// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// Copyright 2023-, Semiotic AI, Inc.
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.18;
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
/**
* @title AllocationIDTracker
* @dev This contract tracks the allocation IDs of the RAVs that have been submitted to
* ensure that each allocation ID is only used once. It is external to escrow
* contract to allow for updating the escrow contract without losing the list of
* used allocation IDs.
* @notice This contract is intended to be used with the `Escrow` contract.
*/
contract AllocationIDTracker {
// senders used allocation IDs
mapping(address sender => mapping(address allocationId => bool isUsed))
private _sendersUsedAllocationIDs;
// Custom error to indicate the provided allocation ID was previously claimed and no longer valid
error AllocationIDPreviouslyClaimed(address sender, address allocationID);
// Custom error to indicate the provided proof is not valid
error InvalidProof();
/**
* @dev Emitted when an allocation ID is used.
*/
event AllocationIDUsed(
address indexed sender,
address indexed allocationID
);
/**
* @dev Checks if an allocation ID has been used.
* @param allocationID The allocation ID to check.
* @return True if the allocation ID has been used, false otherwise.
*/
function isAllocationIDUsed(
address sender,
address allocationID
) external view returns (bool) {
return _sendersUsedAllocationIDs[sender][allocationID];
}
/**
* @dev Marks an allocation ID as used.
* @param sender The sender of the token to receiver.
* @param allocationID The allocation ID to mark as used.
* @param proof ECDSA Proof signed by the receiver's allocationID consisting of packed (chainID, sender address, allocationID, escrow contract address).
* @notice REVERT with error:
* - AllocationIDPreviouslyClaimed: If the (sender, allocationID) pair was previously claimed
* - InvalidProof: If the proof is not valid
*/
function useAllocationID(
address sender,
address allocationID,
bytes calldata proof
) external {
if (_sendersUsedAllocationIDs[sender][allocationID] == true) {
revert AllocationIDPreviouslyClaimed(sender, allocationID);
}
verifyProof(proof, sender, allocationID);
_sendersUsedAllocationIDs[sender][allocationID] = true;
emit AllocationIDUsed(sender, allocationID);
}
/**
* @dev Verifies a proof of allocationID ownership.
* @param proof ECDSA Proof signed by the receiver's allocationID consisting of packed (chainID, sender address, allocationID, escrow contract address).
* @param sender The sender of the token to receiver.
* @param allocationID The allocation ID to verify.
* @notice REVERT with error:
* - InvalidProof: If the proof is not valid
*/
function verifyProof(
bytes calldata proof,
address sender,
address allocationID
) private view {
bytes32 messageHash = keccak256(
abi.encodePacked(block.chainid, sender, allocationID, msg.sender)
);
bytes32 digest = ECDSA.toEthSignedMessageHash(messageHash);
if (ECDSA.recover(digest, proof) != allocationID) {
revert InvalidProof();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.8;
import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* _Available since v3.4._
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant _TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {EIP-5267}.
*
* _Available since v4.9._
*/
function eip712Domain()
public
view
virtual
override
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_name.toStringWithFallback(_nameFallback),
_version.toStringWithFallback(_versionFallback),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
}
// Copyright 2023-, Semiotic AI, Inc.
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.18;
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {TAPVerifier} from "./TAPVerifier.sol";
import {AllocationIDTracker} from "./AllocationIDTracker.sol";
import {IStaking} from "./IStaking.sol";
/**
* @title Escrow
* @dev This contract allows `senders` to deposit escrow for specific `receivers`,
* which can later be redeemed using Receipt Aggregate Vouchers (`RAV`) signed
* by an authorized `signer`. `Senders` can deposit escrow for `receivers`,
* authorize `signers` to create signed `RAVs`, and withdraw escrow after a
* set `thawingPeriod` number of seconds. `Receivers` can redeem signed `RAVs` to
* claim escrow.
* @notice This contract uses the `TAPVerifier` contract for recovering signer addresses
* from `RAVs`.
