// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert Errors.FailedCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly ("memory-safe") {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface AggregatorV3Interface {
function decimals() external view returns (uint8);
function description() external view returns (string memory);
function version() external view returns (uint256);
function getRoundData(
uint80 _roundId
) external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
function latestRoundData()
external
view
returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/// @dev The address of the Ethereum
IERC20 constant ETH = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
/// @dev The constant value helps in calculating percentages
uint256 constant PPM = 1_000_000;
/// @notice Thrown when updating an address with zero address
error ZeroAddress();
/// @notice Thrown when updating with an array of no values
error ZeroLengthArray();
/// @notice Thrown when updating with the same value as previously stored
error IdenticalValue();
/// @notice Thrown when two array lengths does not match
error ArrayLengthMismatch();
/// @notice Thrown when sign is invalid
error InvalidSignature();
/// @notice Thrown when input array length is zero
error InvalidData();
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/// @member token The token address
/// @member amount The token amount
struct ClaimInfo {
IERC20 token;
uint256 amount;
}
interface IClaims {
/// @notice Sets claim token and amount in the given round
/// @param to The address of the leader
/// @param claims The claim token and amount of the leader
function addClaimInfo(address[] calldata to, uint32 round, ClaimInfo[] calldata claims) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IRounds } from "./IRounds.sol";
interface ILockup {
/// @notice Returns locked amount of user at given index
/// @param user The address of the user
/// @param index The index number at which user has locked amount
function stakes(address user, uint256 index) external view returns (uint256 amount, uint256 endTime);
/// @notice Returns the minimum lockup amount
function minStakeAmount() external view returns (uint256);
}
interface IPreSale is IRounds {
/// @notice Purchases token with claim amount
/// @param token The purchase token
/// @param tokenPrice The current price of token in 10 decimals
/// @param referenceNormalizationFactor The value to handle decimals
/// @param amount The purchase amount
/// @param minAmountToken The minimum amount of token recipient will get
/// @param indexes The indexes at which user has locked tokens
/// @param recipient The address of the recipient
/// @param round The round in which user will purchase
function purchaseWithClaim(
IERC20 token,
uint256 tokenPrice,
uint8 referenceNormalizationFactor,
uint256 amount,
uint256 minAmountToken,
uint256[] calldata indexes,
address recipient,
uint32 round
) external payable;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;
interface IRounds {
/// @notice Returns the round details of the round
function rounds(uint32 round) external view returns (uint256 startTime, uint256 endTime, uint256 price);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This extension of the {Ownable} contract includes a two-step mechanism to transfer
* ownership, where the new owner must call {acceptOwnership} in order to replace the
* old one. This can help prevent common mistakes, such as transfers of ownership to
* incorrect accounts, or to contracts that are unable to interact with the
* permission system.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*
* Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import { MessageHashUtils } from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import { ReentrancyGuardTransient } from "@openzeppelin/contracts/utils/ReentrancyGuardTransient.sol";
import { Rounds, Ownable } from "./Rounds.sol";
import { ILockup, IPreSale } from "./ILockup.sol";
import { IClaims, ClaimInfo } from "./IClaims.sol";
import { ETH, PPM, ZeroAddress, ZeroLengthArray, IdenticalValue, ArrayLengthMismatch, InvalidSignature, InvalidData } from "./Common.sol";
/// @title PreSale contract
/// @notice Implements presale of the token
