// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControlEnumerable.sol)
pragma solidity ^0.8.0;
import "./IAccessControlEnumerable.sol";
import "./AccessControl.sol";
import "../utils/structs/EnumerableSet.sol";
/**
* @dev Extension of {AccessControl} that allows enumerating the members of each role.
*/
abstract contract AccessControlEnumerable is IAccessControlEnumerable, AccessControl {
using EnumerableSet for EnumerableSet.AddressSet;
mapping(bytes32 => EnumerableSet.AddressSet) private _roleMembers;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) public view virtual override returns (address) {
return _roleMembers[role].at(index);
}
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) public view virtual override returns (uint256) {
return _roleMembers[role].length();
}
/**
* @dev Overload {_grantRole} to track enumerable memberships
*/
function _grantRole(bytes32 role, address account) internal virtual override {
super._grantRole(role, account);
_roleMembers[role].add(account);
}
/**
* @dev Overload {_revokeRole} to track enumerable memberships
*/
function _revokeRole(bytes32 role, address account) internal virtual override {
super._revokeRole(role, account);
_roleMembers[role].remove(account);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "../interfaces/utils/ILpCallback.sol";
import "../interfaces/vaults/IERC20Vault.sol";
import "../interfaces/vaults/IUniV3Vault.sol";
import "../libraries/external/FullMath.sol";
import "../libraries/external/OracleLibrary.sol";
import "../libraries/external/TickMath.sol";
import "../utils/ContractMeta.sol";
import "../utils/DefaultAccessControlLateInit.sol";
contract BasePulseStrategy is ContractMeta, DefaultAccessControlLateInit, ILpCallback {
using SafeERC20 for IERC20;
uint256 public constant D6 = 10**6;
uint256 public constant D9 = 10**9;
uint256 public constant Q96 = 2**96;
INonfungiblePositionManager public immutable positionManager;
/// @param erc20Vault buffer vault of rootVault system
/// @param uniV3Vault vault containing a uniswap position, allowing to add and withdraw liquidity from it
/// @param tokens array of length 2 with strategy and vaults tokens
struct ImmutableParams {
IERC20Vault erc20Vault;
IUniV3Vault uniV3Vault;
address router;
address[] tokens;
}
/// @param priceImpactD6 coefficient to take into account the impact of changing the price during tokens swaps
/// @param maxDeviationForVaultPool maximum deviation of the spot tick from the average tick for the pool of token 0 and token 1
/// @param timespanForAverageTick time interval on which average ticks in pools are determined
/// @param swapSlippageD coefficient to protect against price slippage when swapping tokens
/// @param swappingAmountsCoefficientD coefficient of deviation of expected tokens for the swap and the actual number of exchanged tokens
/// @param minSwapAmounts thresholds that cut off swap of an insignificant amount of tokens
struct MutableParams {
int24 priceImpactD6;
int24 maxDeviationForVaultPool;
uint32 timespanForAverageTick;
uint256 swapSlippageD;
uint256 swappingAmountsCoefficientD;
uint256[] minSwapAmounts;
}
struct DesiredAmounts {
uint256 amount0Desired;
uint256 amount1Desired;
}
/// @param lowerTick lower tick of an interval
/// @param upperTick upper tick of an interval
struct Interval {
int24 lowerTick;
int24 upperTick;
}
/// @dev structure with all immutable params of the strategy
ImmutableParams public immutableParams;
/// @dev structure with all mutable params of the strategy
MutableParams public mutableParams;
DesiredAmounts public desiredAmounts;
bool public forceRebalanceWidthFlag;
/// @param positionManager_ Uniswap v3 NonfungiblePositionManager
constructor(INonfungiblePositionManager positionManager_) {
require(address(positionManager_) != address(0), ExceptionsLibrary.ADDRESS_ZERO);
positionManager = positionManager_;
}
/// @param immutableParams_ structure with all immutable params of the strategy
/// @param admin admin of the strategy
function initialize(ImmutableParams memory immutableParams_, address admin) external {
checkImmutableParams(immutableParams_);
immutableParams = immutableParams_;
for (uint256 i = 0; i < 2; i++) {
IERC20(immutableParams_.tokens[i]).safeIncreaseAllowance(address(positionManager), type(uint256).max);
try
immutableParams.erc20Vault.externalCall(
immutableParams.tokens[i],
IERC20.approve.selector,
abi.encode(immutableParams.router, type(uint256).max)
)
returns (bytes memory) {} catch {}
}
DefaultAccessControlLateInit.init(admin);
}
function setForceRebalanceFlag(bool newValue) external {
_requireAdmin();
forceRebalanceWidthFlag = newValue;
}
function updateDesiredAmounts(DesiredAmounts memory params) external {
_requireAdmin();
require(params.amount0Desired > 0, ExceptionsLibrary.VALUE_ZERO);
require(params.amount0Desired <= D9, ExceptionsLibrary.LIMIT_OVERFLOW);
require(params.amount1Desired > 0, ExceptionsLibrary.VALUE_ZERO);
require(params.amount1Desired <= D9, ExceptionsLibrary.LIMIT_OVERFLOW);
desiredAmounts = params;
}
/// @dev updates mutable params of the strategy. Only the admin can call the function
/// @param mutableParams_ new params to set
function updateMutableParams(MutableParams memory mutableParams_) external {
_requireAdmin();
checkMutableParams(mutableParams_);
mutableParams = mutableParams_;
emit UpdateMutableParams(tx.origin, msg.sender, mutableParams_);
}
/// @dev Rebalancing goes like this:
/// 1. Function checks the current states of the pools, and if the volatility is significant, the transaction reverts.
/// 2. If necessary, a new position is minted on uniV3Vault, and the previous one is burned.
/// 3. Tokens on erc20Vault are swapped via AggregationRouterV5 so that the proportion matches the tokens on uniV3Vault.
/// 4. The strategy transfers all possible tokens from erc20Vault to uniV3Vault.
/// Only users with administrator or operator roles can call the function.
/// @param deadline Timestamp by which the transaction must be completed
/// @param swapData Data for swap on 1inch AggregationRouterV5
function rebalance(
uint256 deadline,
Interval memory newInterval,
bytes calldata swapData,
uint256 minAmountOutInCaseOfSwap
) external {
require(block.timestamp <= deadline, ExceptionsLibrary.TIMESTAMP);
_requireAtLeastOperator();
ImmutableParams memory immutableParams_ = immutableParams;
MutableParams memory mutableParams_ = mutableParams;
IUniswapV3Pool pool = immutableParams_.uniV3Vault.pool();
checkTickDeviation(mutableParams_, pool);
(uint160 sqrtPriceX96, , , , , , ) = pool.slot0();
Interval memory interval = _positionsRebalance(immutableParams_, newInterval, pool);
forceRebalanceWidthFlag = false;
_swapToTarget(immutableParams_, mutableParams_, interval, sqrtPriceX96, swapData, minAmountOutInCaseOfSwap);
_pushIntoUniswap(immutableParams_);
emit Rebalance(tx.origin, msg.sender);
}
/// @dev checks mutable params according to strategy restrictions
/// @param params mutable parameters to be checked
function checkMutableParams(MutableParams memory params) public pure {
require(params.maxDeviationForVaultPool > 0, ExceptionsLibrary.LIMIT_UNDERFLOW);
require(params.timespanForAverageTick > 0, ExceptionsLibrary.VALUE_ZERO);
require(params.timespanForAverageTick < 7 * 24 * 60 * 60, ExceptionsLibrary.VALUE_ZERO);
require(params.minSwapAmounts.length == 2, ExceptionsLibrary.INVALID_LENGTH);
require(params.swapSlippageD <= D9, ExceptionsLibrary.LIMIT_OVERFLOW);
require(params.swappingAmountsCoefficientD <= D9, ExceptionsLibrary.LIMIT_OVERFLOW);
}
/// @dev checks immutable params according to strategy restrictions
/// @param params immutable parameters to be checked
function checkImmutableParams(ImmutableParams memory params) public view {
require(params.router != address(0), ExceptionsLibrary.ADDRESS_ZERO);
require(params.tokens.length == 2, ExceptionsLibrary.INVALID_LENGTH);
require(params.tokens[0] != address(0), ExceptionsLibrary.ADDRESS_ZERO);
require(params.tokens[1] != address(0), ExceptionsLibrary.ADDRESS_ZERO);
{
require(address(params.erc20Vault) != address(0), ExceptionsLibrary.ADDRESS_ZERO);
address[] memory erc20VaultTokens = params.erc20Vault.vaultTokens();
require(erc20VaultTokens.length == 2, ExceptionsLibrary.INVALID_LENGTH);
require(erc20VaultTokens[0] == params.tokens[0], ExceptionsLibrary.INVARIANT);
require(erc20VaultTokens[1] == params.tokens[1], ExceptionsLibrary.INVARIANT);
}
{
require(address(params.uniV3Vault) != address(0), ExceptionsLibrary.ADDRESS_ZERO);
address[] memory uniV3VaultTokens = params.uniV3Vault.vaultTokens();
require(uniV3VaultTokens.length == 2, ExceptionsLibrary.INVALID_LENGTH);
require(uniV3VaultTokens[0] == params.tokens[0], ExceptionsLibrary.INVARIANT);
require(uniV3VaultTokens[1] == params.tokens[1], ExceptionsLibrary.INVARIANT);
}
}
/// @dev checks deviation of spot ticks of all pools in strategy from corresponding average ticks.
/// If any deviation is large than maxDevation parameter for the pool, then the transaction will be reverted with a LIMIT_OVERFLOW error.
/// If there are no observations 10 seconds ago in any of the considered pools, then the transaction will be reverted with an INVALID_STATE error.