* @notice CAUTIONARY NOTE: Upon observing a thaw event, indexers should act promptly. If the thaw concerns an authorized signer,
* treat it as no longer valid for initiating new engagements. For ongoing engagements, efforts should be made to conclude
* them swiftly. If funds are in a thawing state, anticipate an imminent withdrawal. Even if actions post-thaw are postponed,
* it's prudent to act as though they've already taken place to sidestep potential pitfalls.
*/
contract Escrow {
using SafeERC20 for IERC20;
struct EscrowAccount {
uint256 balance; // Total escrow balance for a sender-receiver pair
uint256 amountThawing; // Amount of escrow currently being thawed
uint256 thawEndTimestamp; // Timestamp at which thawing period ends (zero if not thawing)
}
struct SenderAuthorization {
address sender; // Sender the signer is authorized to sign for
uint256 thawEndTimestamp; // Timestamp at which thawing period ends (zero if not thawing)
}
// Stores how much escrow each sender has deposited for each receiver, as well as thawing information
mapping(address sender => mapping(address receiver => EscrowAccount escrowAccount))
public escrowAccounts;
// Map of signer to authorized signer information
mapping(address signer => SenderAuthorization authorizedSigner)
public authorizedSigners;
// The ERC20 token used for escrow
IERC20 public immutable escrowToken;
// Graph staking contract
IStaking public immutable staking;
// The contract used for verifying receipt aggregate vouchers
TAPVerifier public immutable tapVerifier;
// The contract used for tracking used allocation IDs
AllocationIDTracker public immutable allocationIDTracker;
// The duration (in seconds) in which escrow funds are thawing before they can be withdrawn
uint256 public immutable withdrawEscrowThawingPeriod;
// The duration (in seconds) in which a signer is thawing before they can be revoked
uint256 public immutable revokeSignerThawingPeriod;
// The maximum thawing period (in seconds) for both escrow withdrawal and signer revocation
// This is a precautionary measure to avoid inadvertedly locking funds for too long
uint256 public constant MAX_THAWING_PERIOD = 90 days;
// Custom error to indicate insufficient escrow balance
error InsufficientEscrow(uint256 available, uint256 required);
// Custom error to indicate insufficient thaw amount (must be greater than 0)
error InsufficientThawAmount();
// Custom error to indicate escrow is still thawing
error EscrowStillThawing(
uint256 currentTimestamp,
uint256 thawEndTimestamp
);
// Custom error to indicate escrow thawing has not been initiated
error EscrowNotThawing();
// Custom error to indicate invalid signer proof
error InvalidSignerProof();
// Custom error to indicate provided signer is not one of provided senders authorized signers
error SignerNotAuthorizedBySender(address signer, address sender);
// Custom error to indicate signer already authorized
error SignerAlreadyAuthorized(address signer, address authorizingSender);
// Custom error to indicate signer is still thawing
error SignerStillThawing(
uint256 currentTimestamp,
uint256 thawEndTimestamp
);
// Custom error to indicate signer thawing has not been initiated
error SignerNotThawing();
// Custom error to indicate invalid RAV signer
error InvalidRAVSigner();
// Custom error to indicate the signer is not currently authorized by any sender
error SignerNotAuthorized();
// Custom error to indicate inputs length mismatch
error InputsLengthMismatch();
// Custom error to indicate thawing parameter is off bounds
error RevokeSignerThawingTooLong(uint256 thawingPeriod, uint256 maxThawingPeriod);
// Custom error to indicate thawing parameter is off bounds
error WithdrawEscrowThawingTooLong(uint256 thawingPeriod, uint256 maxThawingPeriod);
/**
* @dev Emitted when escrow is deposited for a receiver.
*/
event Deposit(
address indexed sender,
address indexed receiver,
uint256 amount
);
/**
* @dev Emitted when escrow is redeemed by a receiver.
* @notice If the actual amount redeemed is less than the expected amount,
* there was insufficient escrow available to redeem.