/// @dev The presale contract allows you to purchase presale token with allowed tokens
/// and there will be certain rounds
contract PreSale is IPreSale, Rounds, ReentrancyGuardTransient {
using SafeERC20 for IERC20;
using Address for address payable;
/// @member nftAmounts The nft amounts
/// @member roundPrice The round number
struct ClaimNFT {
uint256[] nftAmounts;
uint256 roundPrice;
}
/// @member price The price of token from price feed
/// @member normalizationFactorForToken The normalization factor to achieve return value of 18 decimals ,while calculating token purchases and always with different token decimals
/// @member normalizationFactorForNFT The normalization factor is the value which helps us to convert decimals of USDT to purchase token decimals and always with different token decimals
struct TokenInfo {
uint256 latestPrice;
uint8 normalizationFactorForToken;
uint8 normalizationFactorForNFT;
}
/// @member projectAmount The amount tansferred to project wallet
/// @member platformAmount The amount tansferred to platform wallet
/// @member burnAmount The amount tansferred to burn wallet
/// @member equivalence The amount tansferred to claims contract
struct TransferInfo {
uint256 projectAmount;
uint256 platformAmount;
uint256 burnAmount;
uint256 equivalence;
}
/// @dev To achieve return value of required decimals during calculation
uint256 private constant NORMALIZARION_FACTOR = 1e30;
/// @notice The constant value helps in calculating project amount
uint256 private constant PROJECT_PERCENTAGE_PPM = 630_000;
/// @dev The constant value helps in calculating discount
uint256 private constant FIRST_ROUND_PPM = 200_000;
/// @dev The constant value helps in calculating discount
uint256 private constant OTHER_ROUND_PPM = 70_000;
/// @dev The constant value helps in calculating amount
uint256 private constant CLAIMS_PERCENTAGE_PPM = 250_000;
/// @dev The constant value helps in calculating plaform amount
uint256 private constant PLATFORM_PERCENTAGE_PPM = 100_000;
/// @dev The constant value helps in calculating plaform amount
uint256 private constant BURN_PERCENTAGE_PPM = 20_000;
/// @dev The constant value helps in calculating leaders amount
uint256 private constant LEADERS_LENGTH = 5;
/// @notice The maximum number of tokens that will be sold in presale
uint256 public immutable maxCap;
/// @notice The address of claims contract
IClaims public immutable claimsContract;
/// @notice The address of lockup contract
ILockup public immutable lockup;
/// @notice That buyEnabled or not
bool public buyEnabled = true;
/// @notice The address of signer wallet
address public signerWallet;
/// @notice The address of the project wallet
address public projectWallet;
/// @notice The address of the platform wallet
address public platformWallet;
/// @notice The address of the burn wallet
address public burnWallet;
/// @notice Sum of tokens purchased in presale
uint256 public totalPurchases;
/// @notice The array of prices of each nft
uint256[] public nftPricing;
/// @notice Gives claim info of user in every round
mapping(address => mapping(uint32 => uint256)) public claims;
/// @notice Gives info about address's permission
mapping(address => bool) public blacklistAddress;
/// @notice Gives claim info of user nft in every round
mapping(address => mapping(uint32 => ClaimNFT[])) public claimNFT;
/// @dev Emitted when token is purchased with ETH
event PurchasedWithETH(
address indexed by,
string code,
uint256 amountPurchasedETH,
uint32 indexed round,
address[] leaders,
uint256[] percentages,
uint256 indexed roundPrice,
uint256 tokenPurchased
);
/// @dev Emitted when presale tokens are purchased with any token
event PurchasedWithToken(
IERC20 indexed token,
uint256 tokenPrice,
address indexed by,
string code,
uint256 amountPurchased,
uint256 tokenPurchased,
uint32 indexed round,
address[] leaders,
uint256[] percentages
);
/// @dev Emitted when NFT is purchased with ETH
event PurchasedWithETHForNFT(
address indexed by,
string code,
uint256 amountInETH,
uint256 ethPrice,
uint32 indexed round,
address[] leaders,
uint256[] percentages,
uint256 roundPrice,
uint256[] nftAmounts
);
/// @dev Emitted when NFT is purchased with any token
event PurchasedWithTokenForNFT(
IERC20 indexed token,
uint256 tokenPrice,
address indexed by,
string code,