/// @param mutableParams_ structure with all mutable params of the strategy
/// @param vaultPool UniswapV3Pool of uniV3Vault
function checkTickDeviation(MutableParams memory mutableParams_, IUniswapV3Pool vaultPool) public view {
(, int24 spotTick, , , , , ) = vaultPool.slot0();
(int24 averageTick, , bool withFail) = OracleLibrary.consult(
address(vaultPool),
mutableParams_.timespanForAverageTick
);
require(!withFail, ExceptionsLibrary.INVALID_STATE);
int24 tickDeviation = spotTick - averageTick;
if (tickDeviation < 0) {
tickDeviation = -tickDeviation;
}
require(tickDeviation < mutableParams_.maxDeviationForVaultPool, ExceptionsLibrary.LIMIT_OVERFLOW);
}
function compareIntervals(Interval memory newInterval, uint256 nft) public view returns (bool) {
if (nft == 0) return false;
(, , , , , int24 tickLower, int24 tickUpper, , , , , ) = positionManager.positions(nft);
return newInterval.lowerTick == tickLower && newInterval.upperTick == tickUpper;
}
/// @dev The function rebalances the position on the uniswap pool. If there was a position in the uniV3Vault,
/// and the current tick is inside this position, taking into account the tickNeighborhood, then the position will not be rebalanced.
/// Otherwise, if there is a position in the uniV3Vault, then all tokens will be sent to erc20Vault, the new position will be mined,
/// and the old one will be burned.
/// @param immutableParams_ structure with all immutable params of the strategy
/// @param pool UniswapV3Pool of uniV3Vault
/// @return Interval The position on the uniV3Vault after the function is executed.
function _positionsRebalance(
ImmutableParams memory immutableParams_,
Interval memory newInterval,
IUniswapV3Pool pool
) private returns (Interval memory) {
IUniV3Vault vault = immutableParams_.uniV3Vault;
uint256 uniV3Nft = vault.uniV3Nft();
bool isSameInterval = compareIntervals(newInterval, uniV3Nft);
if (isSameInterval) {
vault.collectEarnings();
return newInterval;
} else if (uniV3Nft != 0) {
vault.pull(
address(immutableParams_.erc20Vault),
immutableParams_.tokens,
vault.liquidityToTokenAmounts(type(uint128).max),
""
);
}
(uint256 newNft, , , ) = positionManager.mint(
INonfungiblePositionManager.MintParams({
token0: immutableParams_.tokens[0],
token1: immutableParams_.tokens[1],
fee: pool.fee(),
tickLower: newInterval.lowerTick,
tickUpper: newInterval.upperTick,
amount0Desired: desiredAmounts.amount0Desired,
amount1Desired: desiredAmounts.amount1Desired,
amount0Min: 0,
amount1Min: 0,
recipient: address(this),
deadline: type(uint256).max
})
);
positionManager.safeTransferFrom(address(this), address(vault), newNft);
emit PositionMinted(newNft);
if (uniV3Nft != 0) {
positionManager.burn(uniV3Nft);
emit PositionBurned(uniV3Nft);
}
return newInterval;
}
/// @dev calculate target ratio of token 1 to total capital after rebalance
/// @param interval current interval on uniV3Vault
/// @param sqrtSpotPriceX96 sqrt price X96 of spot tick
/// @param spotPriceX96 price X96 of spot tick
/// @return targetRatioOfToken1X96 ratio of token 1 multiplied by 2^96
function calculateTargetRatioOfToken1(
Interval memory interval,
uint160 sqrtSpotPriceX96,
uint256 spotPriceX96
) public pure returns (uint256 targetRatioOfToken1X96) {
// y = L * (sqrt_p - sqrt_a)
// x = L * (sqrt_b - sqrt_p) / (sqrt_b * sqrt_p)
// targetRatioOfToken1X96 = y / (y + x * p)
uint256 sqrtLowerPriceX96 = TickMath.getSqrtRatioAtTick(interval.lowerTick);
uint256 sqrtUpperPriceX96 = TickMath.getSqrtRatioAtTick(interval.upperTick);
if (sqrtLowerPriceX96 >= sqrtSpotPriceX96) {
return 0;
} else if (sqrtUpperPriceX96 <= sqrtSpotPriceX96) {
return Q96;
}
uint256 x = FullMath.mulDiv(
sqrtUpperPriceX96 - sqrtSpotPriceX96,
Q96,
FullMath.mulDiv(sqrtSpotPriceX96, sqrtUpperPriceX96, Q96)
);
uint256 y = sqrtSpotPriceX96 - sqrtLowerPriceX96;
targetRatioOfToken1X96 = FullMath.mulDiv(y, Q96, FullMath.mulDiv(x, spotPriceX96, Q96) + y);
}
/// @dev notion link: https://www.notion.so/mellowprotocol/Swap-formula-53807cbf5c5641eda937dd1847d70f43
/// calculates the token that needs to be swapped and its amount to get the target ratio of tokens in the erc20Vault.
/// @param immutableParams_ structure with all immutable params of the strategy
/// @param mutableParams_ structure with all mutable params of the strategy
/// @param priceX96 price X96 of spot tick
/// @param targetRatioOfToken1X96 target ratio of token 1 to total capital after rebalance
/// @return tokenInIndex swap token index
/// @return amountIn number of tokens to swap
function calculateAmountsForSwap(
ImmutableParams memory immutableParams_,
MutableParams memory mutableParams_,
uint256 priceX96,
uint256 targetRatioOfToken1X96
) public view returns (uint256 tokenInIndex, uint256 amountIn) {
uint256 targetRatioOfToken0X96 = Q96 - targetRatioOfToken1X96;
(uint256[] memory currentAmounts, ) = immutableParams_.erc20Vault.tvl();
if (currentAmounts[0] + currentAmounts[1] == 0) return (0, 0);
uint256 currentRatioOfToken1X96 = FullMath.mulDiv(
currentAmounts[1],
Q96,
currentAmounts[1] + FullMath.mulDiv(currentAmounts[0], priceX96, Q96)
);
uint256 feesX96 = FullMath.mulDiv(Q96, uint256(int256(mutableParams_.priceImpactD6)), D6);
if (currentRatioOfToken1X96 > targetRatioOfToken1X96) {
tokenInIndex = 1;
// (dx * y0 - dy * x0 * p) / (1 - dy * fee)
uint256 invertedPriceX96 = FullMath.mulDiv(Q96, Q96, priceX96);
amountIn = FullMath.mulDiv(
FullMath.mulDiv(currentAmounts[1], targetRatioOfToken0X96, Q96) -
FullMath.mulDiv(targetRatioOfToken1X96, currentAmounts[0], invertedPriceX96),
Q96,
Q96 - FullMath.mulDiv(targetRatioOfToken1X96, feesX96, Q96)
);
} else {
// (dy * x0 - dx * y0 / p) / (1 - dx * fee)
tokenInIndex = 0;
amountIn = FullMath.mulDiv(
FullMath.mulDiv(currentAmounts[0], targetRatioOfToken1X96, Q96) -
FullMath.mulDiv(targetRatioOfToken0X96, currentAmounts[1], priceX96),
Q96,
Q96 - FullMath.mulDiv(targetRatioOfToken0X96, feesX96, Q96)
);
}
if (amountIn > currentAmounts[tokenInIndex]) {
amountIn = currentAmounts[tokenInIndex];
}
}
/// @dev calculates the target ratio of tokens and swaps them
/// @param immutableParams_ structure with all immutable params of the strategy
/// @param mutableParams_ structure with all mutable params of the strategy
/// @param interval current interval on uniV3Vault
/// @param sqrtSpotPriceX96 sqrt price X96 of spot tick
function _swapToTarget(
ImmutableParams memory immutableParams_,
MutableParams memory mutableParams_,
Interval memory interval,
uint160 sqrtSpotPriceX96,
bytes calldata swapData,
uint256 minAmountOutInCaseOfSwap
) private {
uint256 priceX96 = FullMath.mulDiv(sqrtSpotPriceX96, sqrtSpotPriceX96, Q96);
(uint256 tokenInIndex, uint256 amountIn) = calculateAmountsForSwap(
immutableParams_,
mutableParams_,
priceX96,
calculateTargetRatioOfToken1(interval, sqrtSpotPriceX96, priceX96)
);
if (amountIn < mutableParams_.minSwapAmounts[tokenInIndex]) {
return;
}
if (tokenInIndex == 1) {
priceX96 = FullMath.mulDiv(Q96, Q96, priceX96);
}
(uint256[] memory tvlBefore, ) = immutableParams_.erc20Vault.tvl();
{
immutableParams_.erc20Vault.externalCall(immutableParams_.router, bytes4(swapData[:4]), swapData[4:]);
}
uint256 actualAmountIn;
uint256 actualAmountOut;
{
(uint256[] memory tvlAfter, ) = immutableParams_.erc20Vault.tvl();
require(tvlAfter[tokenInIndex] <= tvlBefore[tokenInIndex], ExceptionsLibrary.INVARIANT);
require(tvlAfter[tokenInIndex ^ 1] >= tvlBefore[tokenInIndex ^ 1], ExceptionsLibrary.INVARIANT);
actualAmountIn = tvlBefore[tokenInIndex] - tvlAfter[tokenInIndex];
actualAmountOut = tvlAfter[tokenInIndex ^ 1] - tvlBefore[tokenInIndex ^ 1];
}
uint256 actualSwapPriceX96 = FullMath.mulDiv(actualAmountOut, Q96, actualAmountIn);
require(actualAmountOut >= minAmountOutInCaseOfSwap, ExceptionsLibrary.LIMIT_UNDERFLOW);
require(
FullMath.mulDiv(priceX96, D9 - mutableParams_.swapSlippageD, D9) <= actualSwapPriceX96,
ExceptionsLibrary.LIMIT_UNDERFLOW
);
require(
FullMath.mulDiv(amountIn, D9 - mutableParams_.swappingAmountsCoefficientD, D9) <= actualAmountIn,
ExceptionsLibrary.LIMIT_UNDERFLOW
);
require(
FullMath.mulDiv(actualAmountIn, D9 - mutableParams_.swappingAmountsCoefficientD, D9) <= amountIn,
ExceptionsLibrary.LIMIT_UNDERFLOW
);
emit TokensSwapped(actualAmountIn, actualAmountOut, tokenInIndex);
}
/// @dev pushed maximal possible amounts of tokens from erc20Vault to uniV3Vault
/// @param immutableParams_ structure with all immutable params of the strategy
function _pushIntoUniswap(ImmutableParams memory immutableParams_) private {
