarget": {
"PumpFarm.sol": "PumpFarm"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"contract IFarmToken","name":"_farmToken","type":"address"},{"internalType":"uint256","name":"_farmTokenPerBlock","type":"uint256"},{"internalType":"uint256","name":"_startBlock","type":"uint256"},{"internalType":"uint256","name":"_blocksPerHalvingCycle","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"pumpAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"liquidity","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EmergencyWithdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"pumpAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"liquidity","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"UNIV2ROUTER2","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETHADDR","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_allocPoint","type":"uint256"},{"internalType":"contract IERC20","name":"_lpToken","type":"address"},{"internalType":"bool","name":"_withUpdate","type":"bool"},{"internalType":"uint256","name":"_lockSec","type":"uint256"},{"internalType":"uint256","name":"_pumpRatio","type":"uint256"},{"internalType":"uint256","name":"_type","type":"uint256"}],"name":"add","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"blocksPerHalvingCycle","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"executeTransaction","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"farmToken","outputs":[{"internalType":"contract IFarmToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"farmTokenPerBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_from","type":"uint256"},{"internalType":"uint256","name":"_to","type":"uint256"}],"name":"getMultiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_to","type":"uint256"}],"name":"getMultiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"address","name":"_user","type":"address"}],"name":"getWithdrawableBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"massUpdatePools","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"migrate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"migrator","outputs":[{"internalType":"contract IMigratorFarm","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pairaddr","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"address","name":"_user","type":"address"}],"name":"pendingFarmToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"poolInfo","outputs":[{"internalType":"contract IERC20","name":"lpToken","type":"address"},{"internalType":"uint256","name":"allocPoint","type":"uint256"},{"internalType":"uint256","name":"lockSec","type":"uint256"},{"internalType":"uint256","name":"pumpRatio","type":"uint256"},{"internalType":"uint256","name":"tokenType","type":"uint256"},{"internalType":"uint256","name":"lpAmount","type":"uint256"},{"internalType":"uint256","name":"tmpAmount","type":"uint256"},{"internalType":"uint256","name":"lastRewardBlock","type":"uint256"},{"internalType":"uint256","name":"accFarmTokenPerShare","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_allocPoint","type":"uint256"},{"internalType":"bool","name":"_withUpdate","type":"bool"},{"internalType":"uint256","name":"_lockSec","type":"uint256"},{"internalType":"uint256","name":"_pumpRatio","type":"uint256"}],"name":"set","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IMigratorFarm","name":"_migrator","type":"address"}],"name":"setMigrator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_pairaddr","type":"address"}],"name":"setPair","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAllocPoint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"updatePool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"userInfo","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"rewardDebt","type":"uint256"},{"internalType":"uint256","name":"unlockDate","type":"uint256"},{"internalType":"uint256","name":"liqAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]