uint256 amountPurchased,
uint32 indexed round,
address[] leaders,
uint256[] percentages,
uint256 roundPrice,
uint256[] nftAmounts
);
/// @dev Emitted when tokens are purchased with claim amount
event PurchasedWithClaimAmount(
address indexed by,
uint256 amount,
IERC20 token,
uint32 indexed round,
uint256 indexed tokenPrice,
uint256 tokenPurchased
);
/// @dev Emitted when address of signer is updated
event SignerUpdated(address oldSigner, address newSigner);
/// @dev Emitted when address of platform wallet is updated
event PlatformWalletUpdated(address oldPlatformWallet, address newPlatformWallet);
/// @dev Emitted when address of project wallet is updated
event ProjectWalletUpdated(address oldProjectWallet, address newProjectWallet);
/// @dev Emitted when address of burn wallet is updated
event BurnWalletUpdated(address oldBurnWallet, address newBurnWallet);
/// @dev Emitted when blacklist access of address is updated
event BlacklistUpdated(address which, bool accessNow);
/// @dev Emitted when buying access changes
event BuyEnableUpdated(bool oldAccess, bool newAccess);
/// @dev Emitted when NFT prices are updated
event PricingUpdated(uint256[] oldPrices, uint256[] newPrices);
/// @notice Thrown when address is blacklisted
error Blacklisted();
/// @notice Thrown when buy is disabled
error BuyNotEnabled();
/// @notice Thrown when sign deadline is expired
error DeadlineExpired();
/// @notice Thrown when Eth price suddenly drops while purchasing tokens
error UnexpectedPriceDifference();
/// @notice Thrown when value to transfer is zero
error ZeroValue();
/// @notice Thrown when price from price feed returns zero
error PriceNotFound();
/// @notice Thrown when max cap is reached
error MaxCapReached();
/// @notice Thrown when caller is not claims contract
error OnlyClaims();
/// @notice Thrown when purchase amount is less than required
error InvalidPurchase();
/// @notice Thrown when both price feed and reference price are non zero
error CodeSyncIssue();
/// @notice Thrown if the price is not updated
error PriceNotUpdated();
/// @notice Thrown if the sum of agents percentage is greater than required
error InvalidPercentage();
/// @notice Thrown if the roundId of price is not updated
error RoundIdNotUpdated();
/// @notice Thrown when array length of leaders are greater than required
error InvalidArrayLength();
/// @notice Thrown when array is not sorted
error ArrayNotSorted();
/// @notice Restricts when updating wallet/contract address with zero address
modifier checkAddressZero(address which) {
_checkAddressZero(which);
_;
}
/// @notice Ensures that buy is enabled when buying
modifier canBuy() {
_canBuy();
_;
}
/// @dev Constructor
/// @param projectWalletAddress The address of project wallet
/// @param platformWalletAddress The address of platform wallet
/// @param burnWalletAddress The address of burn wallet
/// @param signerAddress The address of signer wallet
/// @param claimsContractAddress The address of claim contract
/// @param lockupContractAddress The address of lockup contract
/// @param owner The address of owner wallet
/// @param lastRound The last round created
/// @param nftPrices The prices of nfts
/// @param initMaxCap The max cap of gems token
constructor(
address projectWalletAddress,
address platformWalletAddress,
address burnWalletAddress,
address signerAddress,
IClaims claimsContractAddress,
ILockup lockupContractAddress,
address owner,
uint32 lastRound,
uint256[] memory nftPrices,
uint256 initMaxCap
)
Rounds(lastRound)
Ownable(owner)
checkAddressZero(signerAddress)
checkAddressZero(address(claimsContractAddress))
checkAddressZero(address(lockupContractAddress))
checkAddressZero(projectWalletAddress)
checkAddressZero(platformWalletAddress)
checkAddressZero(burnWalletAddress)
{
if (nftPrices.length == 0) {
revert ZeroLengthArray();
}
for (uint256 i = 0; i < nftPrices.length; ++i) {
_checkValue(nftPrices[i]);
}
projectWallet = projectWalletAddress;
platformWallet = platformWalletAddress;
burnWallet = burnWalletAddress;
signerWallet = signerAddress;
claimsContract = claimsContractAddress;
lockup = lockupContractAddress;
nftPricing = nftPrices;
_checkValue(initMaxCap);
maxCap = initMaxCap;
}
/// @notice Changes access of buying
/// @param enabled The decision about buying