(uint256[] memory tokenAmounts, ) = immutableParams_.erc20Vault.tvl();
if (tokenAmounts[0] > 0 || tokenAmounts[1] > 0) {
immutableParams_.erc20Vault.pull(
address(immutableParams_.uniV3Vault),
immutableParams_.tokens,
tokenAmounts,
""
);
}
}
/// @inheritdoc ILpCallback
function depositCallback() external {
// pushes all tokens from erc20Vault to uniswap to prevent possible attacks
_pushIntoUniswap(immutableParams);
}
/// @inheritdoc ILpCallback
function withdrawCallback() external {}
function _contractName() internal pure override returns (bytes32) {
return bytes32("BasePulseStrategy");
}
function _contractVersion() internal pure override returns (bytes32) {
return bytes32("1.0.0");
}
/// @notice Emitted after a successful token swap
/// @param amountIn amount of token, that pushed into SwapRouter
/// @param amountOut amount of token, that recieved from SwapRouter
/// @param tokenInIndex index of token, that pushed into SwapRouter
event TokensSwapped(uint256 amountIn, uint256 amountOut, uint256 tokenInIndex);
/// @notice Emited when mutable parameters are successfully updated
/// @param origin Origin of the transaction (tx.origin)
/// @param sender Sender of the call (msg.sender)
/// @param mutableParams Updated parameters
event UpdateMutableParams(address indexed origin, address indexed sender, MutableParams mutableParams);
/// @notice Emited when the rebalance is successfully completed
/// @param origin Origin of the transaction (tx.origin)
/// @param sender Sender of the call (msg.sender)
event Rebalance(address indexed origin, address indexed sender);
/// @notice Emited when a new uniswap position is created
/// @param tokenId nft of new uniswap position
event PositionMinted(uint256 tokenId);
/// @notice Emited when a uniswap position is burned
/// @param tokenId nft of uniswap position
event PositionBurned(uint256 tokenId);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./external/FullMath.sol";
import "./ExceptionsLibrary.sol";
/// @notice CommonLibrary shared utilities
library CommonLibrary {
uint256 constant DENOMINATOR = 10**9;
uint256 constant D18 = 10**18;
uint256 constant YEAR = 365 * 24 * 3600;
uint256 constant Q128 = 2**128;
uint256 constant Q96 = 2**96;
uint256 constant Q48 = 2**48;
uint256 constant Q160 = 2**160;
uint256 constant UNI_FEE_DENOMINATOR = 10**6;
/// @notice Sort uint256 using bubble sort. The sorting is done in-place.
/// @param arr Array of uint256
function sortUint(uint256[] memory arr) internal pure {
uint256 l = arr.length;
for (uint256 i = 0; i < l; ++i) {
for (uint256 j = i + 1; j < l; ++j) {
if (arr[i] > arr[j]) {
uint256 temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
}
}
/// @notice Checks if array of addresses is sorted and all adresses are unique
/// @param tokens A set of addresses to check
/// @return `true` if all addresses are sorted and unique, `false` otherwise
function isSortedAndUnique(address[] memory tokens) internal pure returns (bool) {
if (tokens.length < 2) {
return true;
}
for (uint256 i = 0; i < tokens.length - 1; ++i) {
if (tokens[i] >= tokens[i + 1]) {
return false;
}
}
return true;
}
/// @notice Projects tokenAmounts onto subset or superset of tokens
/// @dev
/// Requires both sets of tokens to be sorted. When tokens are not sorted, it's undefined behavior.
/// If there is a token in tokensToProject that is not part of tokens and corresponding tokenAmountsToProject > 0, reverts.
/// Zero token amount is eqiuvalent to missing token
function projectTokenAmounts(
address[] memory tokens,
address[] memory tokensToProject,
uint256[] memory tokenAmountsToProject
) internal pure returns (uint256[] memory) {
uint256[] memory res = new uint256[](tokens.length);
uint256 t = 0;
uint256 tp = 0;
while ((t < tokens.length) && (tp < tokensToProject.length)) {
if (tokens[t] < tokensToProject[tp]) {
res[t] = 0;
t++;
} else if (tokens[t] > tokensToProject[tp]) {
if (tokenAmountsToProject[tp] == 0) {
tp++;
} else {
revert("TPS");
}
} else {
res[t] = tokenAmountsToProject[tp];
t++;
tp++;
}
}
while (t < tokens.length) {
res[t] = 0;
t++;
}
return res;
}
/// @notice Calculated sqrt of uint in X96 format
/// @param xX96 input number in X96 format
/// @return sqrt of xX96 in X96 format
function sqrtX96(uint256 xX96) internal pure returns (uint256) {
uint256 sqX96 = sqrt(xX96);
return sqX96 << 48;
}
/// @notice Calculated sqrt of uint
/// @param x input number
/// @return sqrt of x
function sqrt(uint256 x) internal pure returns (uint256) {
if (x == 0) return 0;
uint256 xx = x;
uint256 r = 1;
if (xx >= 0x100000000000000000000000000000000) {
xx >>= 128;
r <<= 64;
}
if (xx >= 0x10000000000000000) {
xx >>= 64;
r <<= 32;
}
if (xx >= 0x100000000) {
xx >>= 32;
r <<= 16;
}
if (xx >= 0x10000) {
xx >>= 16;
r <<= 8;
}
if (xx >= 0x100) {
xx >>= 8;
r <<= 4;
}
if (xx >= 0x10) {
xx >>= 4;
r <<= 2;
}
if (xx >= 0x8) {
r <<= 1;
}
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
r = (r + x / r) >> 1;
uint256 r1 = x / r;
return (r < r1 ? r : r1);
}
function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
require(_start + 20 >= _start, "toAddress_overflow");
require(_bytes.length >= _start + 20, "toAddress_outOfBounds");
address tempAddress;
assembly {
tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
}
return tempAddress;
}
/// @notice Recovers signer address from signed message hash
/// @param _ethSignedMessageHash signed message
/// @param _signature contatenated ECDSA r, s, v (65 bytes)
/// @return Recovered address if the signature is valid, address(0) otherwise
function recoverSigner(bytes32 _ethSignedMessageHash, bytes memory _signature) internal pure returns (address) {
(bytes32 r, bytes32 s, uint8 v) = splitSignature(_signature);
return ecrecover(_ethSignedMessageHash, v, r, s);
}
/// @notice Get ECDSA r, s, v from signature
/// @param sig signature (65 bytes)
/// @return r ECDSA r
/// @return s ECDSA s
/// @return v ECDSA v
function splitSignature(bytes memory sig)
internal
pure
returns (
bytes32 r,
bytes32 s,
uint8 v
)
{
require(sig.length == 65, ExceptionsLibrary.INVALID_LENGTH);
assembly {
r := mload(add(sig, 32))
s := mload(add(sig, 64))
v := byte(0, mload(add(sig, 96)))
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
import "../interfaces/utils/IContractMeta.sol";
abstract contract ContractMeta is IContractMeta {
// ------------------- EXTERNAL, VIEW -------------------
function contractName() external pure returns (string memory) {
return _bytes32ToString(_contractName());
}
function contractNameBytes() external pure returns (bytes32) {
return _contractName();
}
function contractVersion() external pure returns (string memory) {
return _bytes32ToString(_contractVersion());
}
function contractVersionBytes() external pure returns (bytes32) {
return _contractVersion();
}
// ------------------- INTERNAL, VIEW -------------------
function _contractName() internal pure virtual returns (bytes32);
function _contractVersion() internal pure virtual returns (bytes32);
function _bytes32ToString(bytes32 b) internal pure returns (string memory s) {
s = new string(32);
uint256 len = 32;
for (uint256 i = 0; i < 32; ++i) {
if (uint8(b[i]) == 0) {
len = i;
break;
}
}
assembly {
mstore(s, len)
mstore(add(s, 0x20), b)
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/access/AccessControlEnumerable.sol";
import "../interfaces/utils/IDefaultAccessControl.sol";
import "../libraries/ExceptionsLibrary.sol";
/// @notice This is a default access control with 3 roles:
///
/// - ADMIN: allowed to do anything
/// - ADMIN_DELEGATE: allowed to do anything except assigning ADMIN and ADMIN_DELEGATE roles
/// - OPERATOR: low-privileged role, generally keeper or some other bot
contract DefaultAccessControl is IDefaultAccessControl, AccessControlEnumerable {
bytes32 public constant OPERATOR = keccak256("operator");
bytes32 public constant ADMIN_ROLE = keccak256("admin");
bytes32 public constant ADMIN_DELEGATE_ROLE = keccak256("admin_delegate");
/// @notice Creates a new contract.
/// @param admin Admin of the contract
constructor(address admin) {
require(admin != address(0), ExceptionsLibrary.ADDRESS_ZERO);
_setupRole(OPERATOR, admin);
_setupRole(ADMIN_ROLE, admin);
_setRoleAdmin(ADMIN_ROLE, ADMIN_ROLE);
_setRoleAdmin(ADMIN_DELEGATE_ROLE, ADMIN_ROLE);
_setRoleAdmin(OPERATOR, ADMIN_DELEGATE_ROLE);
}
// ------------------------- EXTERNAL, VIEW ------------------------------
/// @notice Checks if the address is ADMIN or ADMIN_DELEGATE.