*/
event Redeem(
address indexed sender,
address indexed receiver,
address indexed allocationID,
uint256 expectedAmount,
uint256 actualAmount
);
/**
* @dev Emitted when a thaw request is made for escrow.
*/
event Thaw(
address indexed sender,
address indexed receiver,
uint256 amount,
uint256 totalAmountThawing,
uint256 thawEndTimestamp
);
/**
* @dev Emitted when a thaw request is cancelled for escrow.
*/
event CancelThaw(address indexed sender, address indexed receiver);
/**
* @dev Emitted when a thaw request is made for authorized signer
*/
event ThawSigner(
address indexed sender,
address indexed authorizedSigner,
uint256 thawEndTimestamp
);
/**
* @dev Emitted when the thawing of a signer is cancelled
*/
event CancelThawSigner(
address indexed sender,
address indexed authorizedSigner,
uint256 thawEndTimestamp
);
/**
* @dev Emitted when a authorized signer has been revoked
*/
event RevokeAuthorizedSigner(
address indexed sender,
address indexed authorizedSigner
);
/**
* @dev Emitted when thawed escrow is withdrawn by the sender.
*/
event Withdraw(
address indexed sender,
address indexed receiver,
uint256 amount
);
/**
* @dev Emitted when a signer is authorized to sign RAVs for a sender.
*/
event AuthorizeSigner(address indexed signer, address indexed sender);
constructor(
address escrowToken_,
address staking_,
address tapVerifier_,
address allocationIDTracker_,
uint256 withdrawEscrowThawingPeriod_,
uint256 revokeSignerThawingPeriod_
) {
if (withdrawEscrowThawingPeriod_ > MAX_THAWING_PERIOD) {
revert WithdrawEscrowThawingTooLong({
thawingPeriod: withdrawEscrowThawingPeriod_,
maxThawingPeriod: MAX_THAWING_PERIOD
});
}
if(revokeSignerThawingPeriod_ > MAX_THAWING_PERIOD) {
revert RevokeSignerThawingTooLong({
thawingPeriod: revokeSignerThawingPeriod_,
maxThawingPeriod: MAX_THAWING_PERIOD
});
}
escrowToken = IERC20(escrowToken_);
staking = IStaking(staking_);
tapVerifier = TAPVerifier(tapVerifier_);
allocationIDTracker = AllocationIDTracker(allocationIDTracker_);
withdrawEscrowThawingPeriod = withdrawEscrowThawingPeriod_;
revokeSignerThawingPeriod = revokeSignerThawingPeriod_;
// Approve the staking contract to pull any amount of tokens from this contract
// NOTE: this is done to increase gas efficiency instead of approving on each voucher redeem
escrowToken.approve(address(staking), type(uint256).max);
}
/**
* @dev Deposits escrow for a receiver.
* @param receiver Address of the receiver.
* @param amount Amount of escrow to deposit.
* @notice The escrow must be approved for transfer by the sender.
* @notice REVERT: this function will revert if the escrow transfer fails.
*/
function deposit(address receiver, uint256 amount) external {
escrowAccounts[msg.sender][receiver].balance += amount;
escrowToken.safeTransferFrom(msg.sender, address(this), amount);
emit Deposit(msg.sender, receiver, amount);
}
/**
* @dev Deposits escrow for multiple receivers.
* @param receivers Array of addresses of the receivers.
* @param amounts Array of amounts of escrow to deposit.
* @notice The escrow must be approved for transfer by the sender.
* @notice REVERT: this function will revert if the escrow transfer fails.
* @notice REVERT: if the length of the receivers and amounts arrays do not match.
*/
function depositMany(
address[] calldata receivers,
uint256[] calldata amounts
) external {
if (receivers.length != amounts.length) {
revert InputsLengthMismatch();
}
uint256 totalAmount = 0;
for (uint256 i = 0; i < receivers.length; i++) {
address receiver = receivers[i];
uint256 amount = amounts[i];
totalAmount += amount;
escrowAccounts[msg.sender][receiver].balance += amount;
emit Deposit(msg.sender, receiver, amount);
}
escrowToken.safeTransferFrom(msg.sender, address(this), totalAmount);
}
/**
* @dev Requests to thaw a specific amount of escrow from a receiver's escrow account.