function enableBuy(bool enabled) external onlyOwner {
if (buyEnabled == enabled) {
revert IdenticalValue();
}
emit BuyEnableUpdated({ oldAccess: buyEnabled, newAccess: enabled });
buyEnabled = enabled;
}
/// @notice Changes signer wallet address
/// @param newSigner The address of the new signer wallet
function changeSigner(address newSigner) external checkAddressZero(newSigner) onlyOwner {
address oldSigner = signerWallet;
if (oldSigner == newSigner) {
revert IdenticalValue();
}
emit SignerUpdated({ oldSigner: oldSigner, newSigner: newSigner });
signerWallet = newSigner;
}
/// @notice Changes platform wallet address
/// @param newPlatformWallet The address of the new platform wallet
function updatePlatformWallet(address newPlatformWallet) external checkAddressZero(newPlatformWallet) onlyOwner {
address oldPlatformWallet = platformWallet;
if (oldPlatformWallet == newPlatformWallet) {
revert IdenticalValue();
}
emit PlatformWalletUpdated({ oldPlatformWallet: oldPlatformWallet, newPlatformWallet: newPlatformWallet });
platformWallet = newPlatformWallet;
}
/// @notice Changes project wallet address
/// @param newProjectWallet The address of the new project wallet
function updateProjectWallet(address newProjectWallet) external checkAddressZero(newProjectWallet) onlyOwner {
address oldProjectWallet = projectWallet;
if (oldProjectWallet == newProjectWallet) {
revert IdenticalValue();
}
emit ProjectWalletUpdated({ oldProjectWallet: oldProjectWallet, newProjectWallet: newProjectWallet });
projectWallet = newProjectWallet;
}
/// @notice Changes burn wallet address
/// @param newBurnWallet The address of the new burn wallet
function updateBurnWallet(address newBurnWallet) external checkAddressZero(newBurnWallet) onlyOwner {
address oldBurnWallet = burnWallet;
if (oldBurnWallet == newBurnWallet) {
revert IdenticalValue();
}
emit BurnWalletUpdated({ oldBurnWallet: oldBurnWallet, newBurnWallet: newBurnWallet });
burnWallet = newBurnWallet;
}
/// @notice Changes the access of any address in contract interaction
/// @param which The address for which access is updated
/// @param access The access decision of `which` address
function updateBlackListedUser(address which, bool access) external checkAddressZero(which) onlyOwner {
bool oldAccess = blacklistAddress[which];
if (oldAccess == access) {
revert IdenticalValue();
}
emit BlacklistUpdated({ which: which, accessNow: access });
blacklistAddress[which] = access;
}
/// @notice Changes the nft prices
/// @param newPrices The new prices of nfts
function updatePricing(uint256[] calldata newPrices) external onlyOwner {
for (uint256 i = 0; i < newPrices.length; ++i) {
_checkValue(newPrices[i]);
}
emit PricingUpdated({ oldPrices: nftPricing, newPrices: newPrices });
nftPricing = newPrices;
}
/// @notice Purchases presale token with ETH
/// @param code The code is used to verify signature of the user
/// @param round The round in which user wants to purchase
/// @param deadline The deadline is validity of the signature
/// @param minAmountToken The minAmountToken user agrees to purchase
/// @param indexes The indexes at which user has locked tokens
/// @param leaders The indexes of leaders
/// @param percentages The indexes of leaders percentage
/// @param v The `v` signature parameter
/// @param r The `r` signature parameter
/// @param s The `s` signature parameter
function purchaseTokenWithETH(
string memory code,
uint32 round,
uint256 deadline,
uint256 minAmountToken,
uint256[] calldata indexes,
address[] calldata leaders,
uint256[] calldata percentages,
uint8 v,
bytes32 r,
bytes32 s
) external payable nonReentrant canBuy {
// The input must have been signed by the presale signer
_validatePurchaseWithETH(msg.value, round, deadline, code, v, r, s);
uint256 roundPrice = _getRoundPriceForToken(msg.sender, indexes, round, ETH);
TokenInfo memory tokenInfo = getLatestPrice(ETH);
if (tokenInfo.latestPrice == 0) {
revert PriceNotFound();
}
TransferInfo memory transferInfo = _calculateTransferAmounts(msg.value, leaders, percentages);
uint256 toReturn = _calculateAndUpdateTokenAmount(
msg.value,
tokenInfo.latestPrice,
tokenInfo.normalizationFactorForToken,
roundPrice
);
if (toReturn < minAmountToken) {
revert UnexpectedPriceDifference();
}
_transferFundsETH(transferInfo);