/// @param sender Adddress to check
/// @return `true` if sender is an admin, `false` otherwise
function isAdmin(address sender) public view returns (bool) {
return hasRole(ADMIN_ROLE, sender) || hasRole(ADMIN_DELEGATE_ROLE, sender);
}
/// @notice Checks if the address is OPERATOR.
/// @param sender Adddress to check
/// @return `true` if sender is an admin, `false` otherwise
function isOperator(address sender) public view returns (bool) {
return hasRole(OPERATOR, sender);
}
// ------------------------- INTERNAL, VIEW ------------------------------
function _requireAdmin() internal view {
require(isAdmin(msg.sender), ExceptionsLibrary.FORBIDDEN);
}
function _requireAtLeastOperator() internal view {
require(isAdmin(msg.sender) || isOperator(msg.sender), ExceptionsLibrary.FORBIDDEN);
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/access/AccessControlEnumerable.sol";
import "../interfaces/utils/IDefaultAccessControl.sol";
import "../libraries/ExceptionsLibrary.sol";
/// @notice This is a default access control with 3 roles:
///
/// - ADMIN: allowed to do anything
/// - ADMIN_DELEGATE: allowed to do anything except assigning ADMIN and ADMIN_DELEGATE roles
/// - OPERATOR: low-privileged role, generally keeper or some other bot
contract DefaultAccessControlLateInit is IDefaultAccessControl, AccessControlEnumerable {
bool public initialized;
bytes32 public constant OPERATOR = keccak256("operator");
bytes32 public constant ADMIN_ROLE = keccak256("admin");
bytes32 public constant ADMIN_DELEGATE_ROLE = keccak256("admin_delegate");
// ------------------------- EXTERNAL, VIEW ------------------------------
/// @inheritdoc IDefaultAccessControl
function isAdmin(address sender) public view returns (bool) {
return hasRole(ADMIN_ROLE, sender) || hasRole(ADMIN_DELEGATE_ROLE, sender);
}
/// @inheritdoc IDefaultAccessControl
function isOperator(address sender) public view returns (bool) {
return hasRole(OPERATOR, sender);
}
// ------------------------- EXTERNAL, MUTATING ------------------------------
/// @notice Initializes a new contract with roles and single ADMIN.
/// @param admin Admin of the contract
function init(address admin) public {
require(admin != address(0), ExceptionsLibrary.ADDRESS_ZERO);
require(!initialized, ExceptionsLibrary.INIT);
_setupRole(OPERATOR, admin);
_setupRole(ADMIN_ROLE, admin);
_setRoleAdmin(ADMIN_ROLE, ADMIN_ROLE);
_setRoleAdmin(ADMIN_DELEGATE_ROLE, ADMIN_ROLE);
_setRoleAdmin(OPERATOR, ADMIN_DELEGATE_ROLE);
initialized = true;
}
// ------------------------- INTERNAL, VIEW ------------------------------
function _requireAdmin() internal view {
require(isAdmin(msg.sender), ExceptionsLibrary.FORBIDDEN);
}
function _requireAtLeastOperator() internal view {
require(isAdmin(msg.sender) || isOperator(msg.sender), ExceptionsLibrary.FORBIDDEN);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @notice Exceptions stores project`s smart-contracts exceptions
library ExceptionsLibrary {
string constant ADDRESS_ZERO = "AZ";
string constant VALUE_ZERO = "VZ";
string constant EMPTY_LIST = "EMPL";
string constant NOT_FOUND = "NF";
string constant INIT = "INIT";
string constant DUPLICATE = "DUP";
string constant NULL = "NULL";
string constant TIMESTAMP = "TS";
string constant FORBIDDEN = "FRB";
string constant ALLOWLIST = "ALL";
string constant LIMIT_OVERFLOW = "LIMO";
string constant LIMIT_UNDERFLOW = "LIMU";
string constant INVALID_VALUE = "INV";
string constant INVARIANT = "INVA";
string constant INVALID_TARGET = "INVTR";
string constant INVALID_TOKEN = "INVTO";
string constant INVALID_INTERFACE = "INVI";
string constant INVALID_SELECTOR = "INVS";
string constant INVALID_STATE = "INVST";
string constant INVALID_LENGTH = "INVL";
string constant LOCK = "LCKD";
string constant DISABLED = "DIS";
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
// diff: original lib works under 0.7.6 with overflows enabled
unchecked {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
// diff: original uint256 twos = -denominator & denominator;
uint256 twos = uint256(-int256(denominator)) & denominator;
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivRoundingUp(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
// diff: original lib works under 0.7.6 with overflows enabled
unchecked {
result = mulDiv(a, b, denominator);
if (mulmod(a, b, denominator) > 0) {
require(result < type(uint256).max);
result++;
}
}
}
function mulDivFloor(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0, "0 denom");
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1, "denom <= prod1");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = denominator & (~denominator + 1);
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
unchecked {
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
}
return result;
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivCeiling(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
result = mulDivFloor(a, b, denominator);
if (mulmod(a, b, denominator) > 0) {
result++;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControlEnumerable.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
/**
* @dev External interface of AccessControlEnumerable declared to support ERC165 detection.
*/
interface IAccessControlEnumerable is IAccessControl {
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) external view returns (address);
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IContractMeta {
function contractName() external view returns (string memory);
function contractNameBytes() external view returns (bytes32);
function contractVersion() external view returns (string memory);
function contractVersionBytes() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/access/IAccessControlEnumerable.sol";
interface IDefaultAccessControl is IAccessControlEnumerable {
/// @notice Checks that the address is contract admin.
/// @param who Address to check
/// @return `true` if who is admin, `false` otherwise
function isAdmin(address who) external view returns (bool);
/// @notice Checks that the address is contract admin.
/// @param who Address to check
/// @return `true` if who is operator, `false` otherwise
function isOperator(address who) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IERC1271 {
/// @notice Verifies offchain signature.
/// @dev Should return whether the signature provided is valid for the provided hash
///
/// MUST return the bytes4 magic value 0x1626ba7e when function passes.
///
/// MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5)
///
/// MUST allow external calls
/// @param _hash Hash of the data to be signed
/// @param _signature Signature byte array associated with _hash
/// @return magicValue 0x1626ba7e if valid, 0xffffffff otherwise
function isValidSignature(bytes32 _hash, bytes memory _signature) external view returns (bytes4 magicValue);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./IIntegrationVault.sol";
interface IERC20Vault is IIntegrationVault {
/// @notice Initialized a new contract.
/// @dev Can only be initialized by vault governance
/// @param nft_ NFT of the vault in the VaultRegistry
/// @param vaultTokens_ ERC20 tokens that will be managed by this Vault
function initialize(uint256 nft_, address[] memory vaultTokens_) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../external/erc/IERC1271.sol";
import "./IVault.sol";
interface IIntegrationVault is IVault, IERC1271 {
/// @notice Pushes tokens on the vault balance to the underlying protocol. For example, for Yearn this operation will take USDC from
/// the contract balance and convert it to yUSDC.
/// @dev Tokens **must** be a subset of Vault Tokens. However, the convention is that if tokenAmount == 0 it is the same as token is missing.
///
/// Also notice that this operation doesn't guarantee that tokenAmounts will be invested in full.
/// @param tokens Tokens to push
/// @param tokenAmounts Amounts of tokens to push
/// @param options Additional options that could be needed for some vaults. E.g. for Uniswap this could be `deadline` param. For the exact bytes structure see concrete vault descriptions
/// @return actualTokenAmounts The amounts actually invested. It could be less than tokenAmounts (but not higher)
function push(
address[] memory tokens,
uint256[] memory tokenAmounts,
bytes memory options
) external returns (uint256[] memory actualTokenAmounts);
/// @notice The same as `push` method above but transfers tokens to vault balance prior to calling push.
/// After the `push` it returns all the leftover tokens back (`push` method doesn't guarantee that tokenAmounts will be invested in full).
/// @param tokens Tokens to push
/// @param tokenAmounts Amounts of tokens to push
/// @param options Additional options that could be needed for some vaults. E.g. for Uniswap this could be `deadline` param. For the exact bytes structure see concrete vault descriptions
/// @return actualTokenAmounts The amounts actually invested. It could be less than tokenAmounts (but not higher)
function transferAndPush(
address from,
address[] memory tokens,
uint256[] memory tokenAmounts,
bytes memory options
) external returns (uint256[] memory actualTokenAmounts);
/// @notice Pulls tokens from the underlying protocol to the `to` address.
/// @dev Can only be called but Vault Owner or Strategy. Vault owner is the owner of NFT for this vault in VaultManager.
/// Strategy is approved address for the vault NFT.
/// When called by vault owner this method just pulls the tokens from the protocol to the `to` address
/// When called by strategy on vault other than zero vault it pulls the tokens to zero vault (required `to` == zero vault)
/// When called by strategy on zero vault it pulls the tokens to zero vault, pushes tokens on the `to` vault, and reclaims everything that's left.
/// Thus any vault other than zero vault cannot have any tokens on it
///
/// Tokens **must** be a subset of Vault Tokens. However, the convention is that if tokenAmount == 0 it is the same as token is missing.
///
/// Pull is fulfilled on the best effort basis, i.e. if the tokenAmounts overflows available funds it withdraws all the funds.
/// @param to Address to receive the tokens
/// @param tokens Tokens to pull
/// @param tokenAmounts Amounts of tokens to pull
/// @param options Additional options that could be needed for some vaults. E.g. for Uniswap this could be `deadline` param. For the exact bytes structure see concrete vault descriptions
/// @return actualTokenAmounts The amounts actually withdrawn. It could be less than tokenAmounts (but not higher)
function pull(
address to,
address[] memory tokens,
uint256[] memory tokenAmounts,
bytes memory options
) external returns (uint256[] memory actualTokenAmounts);
/// @notice Claim ERC20 tokens from vault balance to zero vault.