* If requested amount is zero any thawing in progress will be cancelled. If requested
* amount is greater than zero any thawing in progress will be cancelled and a new
* thawing request will be initiated.
* @param receiver Address of the receiver the escrow account is for.
* @param amount Amount of escrow to thaw.
* @notice WARNING: Requesting to thaw escrow funds serves as an indication that these funds are soon to be withdrawn.
* Receivers with commitments linked to the thawing funds should quickly wrap up those commitments.
* At the same time, receivers should avoid starting new engagements tied to the thawing funds.
* After the thawing process, the funds should be viewed as withdrawn, irrespective of the actual withdrawal status.
* @notice REVERT with error:
* - InsufficientThawAmount: if the requested amount is zero and there is no
* escrow currently thawing
* - InsufficientEscrow: if the sender receiver escrow account does
* not have enough escrow (greater than `amount`)
*/
function thaw(address receiver, uint256 amount) external {
EscrowAccount storage account = escrowAccounts[msg.sender][receiver];
if (amount == 0) {
// if amount thawing is zero and requested amount is zero this is an invalid request(#36).
// otherwise if amount thawing is greater than zero and requested amount is zero this
// is a cancel thaw request.
if (account.amountThawing == 0) {
revert InsufficientThawAmount();
}
account.amountThawing = 0;
account.thawEndTimestamp = 0;
emit CancelThaw(msg.sender, receiver);
return;
}
// Check if the escrow balance is sufficient
if (account.balance < amount) {
revert InsufficientEscrow({
available: account.balance,
required: amount
});
}
// Set amount to thaw
account.amountThawing = amount;
// Set when the thaw is complete (thawing period number of seconds after current timestamp)
account.thawEndTimestamp =
block.timestamp +
withdrawEscrowThawingPeriod;
emit Thaw(
msg.sender,
receiver,
amount,
account.amountThawing,
account.thawEndTimestamp
);
}
/**
* @dev Withdraws all thawed escrow from a receiver's escrow account.
* @param receiver Address of the receiver.
* @notice REVERT with error:
* - EscrowNotThawing: There is no escrow currently thawing
* - EscrowStillThawing: ThawEndTimestamp has not been reached
* for escrow currently thawing
*/
function withdraw(address receiver) external {
EscrowAccount storage account = escrowAccounts[msg.sender][receiver];
if (account.thawEndTimestamp == 0) {
revert EscrowNotThawing();
}
if (account.thawEndTimestamp > block.timestamp) {
revert EscrowStillThawing({
currentTimestamp: block.timestamp,
thawEndTimestamp: account.thawEndTimestamp
});
}
// Amount is the minimum between the amount being thawed and the actual balance
uint256 amount = account.amountThawing > account.balance
? account.balance
: account.amountThawing;
account.balance -= amount; // Reduce the balance by the withdrawn amount (no underflow risk)
account.amountThawing = 0;
account.thawEndTimestamp = 0;
escrowToken.safeTransfer(msg.sender, amount);
emit Withdraw(msg.sender, receiver, amount);
}
/**
* @dev Authorizes a signer to sign RAVs for the sender.
* @param signer Address of the authorized signer.
* @param proof The proof provided by the signer to authorize the sender, consisting of packed (chainID, proof deadline, sender address).
* @dev The proof deadline is the timestamp at which the proof expires. The proof is susceptible to replay attacks until the deadline is reached.
* @notice REVERT with error:
* - SignerAlreadyAuthorized: Signer is currently authorized for a sender
* - InvalidSignerProof: The provided signer proof is invalid
*/
function authorizeSigner(
address signer,
uint256 proofDeadline,
bytes calldata proof
) external {
if (authorizedSigners[signer].sender != address(0)) {
revert SignerAlreadyAuthorized(
signer,
authorizedSigners[signer].sender
);
}
verifyAuthorizedSignerProof(proof, proofDeadline, signer);
authorizedSigners[signer].sender = msg.sender;
authorizedSigners[signer].thawEndTimestamp = 0;
emit AuthorizeSigner(signer, msg.sender);
}
/**
* @dev Starts thawing a signer to be removed from the authorized signers list.
* @param signer Address of the signer to remove.
* @notice WARNING: Thawing a signer alerts receivers that signatures from that signer will soon be deemed invalid.
* Receivers without existing signed receipts or RAVs from this signer should treat them as unauthorized.
* Those with existing signed documents from this signer should work towards settling their engagements.
* Once a signer is thawed, they should be viewed as revoked regardless of their revocation status.
* @notice REVERT with error:
* - SignerNotAuthorizedBySender: The provided signer is either not authorized or
* authorized by a different sender
*/
function thawSigner(address signer) external {
SenderAuthorization storage authorization = authorizedSigners[signer];
if (authorization.sender != msg.sender) {
revert SignerNotAuthorizedBySender(
signer,
authorizedSigners[signer].sender
);
}
authorization.thawEndTimestamp =
block.timestamp +
revokeSignerThawingPeriod;
emit ThawSigner(
authorization.sender,
signer,
authorization.thawEndTimestamp
);
}
/**
* @dev Stops thawing a signer.
* @param signer Address of the signer to stop thawing.
* @notice REVERT with error:
* - SignerNotAuthorizedBySender: The provided signer is either not authorized or
* authorized by a different sender
*/
function cancelThawSigner(address signer) external {
SenderAuthorization storage authorization = authorizedSigners[signer];
if (authorization.sender != msg.sender) {
revert SignerNotAuthorizedBySender(
signer,
authorizedSigners[signer].sender
);
}
authorization.thawEndTimestamp = 0;
emit CancelThawSigner(
authorization.sender,
signer,
authorization.thawEndTimestamp
);
}
/**
* @dev Revokes a signer from the authorized signers list if thawed.
* @param signer Address of the signer to remove.
* @notice REVERT with error:
* - SignerNotAuthorizedBySender: The provided signer is either not authorized or
* authorized by a different sender
* - SignerNotThawing: No thaw was initiated for the provided signer
* - SignerStillThawing: ThawEndTimestamp has not been reached
* for provided signer
*/
function revokeAuthorizedSigner(address signer) external {
SenderAuthorization storage authorization = authorizedSigners[signer];
if (authorization.sender != msg.sender) {
revert SignerNotAuthorizedBySender(
signer,
authorizedSigners[signer].sender
);
}
if (authorization.thawEndTimestamp == 0) {
revert SignerNotThawing();
}
if (authorization.thawEndTimestamp > block.timestamp) {
revert SignerStillThawing({
currentTimestamp: block.timestamp,
thawEndTimestamp: authorization.thawEndTimestamp
});
}
delete authorizedSigners[signer];
emit RevokeAuthorizedSigner(authorization.sender, signer);
}
/**
* @dev Redeems escrow (up to amount available in escrow) for a receiver using a signed RAV.
* @param signedRAV Signed RAV containing the receiver and escrow amount.
* @param allocationIDProof Proof of allocationID ownership.
* @notice If a signer or funds are in the thawing process, exercise caution. Thawing indicates upcoming removals.
* For in-depth understanding, refer to the respective documentation sections on thawing signers and funds.
* @notice Will accept redeem even if escrow account balance is below RAV valueAggregate. Check escrow balance before
* redeeming to ensure expected funds are available. Only one succesfully redeem is allowed for
* (sender, allocationID) pair.
* @notice REVERT: This function may revert if ECDSA.recover fails, check Open Zeppelin ECDSA library for details.