/// @dev Cannot be called from zero vault.
/// @param tokens Tokens to claim
/// @return actualTokenAmounts Amounts reclaimed
function reclaimTokens(address[] memory tokens) external returns (uint256[] memory actualTokenAmounts);
/// @notice Execute one of whitelisted calls.
/// @dev Can only be called by Vault Owner or Strategy. Vault owner is the owner of NFT for this vault in VaultManager.
/// Strategy is approved address for the vault NFT.
///
/// Since this method allows sending arbitrary transactions, the destinations of the calls
/// are whitelisted by Protocol Governance.
/// @param to Address of the reward pool
/// @param selector Selector of the call
/// @param data Abi encoded parameters to `to::selector`
/// @return result Result of execution of the call
function externalCall(
address to,
bytes4 selector,
bytes memory data
) external payable returns (bytes memory result);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface ILpCallback {
/// @notice Function, that ERC20RootVault calling after deposit
function depositCallback() external;
/// @notice Function, that ERC20RootVault calling after withdraw
function withdrawCallback() external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
pragma abicoder v2;
import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "./IPeripheryImmutableState.sol";
/// @title Non-fungible token for positions
/// @notice Wraps Uniswap V3 positions in a non-fungible token interface which allows for them to be transferred
/// and authorized.
interface INonfungiblePositionManager is IPeripheryImmutableState, IERC721 {
/// @notice Emitted when liquidity is increased for a position NFT
/// @dev Also emitted when a token is minted
/// @param tokenId The ID of the token for which liquidity was increased
/// @param liquidity The amount by which liquidity for the NFT position was increased
/// @param amount0 The amount of token0 that was paid for the increase in liquidity
/// @param amount1 The amount of token1 that was paid for the increase in liquidity
event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
/// @notice Emitted when liquidity is decreased for a position NFT
/// @param tokenId The ID of the token for which liquidity was decreased
/// @param liquidity The amount by which liquidity for the NFT position was decreased
/// @param amount0 The amount of token0 that was accounted for the decrease in liquidity
/// @param amount1 The amount of token1 that was accounted for the decrease in liquidity
event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
/// @notice Emitted when tokens are collected for a position NFT
/// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior
/// @param tokenId The ID of the token for which underlying tokens were collected
/// @param recipient The address of the account that received the collected tokens
/// @param amount0 The amount of token0 owed to the position that was collected
/// @param amount1 The amount of token1 owed to the position that was collected
event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1);
/// @notice Returns the position information associated with a given token ID.
/// @dev Throws if the token ID is not valid.
/// @param tokenId The ID of the token that represents the position
/// @return nonce The nonce for permits
/// @return operator The address that is approved for spending
/// @return token0 The address of the token0 for a specific pool
/// @return token1 The address of the token1 for a specific pool
/// @return fee The fee associated with the pool
/// @return tickLower The lower end of the tick range for the position
/// @return tickUpper The higher end of the tick range for the position
/// @return liquidity The liquidity of the position
/// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position
/// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position
/// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation
/// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation
function positions(uint256 tokenId)
external
view
returns (
uint96 nonce,
address operator,
address token0,
address token1,
uint24 fee,
int24 tickLower,
int24 tickUpper,
uint128 liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
);
struct MintParams {
address token0;
address token1;
uint24 fee;
int24 tickLower;
int24 tickUpper;
uint256 amount0Desired;
uint256 amount1Desired;
uint256 amount0Min;
uint256 amount1Min;
address recipient;
uint256 deadline;
}
/// @notice Creates a new position wrapped in a NFT
/// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized
/// a method does not exist, i.e. the pool is assumed to be initialized.
/// @param params The params necessary to mint a position, encoded as `MintParams` in calldata
/// @return tokenId The ID of the token that represents the minted position
/// @return liquidity The amount of liquidity for this position
/// @return amount0 The amount of token0
/// @return amount1 The amount of token1
function mint(MintParams calldata params)
external
payable
returns (
uint256 tokenId,
uint128 liquidity,
uint256 amount0,
uint256 amount1
);
struct IncreaseLiquidityParams {
uint256 tokenId;
uint256 amount0Desired;
uint256 amount1Desired;
uint256 amount0Min;
uint256 amount1Min;
uint256 deadline;
}
/// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender`
/// @param params tokenId The ID of the token for which liquidity is being increased,
/// amount0Desired The desired amount of token0 to be spent,
/// amount1Desired The desired amount of token1 to be spent,
/// amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
/// amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
/// deadline The time by which the transaction must be included to effect the change
/// @return liquidity The new liquidity amount as a result of the increase
/// @return amount0 The amount of token0 to acheive resulting liquidity
/// @return amount1 The amount of token1 to acheive resulting liquidity
function increaseLiquidity(IncreaseLiquidityParams calldata params)
external
payable
returns (
uint128 liquidity,
uint256 amount0,
uint256 amount1
);
struct DecreaseLiquidityParams {
uint256 tokenId;
uint128 liquidity;
uint256 amount0Min;
uint256 amount1Min;
uint256 deadline;
}
/// @notice Decreases the amount of liquidity in a position and accounts it to the position
/// @param params tokenId The ID of the token for which liquidity is being decreased,
/// amount The amount by which liquidity will be decreased,
/// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity,
/// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity,
/// deadline The time by which the transaction must be included to effect the change
/// @return amount0 The amount of token0 accounted to the position's tokens owed
/// @return amount1 The amount of token1 accounted to the position's tokens owed
function decreaseLiquidity(DecreaseLiquidityParams calldata params)
external
payable
returns (uint256 amount0, uint256 amount1);
struct CollectParams {
uint256 tokenId;
address recipient;
uint128 amount0Max;
uint128 amount1Max;
}
/// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient
/// @param params tokenId The ID of the NFT for which tokens are being collected,
/// recipient The account that should receive the tokens,
/// amount0Max The maximum amount of token0 to collect,
/// amount1Max The maximum amount of token1 to collect
/// @return amount0 The amount of fees collected in token0
/// @return amount1 The amount of fees collected in token1
function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1);
/// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens
/// must be collected first.
/// @param tokenId The ID of the token that is being burned
function burn(uint256 tokenId) external payable;
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.0;
interface IOlympusRange {
function price(bool wall_, bool high_) external view returns (uint256);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
/// @title Immutable state
/// @notice Functions that return immutable state of the router
interface IPeripheryImmutableState {
/// @return Returns the address of the Uniswap V3 factory
function factory() external view returns (address);
/// @return Returns the address of WETH9
function WETH9() external view returns (address);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./utils/IDefaultAccessControl.sol";
import "./IUnitPricesGovernance.sol";
interface IProtocolGovernance is IDefaultAccessControl, IUnitPricesGovernance {
/// @notice CommonLibrary protocol params.
/// @param maxTokensPerVault Max different token addresses that could be managed by the vault
/// @param governanceDelay The delay (in secs) that must pass before setting new pending params to commiting them
/// @param protocolTreasury The address that collects protocolFees, if protocolFee is not zero
/// @param forceAllowMask If a permission bit is set in this mask it forces all addresses to have this permission as true
/// @param withdrawLimit Withdraw limit (in unit prices, i.e. usd)
struct Params {
uint256 maxTokensPerVault;
uint256 governanceDelay;
address protocolTreasury;
uint256 forceAllowMask;
uint256 withdrawLimit;
}
// ------------------- EXTERNAL, VIEW -------------------
/// @notice Timestamp after which staged granted permissions for the given address can be committed.
/// @param target The given address
/// @return Zero if there are no staged permission grants, timestamp otherwise
function stagedPermissionGrantsTimestamps(address target) external view returns (uint256);
/// @notice Staged granted permission bitmask for the given address.
/// @param target The given address
/// @return Bitmask
function stagedPermissionGrantsMasks(address target) external view returns (uint256);
/// @notice Permission bitmask for the given address.
/// @param target The given address
/// @return Bitmask
function permissionMasks(address target) external view returns (uint256);
/// @notice Timestamp after which staged pending protocol parameters can be committed
/// @return Zero if there are no staged parameters, timestamp otherwise.
function stagedParamsTimestamp() external view returns (uint256);
/// @notice Staged pending protocol parameters.
function stagedParams() external view returns (Params memory);
/// @notice Current protocol parameters.
function params() external view returns (Params memory);
/// @notice Addresses for which non-zero permissions are set.
function permissionAddresses() external view returns (address[] memory);
/// @notice Permission addresses staged for commit.
function stagedPermissionGrantsAddresses() external view returns (address[] memory);
/// @notice Return all addresses where rawPermissionMask bit for permissionId is set to 1.
/// @param permissionId Id of the permission to check.
/// @return A list of dirty addresses.
function addressesByPermission(uint8 permissionId) external view returns (address[] memory);
/// @notice Checks if address has permission or given permission is force allowed for any address.
/// @param addr Address to check
/// @param permissionId Permission to check
function hasPermission(address addr, uint8 permissionId) external view returns (bool);
/// @notice Checks if address has all permissions.
/// @param target Address to check
/// @param permissionIds A list of permissions to check
function hasAllPermissions(address target, uint8[] calldata permissionIds) external view returns (bool);
/// @notice Max different ERC20 token addresses that could be managed by the protocol.
function maxTokensPerVault() external view returns (uint256);
/// @notice The delay for committing any governance params.
function governanceDelay() external view returns (uint256);
/// @notice The address of the protocol treasury.
function protocolTreasury() external view returns (address);
/// @notice Permissions mask which defines if ordinary permission should be reverted.
/// This bitmask is xored with ordinary mask.
function forceAllowMask() external view returns (uint256);
/// @notice Withdraw limit per token per block.