* @notice REVERT with error:
* - InvalidRAVSigner: If the RAV is signed by a signer who is not authorized by any sender
* - AllocationIDTracker.AllocationIDPreviouslyClaimed: If the allocation ID was previously claimed
* - AllocationIDTracker.InvalidProof: If the allocation ID ownership proof is not valid
*/
function redeem(
TAPVerifier.SignedRAV calldata signedRAV,
bytes calldata allocationIDProof
) external {
address signer = tapVerifier.recoverRAVSigner(signedRAV);
if (authorizedSigners[signer].sender == address(0)) {
revert InvalidRAVSigner();
}
address sender = authorizedSigners[signer].sender;
address receiver = staking
.getAllocation(signedRAV.rav.allocationId)
.indexer;
address allocationId = signedRAV.rav.allocationId;
// Amount is the minimum between the amount owed on rav and the actual balance
uint256 amount = signedRAV.rav.valueAggregate >
escrowAccounts[sender][receiver].balance
? escrowAccounts[sender][receiver].balance
: signedRAV.rav.valueAggregate;
escrowAccounts[sender][receiver].balance -= amount;
allocationIDTracker.useAllocationID(
sender,
allocationId,
allocationIDProof
);
staking.collect(amount, allocationId);
emit Redeem(
sender,
receiver,
signedRAV.rav.allocationId,
signedRAV.rav.valueAggregate,
amount
);
}
/**
* @dev Retrieves the amount of escrow deposited by a sender for a receiver.
* @param sender Address of the sender.
* @param receiver Address of the receiver.
* @return The amount of escrow deposited.
*/
function getEscrowAmount(
address sender,
address receiver
) external view returns (uint256) {
return escrowAccounts[sender][receiver].balance;
}
/**
* @dev Retrieves the escrow account details for a sender-receiver pair of the sender that a signer is authorized for.
* @param signer Address of the authorized signer.
* @param receiver Address of the receiver.
* @return The escrow account details.
*/
function getEscrowAccountFromSignerAddress(
address signer,
address receiver
) external view returns (EscrowAccount memory) {
address sender = authorizedSigners[signer].sender;
if (sender == address(0)) {
revert SignerNotAuthorized();
}
return escrowAccounts[sender][receiver];
}
/**
* @dev Verifies a proof that authorizes the sender to authorize the signer.
* @param proof The proof provided by the signer to authorize the sender.
* @param signer The address of the signer being authorized.
* @notice REVERT with error:
* - InvalidSignerProof: If the given proof is not valid
*/
function verifyAuthorizedSignerProof(
bytes calldata proof,
uint256 proofDeadline,
address signer
) private view {
// Verify that the proof deadline has not passed
if (block.timestamp > proofDeadline) {
revert InvalidSignerProof();
}
// Generate the hash of the sender's address
bytes32 messageHash = keccak256(
abi.encodePacked(block.chainid, proofDeadline, msg.sender)
);
// Generate the digest to be signed by the signer
bytes32 digest = ECDSA.toEthSignedMessageHash(messageHash);
// Verify that the recovered signer matches the expected signer
if (ECDSA.recover(digest, proof) != signer) {
revert InvalidSignerProof();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.0;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
// Copyright 2023-, Semiotic AI, Inc.
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.18;
/**
* @title IStaking
* @dev This interface is intended to mock the necessary functions of the `Staking` contract while using a
* version of solidity consistent with the project.
* @notice When deploying this interface should be attached to the `Staking` contract.
*/
interface IStaking {
struct Allocation {
address indexer;
bytes32 _subgraphDeploymentID;
uint256 _tokens;
address _allocationID;
bytes32 _metadata;
}
function collect(uint256 _tokens, address _allocationID) external;
function getAllocation(address _allocationID) external view returns (Allocation memory);
function allocate(
bytes32 _subgraphDeploymentID,
uint256 _tokens,
address _allocationID,
bytes32 _metadata,
bytes calldata _proof
) external;
function stake(uint256 _tokens) external;
function setAssetHolder(address _assetHolder, bool _allowed) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
* 0 before setting it to a non-zero value.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.8;
import "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(_FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.0;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
* _Available since v4.9 for `string`, `bytes`._
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// Copyright 2023-, Semiotic AI, Inc.