/// @param token Address of the token
/// @return Withdraw limit per token per block
function withdrawLimit(address token) external view returns (uint256);
/// @notice Addresses that has staged validators.
function stagedValidatorsAddresses() external view returns (address[] memory);
/// @notice Timestamp after which staged granted permissions for the given address can be committed.
/// @param target The given address
/// @return Zero if there are no staged permission grants, timestamp otherwise
function stagedValidatorsTimestamps(address target) external view returns (uint256);
/// @notice Staged validator for the given address.
/// @param target The given address
/// @return Validator
function stagedValidators(address target) external view returns (address);
/// @notice Addresses that has validators.
function validatorsAddresses() external view returns (address[] memory);
/// @notice Address that has validators.
/// @param i The number of address
/// @return Validator address
function validatorsAddress(uint256 i) external view returns (address);
/// @notice Validator for the given address.
/// @param target The given address
/// @return Validator
function validators(address target) external view returns (address);
// ------------------- EXTERNAL, MUTATING, GOVERNANCE, IMMEDIATE -------------------
/// @notice Rollback all staged validators.
function rollbackStagedValidators() external;
/// @notice Revoke validator instantly from the given address.
/// @param target The given address
function revokeValidator(address target) external;
/// @notice Stages a new validator for the given address
/// @param target The given address
/// @param validator The validator for the given address
function stageValidator(address target, address validator) external;
/// @notice Commits validator for the given address.
/// @dev Reverts if governance delay has not passed yet.
/// @param target The given address.
function commitValidator(address target) external;
/// @notice Commites all staged validators for which governance delay passed
/// @return Addresses for which validators were committed
function commitAllValidatorsSurpassedDelay() external returns (address[] memory);
/// @notice Rollback all staged granted permission grant.
function rollbackStagedPermissionGrants() external;
/// @notice Commits permission grants for the given address.
/// @dev Reverts if governance delay has not passed yet.
/// @param target The given address.
function commitPermissionGrants(address target) external;
/// @notice Commites all staged permission grants for which governance delay passed.
/// @return An array of addresses for which permission grants were committed.
function commitAllPermissionGrantsSurpassedDelay() external returns (address[] memory);
/// @notice Revoke permission instantly from the given address.
/// @param target The given address.
/// @param permissionIds A list of permission ids to revoke.
function revokePermissions(address target, uint8[] memory permissionIds) external;
/// @notice Commits staged protocol params.
/// Reverts if governance delay has not passed yet.
function commitParams() external;
// ------------------- EXTERNAL, MUTATING, GOVERNANCE, DELAY -------------------
/// @notice Sets new pending params that could have been committed after governance delay expires.
/// @param newParams New protocol parameters to set.
function stageParams(Params memory newParams) external;
/// @notice Stage granted permissions that could have been committed after governance delay expires.
/// Resets commit delay and permissions if there are already staged permissions for this address.
/// @param target Target address
/// @param permissionIds A list of permission ids to grant
function stagePermissionGrants(address target, uint8[] memory permissionIds) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol";
import "./IIntegrationVault.sol";
import "../external/univ3/INonfungiblePositionManager.sol";
import "../external/univ3/IUniswapV3Pool.sol";
interface IUniV3Vault is IERC721Receiver, IIntegrationVault {
struct Options {
uint256 amount0Min;
uint256 amount1Min;
uint256 deadline;
}
/// @notice Reference to INonfungiblePositionManager of UniswapV3 protocol.
function positionManager() external view returns (INonfungiblePositionManager);
/// @notice Reference to UniswapV3 pool.
function pool() external view returns (IUniswapV3Pool);
/// @notice NFT of UniV3 position manager
function uniV3Nft() external view returns (uint256);
/// @notice Returns tokenAmounts corresponding to liquidity, based on the current Uniswap position
/// @param liquidity Liquidity that will be converted to token amounts
/// @return tokenAmounts Token amounts for the specified liquidity
function liquidityToTokenAmounts(uint128 liquidity) external view returns (uint256[] memory tokenAmounts);
/// @notice Returns liquidity corresponding to token amounts, based on the current Uniswap position
/// @param tokenAmounts Token amounts that will be converted to liquidity
/// @return liquidity Liquidity for the specified token amounts
function tokenAmountsToLiquidity(uint256[] memory tokenAmounts) external view returns (uint128 liquidity);
/// @notice Initialized a new contract.
/// @dev Can only be initialized by vault governance
/// @param nft_ NFT of the vault in the VaultRegistry
/// @param vaultTokens_ ERC20 tokens that will be managed by this Vault
/// @param fee_ Fee of the UniV3 pool
/// @param uniV3Helper_ address of helper for UniV3 arithmetic with ticks
function initialize(
uint256 nft_,
address[] memory vaultTokens_,
uint24 fee_,
address uniV3Helper_
) external;
/// @notice Collect UniV3 fees to zero vault.
function collectEarnings() external returns (uint256[] memory collectedEarnings);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import "./pool/IUniswapV3PoolActions.sol";
import "./pool/IUniswapV3PoolImmutables.sol";
import "./pool/IUniswapV3PoolState.sol";
import "./pool/IUniswapV3PoolDerivedState.sol";
/// @title The interface for a Uniswap V3 Pool
/// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IUniswapV3Pool is
IUniswapV3PoolImmutables,
IUniswapV3PoolState,
IUniswapV3PoolDerivedState,
IUniswapV3PoolActions
{
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IUniswapV3PoolActions {
/// @notice Sets the initial price for the pool
/// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
/// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
function initialize(uint160 sqrtPriceX96) external;
/// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
/// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
/// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
/// on tickLower, tickUpper, the amount of liquidity, and the current price.
/// @param recipient The address for which the liquidity will be created
/// @param tickLower The lower tick of the position in which to add liquidity
/// @param tickUpper The upper tick of the position in which to add liquidity
/// @param amount The amount of liquidity to mint
/// @param data Any data that should be passed through to the callback
/// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
/// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
function mint(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount,
bytes calldata data
) external returns (uint256 amount0, uint256 amount1);
/// @notice Collects tokens owed to a position
/// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
/// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
/// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
/// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
/// @param recipient The address which should receive the fees collected
/// @param tickLower The lower tick of the position for which to collect fees
/// @param tickUpper The upper tick of the position for which to collect fees
/// @param amount0Requested How much token0 should be withdrawn from the fees owed
/// @param amount1Requested How much token1 should be withdrawn from the fees owed
/// @return amount0 The amount of fees collected in token0
/// @return amount1 The amount of fees collected in token1
function collect(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
/// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
/// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
/// @dev Fees must be collected separately via a call to #collect
/// @param tickLower The lower tick of the position for which to burn liquidity
/// @param tickUpper The upper tick of the position for which to burn liquidity
/// @param amount How much liquidity to burn
/// @return amount0 The amount of token0 sent to the recipient
/// @return amount1 The amount of token1 sent to the recipient
function burn(
int24 tickLower,
int24 tickUpper,
uint128 amount
) external returns (uint256 amount0, uint256 amount1);
/// @notice Swap token0 for token1, or token1 for token0
/// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
/// @param recipient The address to receive the output of the swap
/// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
/// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
/// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
/// value after the swap. If one for zero, the price cannot be greater than this value after the swap
/// @param data Any data to be passed through to the callback
/// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
/// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external returns (int256 amount0, int256 amount1);
/// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
/// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
/// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
/// with 0 amount{0,1} and sending the donation amount(s) from the callback
/// @param recipient The address which will receive the token0 and token1 amounts
/// @param amount0 The amount of token0 to send
/// @param amount1 The amount of token1 to send
/// @param data Any data to be passed through to the callback
function flash(
address recipient,
uint256 amount0,
uint256 amount1,
bytes calldata data
) external;
/// @notice Increase the maximum number of price and liquidity observations that this pool will store
/// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
/// the input observationCardinalityNext.
/// @param observationCardinalityNext The desired minimum number of observations for the pool to store
function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IUniswapV3PoolDerivedState {
/// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
/// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
/// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
/// you must call it with secondsAgos = [3600, 0].
/// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
/// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
/// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
/// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
/// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
/// timestamp
function observe(uint32[] calldata secondsAgos)
external
view
returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IUniswapV3PoolImmutables {
/// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
/// @return The contract address
function factory() external view returns (address);
/// @notice The first of the two tokens of the pool, sorted by address
/// @return The token contract address
function token0() external view returns (address);
/// @notice The second of the two tokens of the pool, sorted by address
/// @return The token contract address
function token1() external view returns (address);
/// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
/// @return The fee
function fee() external view returns (uint24);
/// @notice The pool tick spacing
/// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
/// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
/// This value is an int24 to avoid casting even though it is always positive.
/// @return The tick spacing
function tickSpacing() external view returns (int24);
/// @notice The maximum amount of position liquidity that can use any tick in the range
/// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
/// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
/// @return The max amount of liquidity per tick
function maxLiquidityPerTick() external view returns (uint128);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IUniswapV3PoolState {
/// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
/// when accessed externally.
/// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
/// tick The current tick of the pool, i.e. according to the last tick transition that was run.
/// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
/// boundary.
/// observationIndex The index of the last oracle observation that was written,
/// observationCardinality The current maximum number of observations stored in the pool,
/// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
/// feeProtocol The protocol fee for both tokens of the pool.
/// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
/// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
/// unlocked Whether the pool is currently locked to reentrancy
function slot0()
external
view
returns (
uint160 sqrtPriceX96,
int24 tick,
uint16 observationIndex,
uint16 observationCardinality,
uint16 observationCardinalityNext,
uint8 feeProtocol,
bool unlocked
);
/// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal0X128() external view returns (uint256);
/// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal1X128() external view returns (uint256);
/// @notice The amounts of token0 and token1 that are owed to the protocol
/// @dev Protocol fees will never exceed uint128 max in either token
function protocolPerformanceFees() external view returns (uint128 token0, uint128 token1);
/// @notice The currently in range liquidity available to the pool
/// @dev This value has no relationship to the total liquidity across all ticks
function liquidity() external view returns (uint128);
/// @notice Look up information about a specific tick in the pool
/// @param tick The tick to look up
/// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
/// tick upper,
/// liquidityNet how much liquidity changes when the pool price crosses the tick,
/// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
/// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
/// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
/// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
/// secondsOutside the seconds spent on the other side of the tick from the current tick,
/// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
/// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
/// In addition, these values are only relative and must be used only in comparison to previous snapshots for
/// a specific position.
function ticks(int24 tick)
external
view
returns (
uint128 liquidityGross,
int128 liquidityNet,
uint256 feeGrowthOutside0X128,
uint256 feeGrowthOutside1X128,
int56 tickCumulativeOutside,
uint160 secondsPerLiquidityOutsideX128,
uint32 secondsOutside,
bool initialized
);
/// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
function tickBitmap(int16 wordPosition) external view returns (uint256);
/// @notice Returns the information about a position by the position's key
/// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
/// @return _liquidity The amount of liquidity in the position,
/// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
/// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
/// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
/// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
function positions(bytes32 key)
external
view
returns (
uint128 _liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
);
/// @notice Returns data about a specific observation index
/// @param index The element of the observations array to fetch
/// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
/// ago, rather than at a specific index in the array.
/// @return blockTimestamp The timestamp of the observation,
/// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
/// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
/// Returns initialized whether the observation has been initialized and the values are safe to use
function observations(uint256 index)
external
view
returns (
uint32 blockTimestamp,
int56 tickCumulative,
uint160 secondsPerLiquidityCumulativeX128,
bool initialized
);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import "./utils/IDefaultAccessControl.sol";
interface IUnitPricesGovernance is IDefaultAccessControl, IERC165 {
// ------------------- EXTERNAL, VIEW -------------------
/// @notice Estimated amount of token worth 1 USD staged for commit.
/// @param token Address of the token
/// @return The amount of token
function stagedUnitPrices(address token) external view returns (uint256);
/// @notice Timestamp after which staged unit prices for the given token can be committed.
/// @param token Address of the token
/// @return Timestamp
function stagedUnitPricesTimestamps(address token) external view returns (uint256);
/// @notice Estimated amount of token worth 1 USD.
/// @param token Address of the token
/// @return The amount of token
function unitPrices(address token) external view returns (uint256);
// ------------------- EXTERNAL, MUTATING -------------------
/// @notice Stage estimated amount of token worth 1 USD staged for commit.
/// @param token Address of the token
/// @param value The amount of token
function stageUnitPrice(address token, uint256 value) external;
/// @notice Reset staged value
/// @param token Address of the token
function rollbackUnitPrice(address token) external;
/// @notice Commit staged unit price
/// @param token Address of the token
function commitUnitPrice(address token) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import "./IVaultGovernance.sol";
interface IVault is IERC165 {
/// @notice Checks if the vault is initialized
function initialized() external view returns (bool);
/// @notice VaultRegistry NFT for this vault
function nft() external view returns (uint256);
/// @notice Address of the Vault Governance for this contract.
function vaultGovernance() external view returns (IVaultGovernance);
/// @notice ERC20 tokens under Vault management.
function vaultTokens() external view returns (address[] memory);
/// @notice Checks if a token is vault token
/// @param token Address of the token to check
/// @return `true` if this token is managed by Vault
function isVaultToken(address token) external view returns (bool);
/// @notice Total value locked for this contract.
/// @dev Generally it is the underlying token value of this contract in some
/// other DeFi protocol. For example, for USDC Yearn Vault this would be total USDC balance that could be withdrawn for Yearn to this contract.
/// The tvl itself is estimated in some range. Sometimes the range is exact, sometimes it's not
/// @return minTokenAmounts Lower bound for total available balances estimation (nth tokenAmount corresponds to nth token in vaultTokens)
/// @return maxTokenAmounts Upper bound for total available balances estimation (nth tokenAmount corresponds to nth token in vaultTokens)
function tvl() external view returns (uint256[] memory minTokenAmounts, uint256[] memory maxTokenAmounts);
/// @notice Existential amounts for each token
function pullExistentials() external view returns (uint256[] memory);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../IProtocolGovernance.sol";
import "../IVaultRegistry.sol";
import "./IVault.sol";
interface IVaultGovernance {
/// @notice Internal references of the contract.
/// @param protocolGovernance Reference to Protocol Governance
/// @param registry Reference to Vault Registry
struct InternalParams {
IProtocolGovernance protocolGovernance;
IVaultRegistry registry;
IVault singleton;
}
// ------------------- EXTERNAL, VIEW -------------------
/// @notice Timestamp in unix time seconds after which staged Delayed Strategy Params could be committed.
/// @param nft Nft of the vault
function delayedStrategyParamsTimestamp(uint256 nft) external view returns (uint256);
/// @notice Timestamp in unix time seconds after which staged Delayed Protocol Params could be committed.
function delayedProtocolParamsTimestamp() external view returns (uint256);
/// @notice Timestamp in unix time seconds after which staged Delayed Protocol Params Per Vault could be committed.
/// @param nft Nft of the vault
function delayedProtocolPerVaultParamsTimestamp(uint256 nft) external view returns (uint256);
/// @notice Timestamp in unix time seconds after which staged Internal Params could be committed.
function internalParamsTimestamp() external view returns (uint256);
/// @notice Internal Params of the contract.
function internalParams() external view returns (InternalParams memory);
/// @notice Staged new Internal Params.
/// @dev The Internal Params could be committed after internalParamsTimestamp
function stagedInternalParams() external view returns (InternalParams memory);
// ------------------- EXTERNAL, MUTATING -------------------
/// @notice Stage new Internal Params.
/// @param newParams New Internal Params
function stageInternalParams(InternalParams memory newParams) external;
/// @notice Commit staged Internal Params.
function commitInternalParams() external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "./IProtocolGovernance.sol";
interface IVaultRegistry is IERC721 {
/// @notice Get Vault for the giver NFT ID.
/// @param nftId NFT ID
/// @return vault Address of the Vault contract
function vaultForNft(uint256 nftId) external view returns (address vault);
/// @notice Get NFT ID for given Vault contract address.
/// @param vault Address of the Vault contract
/// @return nftId NFT ID
function nftForVault(address vault) external view returns (uint256 nftId);
/// @notice Checks if the nft is locked for all transfers
/// @param nft NFT to check for lock
/// @return `true` if locked, false otherwise
function isLocked(uint256 nft) external view returns (bool);
/// @notice Register new Vault and mint NFT.
/// @param vault address of the vault
/// @param owner owner of the NFT
/// @return nft Nft minted for the given Vault
function registerVault(address vault, address owner) external returns (uint256 nft);
/// @notice Number of Vaults registered.
function vaultsCount() external view returns (uint256);
/// @notice All Vaults registered.
function vaults() external view returns (address[] memory);
/// @notice Address of the ProtocolGovernance.
function protocolGovernance() external view returns (IProtocolGovernance);
/// @notice Address of the staged ProtocolGovernance.
function stagedProtocolGovernance() external view returns (IProtocolGovernance);
/// @notice Minimal timestamp when staged ProtocolGovernance can be applied.
function stagedProtocolGovernanceTimestamp() external view returns (uint256);
/// @notice Stage new ProtocolGovernance.
/// @param newProtocolGovernance new ProtocolGovernance
function stageProtocolGovernance(IProtocolGovernance newProtocolGovernance) external;
/// @notice Commit new ProtocolGovernance.
function commitStagedProtocolGovernance() external;
/// @notice Lock NFT for transfers
/// @dev Use this method when vault structure is set up and should become immutable. Can be called by owner.