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.18;
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
/**
* @title TAPVerifier
* @dev A contract for verifying receipt aggregation vouchers.
*/
contract TAPVerifier is EIP712 {
struct ReceiptAggregateVoucher {
address allocationId;
uint64 timestampNs;
uint128 valueAggregate;
}
struct SignedRAV {
ReceiptAggregateVoucher rav;
bytes signature; // 65 bytes: r (32 Bytes) || s (32 Bytes) || v (1 Byte)
}
// --- EIP 712 ---
bytes32 private constant RAV_TYPEHASH =
keccak256(
"ReceiptAggregateVoucher(address allocationId,uint64 timestampNs,uint128 valueAggregate)"
);
/**
* @dev Constructs a new instance of the TAPVerifier contract.
*/
constructor(string memory name, string memory version) EIP712(name, version) {}
/**
* @dev Recovers the signer address of a signed ReceiptAggregateVoucher (RAV).
* @param signedRAV The SignedRAV containing the RAV and its signature.
* @return The address of the signer.
* @notice REVERT: This function may revert if ECDSA.recover fails, check ECDSA library for details.
*/
function recoverRAVSigner(
SignedRAV calldata signedRAV
) public view returns (address) {
bytes32 messageHash = hashRAV(signedRAV.rav);
return ECDSA.recover(messageHash, signedRAV.signature);
}
/**
* @dev Compares address recovered from signature to provided address.
* @param signedRAV The SignedRAV containing the RAV and its signature.
* @param expectedAddress The address to compare the recovered address to.
* @return True if the recovered address matches the provided address, false otherwise.
* @notice REVERT: This function may revert if ECDSA.recover fails, check ECDSA library for details.
*/
function verifyRAVSignature(
SignedRAV calldata signedRAV,
address expectedAddress
) external view returns (bool) {
return recoverRAVSigner(signedRAV) == expectedAddress;
}
/**
* @dev Computes the hash of a ReceiptAggregateVoucher (RAV).
* @param rav The RAV for which to compute the hash.
* @return The hash of the RAV.
*/
function hashRAV(
ReceiptAggregateVoucher calldata rav
) public view returns (bytes32) {
return
_hashTypedDataV4(
keccak256(
abi.encode(
RAV_TYPEHASH,
rav.allocationId,
rav.timestampNs,
rav.valueAggregate
)
)
);
}
}
{
"compilationTarget": {
"src/Escrow.sol": "Escrow"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":@ensdomains/=lib/contracts/node_modules/@ensdomains/",
":@openzeppelin/=lib/openzeppelin-contracts/",
":arbos-precompiles/=lib/contracts/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
":eth-gas-reporter/=lib/contracts/node_modules/eth-gas-reporter/",
":forge-std/=lib/forge-std/src/",
":hardhat/=lib/contracts/node_modules/hardhat/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
":openzeppelin/=lib/openzeppelin-contracts/contracts/",
":solmate/=lib/solmate/src/"
]
}
[{"inputs":[{"internalType":"address","name":"escrowToken_","type":"address"},{"internalType":"address","name":"staking_","type":"address"},{"internalType":"address","name":"tapVerifier_","type":"address"},{"internalType":"address","name":"allocationIDTracker_","type":"address"},{"internalType":"uint256","name":"withdrawEscrowThawingPeriod_","type":"uint256"},{"internalType":"uint256","name":"revokeSignerThawingPeriod_","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"EscrowNotThawing","type":"error"},{"inputs":[{"internalType":"uint256","name":"currentTimestamp","type":"uint256"},{"internalType":"uint256","name":"thawEndTimestamp","type":"uint256"}],"name":"EscrowStillThawing","type":"error"},{"inputs":[],"name":"InputsLengthMismatch","type":"error"},{"inputs":[{"internalType":"uint256","name":"available","type":"uint256"},{"internalType":"uint256","name":"required","type":"uint256"}],"name":"InsufficientEscrow","type":"error"},{"inputs":[],"name":"InsufficientThawAmount","type":"error"},{"inputs":[],"name":"InvalidRAVSigner","type":"error"},{"inputs":[],"name":"InvalidSignerProof","type":"error"},{"inputs":[{"internalType":"uint256","name":"thawingPeriod","type":"uint256"},{"internalType":"uint256","name":"maxThawingPeriod","type":"uint256"}],"name":"RevokeSignerThawingTooLong","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"authorizingSender","type":"address"}],"name":"SignerAlreadyAuthorized","type":"error"},{"inputs":[],"name":"SignerNotAuthorized","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"sender","type":"address"}],"name":"SignerNotAuthorizedBySender","type":"error"},{"inputs":[],"name":"SignerNotThawing","type":"error"},{"inputs":[{"internalType":"uint256","name":"currentTimestamp","type":"uint256"},{"internalType":"uint256","name":"thawEndTimestamp","type":"uint256"}],"name":"SignerStillThawing","type":"error"},{"inputs":[{"internalType":"uint256","name":"thawingPeriod","type":"uint256"},{"internalType":"uint256","name":"maxThawingPeriod","type":"uint256"}],"name":"WithdrawEscrowThawingTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"signer","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"AuthorizeSigner","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"}],"name":"CancelThaw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"authorizedSigner","type":"address"},{"indexed":false,"internalType":"uint256","name":"thawEndTimestamp","type":"uint256"}],"name":"CancelThawSigner","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"allocationID","type":"address"},{"indexed":false,"internalType":"uint256","name":"expectedAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"actualAmount","type":"uint256"}],"name":"Redeem","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"authorizedSigner","type":"address"}],"name":"RevokeAuthorizedSigner","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalAmountThawing","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"thawEndTimestamp","type":"uint256"}],"name":"Thaw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"authorizedSigner","type":"address"},{"indexed":false,"internalType":"uint256","name":"thawEndTimestamp","type":"uint256"}],"name":"ThawSigner","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"MAX_THAWING_PERIOD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"allocationIDTracker","outputs":[{"internalType":"contract AllocationIDTracker","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"uint256","name":"proofDeadline","type":"uint256"},{"internalType":"bytes","name":"proof","type":"bytes"}],"name":"authorizeSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"signer","type":"address"}],"name":"authorizedSigners","outputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"thawEndTimestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"signer","type":"address"}],"name":"cancelThawSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"receivers","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"depositMany","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"receiver","type":"address"}],"name":"escrowAccounts","outputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"amountThawing","type":"uint256"},{"internalType":"uint256","name":"thawEndTimestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"escrowToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"receiver","type":"address"}],"name":"getEscrowAccountFromSignerAddress","outputs":[{"components":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"amountThawing","type":"uint256"},{"internalType":"uint256","name":"thawEndTimestamp","type":"uint256"}],"internalType":"struct Escrow.EscrowAccount","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"receiver","type":"address"}],"name":"getEscrowAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"address","name":"allocationId","type":"address"},{"internalType":"uint64","name":"timestampNs","type":"uint64"},{"internalType":"uint128","name":"valueAggregate","type":"uint128"}],"internalType":"struct TAPVerifier.ReceiptAggregateVoucher","name":"rav","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct TAPVerifier.SignedRAV","name":"signedRAV","type":"tuple"},{"internalType":"bytes","name":"allocationIDProof","type":"bytes"}],"name":"redeem","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"signer","type":"address"}],"name":"revokeAuthorizedSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"revokeSignerThawingPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"staking","outputs":[{"internalType":"contract IStaking","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tapVerifier","outputs":[{"internalType":"contract TAPVerifier","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"thaw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"signer","type":"address"}],"name":"thawSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawEscrowThawingPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]