/// @param nft - NFT to lock
function lockNft(uint256 nft) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import "../libraries/CommonLibrary.sol";
import "../utils/DefaultAccessControl.sol";
import {BasePulseStrategy, IUniV3Vault, TickMath} from "./BasePulseStrategy.sol";
import "../interfaces/external/olympus/IOlympusRange.sol";
import "../interfaces/external/univ3/IUniswapV3Pool.sol";
contract OlympusConcentratedStrategy is DefaultAccessControl {
uint256 public constant Q96 = 2**96;
struct MutableParams {
int24 intervalWidth;
int24 tickNeighborhood;
}
BasePulseStrategy public immutable baseStrategy;
IOlympusRange public immutable range;
int24 public immutable tickSpacing;
uint8 public immutable ohmDecimals;
uint8 public immutable reserveDecimals;
uint8 public immutable priceDecimals;
bool public immutable isFirstOhm;
MutableParams public mutableParams;
constructor(
address admin_,
BasePulseStrategy baseStrategy_,
IOlympusRange range_,
int24 tickSpacing_,
uint8 ohmDecimals_,
uint8 reserveDecimals_,
uint8 priceDecimals_,
bool isFirstOhm_
) DefaultAccessControl(admin_) {
baseStrategy = baseStrategy_;
range = range_;
tickSpacing = tickSpacing_;
ohmDecimals = ohmDecimals_;
reserveDecimals = reserveDecimals_;
priceDecimals = priceDecimals_;
isFirstOhm = isFirstOhm_;
}
function updateMutableParams(MutableParams memory newMutableParams) external {
_requireAdmin();
mutableParams = newMutableParams;
}
function calculatePulseInterval() public view returns (BasePulseStrategy.Interval memory interval) {
MutableParams memory mutableParams_ = mutableParams;
(, IUniV3Vault vault, ) = baseStrategy.immutableParams();
(, int24 spotTick, , , , , ) = vault.pool().slot0();
uint256 uniV3Nft = vault.uniV3Nft();
if (uniV3Nft != 0) {
(, , , , , interval.lowerTick, interval.upperTick, , , , , ) = baseStrategy.positionManager().positions(
uniV3Nft
);
if (
mutableParams_.tickNeighborhood + interval.lowerTick <= spotTick &&
spotTick <= interval.upperTick - mutableParams_.tickNeighborhood &&
mutableParams_.intervalWidth == interval.upperTick - interval.lowerTick
) {
return interval;
}
}
int24 reminder = spotTick % tickSpacing;
if (reminder < 0) reminder += tickSpacing;
int24 centralTick = spotTick - reminder;
if (reminder * 2 > tickSpacing) {
centralTick += tickSpacing;
}
interval.lowerTick = centralTick - mutableParams_.intervalWidth / 2;
interval.upperTick = centralTick + mutableParams_.intervalWidth / 2;
}
function calculateOlympusInterval() public view returns (BasePulseStrategy.Interval memory) {
uint256 lowerCushionPrice = range.price(false, false);
uint256 upperCushionPrice = range.price(false, true);
uint256 lowerPriceX96;
uint256 upperPriceX96;
if (isFirstOhm) {
lowerPriceX96 = FullMath.mulDiv(
Q96,
10**reserveDecimals * lowerCushionPrice,
10**ohmDecimals * 10**priceDecimals
);
upperPriceX96 = FullMath.mulDiv(
Q96,
10**reserveDecimals * upperCushionPrice,
10**ohmDecimals * 10**priceDecimals
);
} else {
lowerPriceX96 = FullMath.mulDiv(
Q96,
10**ohmDecimals * 10**priceDecimals,
10**reserveDecimals * upperCushionPrice
);
upperPriceX96 = FullMath.mulDiv(
Q96,
10**ohmDecimals * 10**priceDecimals,
10**reserveDecimals * lowerCushionPrice
);
}
uint160 lowerSqrtPriceX96 = uint160(CommonLibrary.sqrtX96(lowerPriceX96));
uint160 upperSqrtPriceX96 = uint160(CommonLibrary.sqrtX96(upperPriceX96));
int24 lowerTick = TickMath.getTickAtSqrtRatio(lowerSqrtPriceX96);
int24 upperTick = TickMath.getTickAtSqrtRatio(upperSqrtPriceX96);
{
int24 reminder = lowerTick % tickSpacing;
if (reminder < 0) reminder += tickSpacing;
if (reminder != 0) {
lowerTick -= reminder;
}
}
{
int24 reminder = upperTick % tickSpacing;
if (reminder < 0) reminder += tickSpacing;
if (reminder != 0) {
upperTick += tickSpacing - reminder;
}
}
return BasePulseStrategy.Interval({lowerTick: lowerTick, upperTick: upperTick});
}
function calculateInterval() public view returns (BasePulseStrategy.Interval memory) {
BasePulseStrategy.Interval memory pulseInterval = calculatePulseInterval();
BasePulseStrategy.Interval memory olympusInterval = calculateOlympusInterval();
if (pulseInterval.lowerTick > olympusInterval.lowerTick) olympusInterval.lowerTick = pulseInterval.lowerTick;
if (pulseInterval.upperTick < olympusInterval.upperTick) olympusInterval.upperTick = pulseInterval.upperTick;
if (olympusInterval.lowerTick + tickSpacing > olympusInterval.upperTick) {
return pulseInterval;
}
return olympusInterval;
}
function rebalance(
uint256 deadline,
bytes memory swapData,
uint256 minAmountInCaseOfSwap
) external {
_requireAtLeastOperator();
baseStrategy.rebalance(deadline, calculateInterval(), swapData, minAmountInCaseOfSwap);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
import "../../interfaces/external/univ3/IUniswapV3Pool.sol";
/// @title Oracle library
/// @notice Provides functions to integrate with V3 pool oracle
library OracleLibrary {
/// @notice Calculates time-weighted means of tick and liquidity for a given Uniswap V3 pool
/// @param pool Address of the pool that we want to observe
/// @param secondsAgo Number of seconds in the past from which to calculate the time-weighted means
/// @return arithmeticMeanTick The arithmetic mean tick from (block.timestamp - secondsAgo) to block.timestamp
/// @return harmonicMeanLiquidity The harmonic mean liquidity from (block.timestamp - secondsAgo) to block.timestamp
/// @return withFail Flag that true if function observe of IUniswapV3Pool reverts with some error
function consult(address pool, uint32 secondsAgo)
internal
view
returns (
int24 arithmeticMeanTick,
uint128 harmonicMeanLiquidity,
bool withFail
)
{
require(secondsAgo != 0, "BP");
uint32[] memory secondsAgos = new uint32[](2);
secondsAgos[0] = secondsAgo;
secondsAgos[1] = 0;
try IUniswapV3Pool(pool).observe(secondsAgos) returns (
int56[] memory tickCumulatives,
uint160[] memory secondsPerLiquidityCumulativeX128s
) {
int56 tickCumulativesDelta = tickCumulatives[1] - tickCumulatives[0];
uint160 secondsPerLiquidityCumulativesDelta = secondsPerLiquidityCumulativeX128s[1] -
secondsPerLiquidityCumulativeX128s[0];
arithmeticMeanTick = int24(tickCumulativesDelta / int56(uint56(secondsAgo)));
// Always round to negative infinity
if (tickCumulativesDelta < 0 && (tickCumulativesDelta % int56(uint56(secondsAgo)) != 0))
arithmeticMeanTick--;
// We are multiplying here instead of shifting to ensure that harmonicMeanLiquidity doesn't overflow uint128
uint192 secondsAgoX160 = uint192(secondsAgo) * type(uint160).max;
harmonicMeanLiquidity = uint128(secondsAgoX160 / (uint192(secondsPerLiquidityCumulativesDelta) << 32));
} catch {
return (0, 0, true);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
/// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
int24 internal constant MIN_TICK = -887272;
/// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
int24 internal constant MAX_TICK = -MIN_TICK;
/// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
uint160 internal constant MIN_SQRT_RATIO = 4295128739;
/// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
/// @notice Calculates sqrt(1.0001^tick) * 2^96
/// @dev Throws if |tick| > max tick
/// @param tick The input tick for the above formula
/// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
/// at the given tick
function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
// diff: original require(absTick <= uint256(MAX_TICK), "T");
require(absTick <= uint256(int256(MAX_TICK)), "T");
uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
if (tick > 0) ratio = type(uint256).max / ratio;
// this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
// we then downcast because we know the result always fits within 160 bits due to our tick input constraint
// we round up in the division so getTickAtSqrtRatio of the output price is always consistent
sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
}
/// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
/// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
/// ever return.
/// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
/// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
// second inequality must be < because the price can never reach the price at the max tick
require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, "R");
uint256 ratio = uint256(sqrtPriceX96) << 32;
uint256 r = ratio;
uint256 msb = 0;
assembly {
let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(5, gt(r, 0xFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(4, gt(r, 0xFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(3, gt(r, 0xFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(2, gt(r, 0xF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(1, gt(r, 0x3))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := gt(r, 0x1)
msb := or(msb, f)
}
if (msb >= 128) r = ratio >> (msb - 127);
else r = ratio << (127 - msb);
int256 log_2 = (int256(msb) - 128) << 64;
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(63, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(62, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(61, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(60, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(59, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(58, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(57, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(56, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(55, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(54, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(53, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(52, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(51, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(50, f))
}
int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
}
}
{
"compilationTarget": {
"src/strategies/OlympusConcentratedStrategy.sol": "OlympusConcentratedStrategy"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":@openzeppelin/=lib/openzeppelin-contracts/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
":forge-std/=lib/forge-std/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
":openzeppelin/=lib/openzeppelin-contracts/contracts/"
]
}
[{"inputs":[{"internalType":"address","name":"admin_","type":"address"},{"internalType":"contract BasePulseStrategy","name":"baseStrategy_","type":"address"},{"internalType":"contract IOlympusRange","name":"range_","type":"address"},{"internalType":"int24","name":"tickSpacing_","type":"int24"},{"internalType":"uint8","name":"ohmDecimals_","type":"uint8"},{"internalType":"uint8","name":"reserveDecimals_","type":"uint8"},{"internalType":"uint8","name":"priceDecimals_","type":"uint8"},{"internalType":"bool","name":"isFirstOhm_","type":"bool"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"inputs":[],"name":"ADMIN_DELEGATE_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPERATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"Q96","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseStrategy","outputs":[{"internalType":"contract BasePulseStrategy","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"calculateInterval","outputs":[{"components":[{"internalType":"int24","name":"lowerTick","type":"int24"},{"internalType":"int24","name":"upperTick","type":"int24"}],"internalType":"struct BasePulseStrategy.Interval","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"calculateOlympusInterval","outputs":[{"components":[{"internalType":"int24","name":"lowerTick","type":"int24"},{"internalType":"int24","name":"upperTick","type":"int24"}],"internalType":"struct BasePulseStrategy.Interval","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"calculatePulseInterval","outputs":[{"components":[{"internalType":"int24","name":"lowerTick","type":"int24"},{"internalType":"int24","name":"upperTick","type":"int24"}],"internalType":"struct BasePulseStrategy.Interval","name":"interval","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"isAdmin","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isFirstOhm","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"isOperator","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mutableParams","outputs":[{"internalType":"int24","name":"intervalWidth","type":"int24"},{"internalType":"int24","name":"tickNeighborhood","type":"int24"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ohmDecimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"priceDecimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"range","outputs":[{"internalType":"contract IOlympusRange","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"bytes","name":"swapData","type":"bytes"},{"internalType":"uint256","name":"minAmountInCaseOfSwap","type":"uint256"}],"name":"rebalance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"reserveDecimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tickSpacing","outputs":[{"internalType":"int24","name":"","type":"int24"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"int24","name":"intervalWidth","type":"int24"},{"internalType":"int24","name":"tickNeighborhood","type":"int24"}],"internalType":"struct OlympusConcentratedStrategy.MutableParams","name":"newMutableParams","type":"tuple"}],"name":"updateMutableParams","outputs":[],"stateMutability":"nonpayable","type":"function"}]