claims[msg.sender][round] += toReturn;
_updateCommissions(leaders, percentages, msg.value, round, ETH);
emit PurchasedWithETH({
by: msg.sender,
code: code,
amountPurchasedETH: msg.value,
round: round,
leaders: leaders,
percentages: percentages,
roundPrice: roundPrice,
tokenPurchased: toReturn
});
}
/// @notice Purchases presale token with any token
/// @param token The purchase token
/// @param referenceNormalizationFactor The normalization factor
/// @param referenceTokenPrice The current price of token in 10 decimals
/// @param purchaseAmount The purchase amount
/// @param minAmountToken The minAmountToken user agrees to purchase
/// @param indexes The indexes at which user has locked tokens
/// @param leaders The indexes of leaders
/// @param percentages The indexes of leaders percentage
/// @param code The code is used to verify signature of the user
/// @param round The round in which user wants to purchase
/// @param deadline The deadline is validity of the signature
/// @param v The `v` signature parameter
/// @param r The `r` signature parameter
/// @param s The `s` signature parameter
function purchaseTokenWithToken(
IERC20 token,
uint8 referenceNormalizationFactor,
uint256 referenceTokenPrice,
uint256 purchaseAmount,
uint256 minAmountToken,
uint256[] calldata indexes,
address[] calldata leaders,
uint256[] calldata percentages,
string memory code,
uint32 round,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external canBuy nonReentrant {
// The input must have been signed by the presale signer
_validatePurchaseWithToken(
token,
round,
deadline,
code,
referenceTokenPrice,
referenceNormalizationFactor,
v,
r,
s
);
uint256 roundPrice = _getRoundPriceForToken(msg.sender, indexes, round, token);
(uint256 latestPrice, uint8 normalizationFactor) = _validatePrice(
token,
referenceTokenPrice,
referenceNormalizationFactor
);
TransferInfo memory transferInfo = _calculateTransferAmounts(purchaseAmount, leaders, percentages);
uint256 toReturn = _calculateAndUpdateTokenAmount(purchaseAmount, latestPrice, normalizationFactor, roundPrice);
if (toReturn < minAmountToken) {
revert UnexpectedPriceDifference();
}
_transferFundsToken(token, transferInfo);
claims[msg.sender][round] += toReturn;
_updateCommissions(leaders, percentages, purchaseAmount, round, token);
emit PurchasedWithToken({
token: token,
tokenPrice: latestPrice,
by: msg.sender,
code: code,
amountPurchased: purchaseAmount,
tokenPurchased: toReturn,
round: round,
leaders: leaders,
percentages: percentages
});
}
/// @notice Purchases NFT with ETH
/// @param code The code is used to verify signature of the user
/// @param round The round in which user wants to purchase
/// @param nftAmounts The nftAmounts is array of nfts selected
/// @param deadline The deadline is validity of the signature
/// @param indexes The indexes at which user has locked tokens
/// @param leaders The indexes of leaders
/// @param percentages The indexes of leaders percentage
/// @param v The `v` signature parameter
/// @param r The `r` signature parameter
/// @param s The `s` signature parameter
function purchaseNFTWithETH(
string memory code,
uint32 round,
uint256[] calldata nftAmounts,
uint256 deadline,
uint256[] calldata indexes,
address[] calldata leaders,
uint256[] calldata percentages,
uint8 v,
bytes32 r,
bytes32 s
) external payable canBuy nonReentrant {
uint256[] memory nftPrices = nftPricing;
_validateArrays(nftAmounts.length, nftPrices.length);
// The input must have been signed by the presale signer
_validatePurchaseWithETH(msg.value, round, deadline, code, v, r, s);
TokenInfo memory tokenInfo = getLatestPrice(ETH);
if (tokenInfo.latestPrice == 0) {
revert PriceNotFound();
}
(uint256 roundPrice, uint256 value) = _processPurchaseNFT(
ETH,
tokenInfo.latestPrice,
tokenInfo.normalizationFactorForNFT,
round,
indexes,
nftAmounts,
nftPrices
);
TransferInfo memory transferInfo = _calculateTransferAmounts(value, leaders, percentages);
if (msg.value < value) {
revert InvalidPurchase();
}
uint256 amountUnused = msg.value - value;
if (amountUnused > 0) {
payable(msg.sender).sendValue(amountUnused);
}
_transferFundsETH(transferInfo);
_updateCommissions(leaders, percentages, value, round, ETH);
emit PurchasedWithETHForNFT({
by: msg.sender,
code: code,
amountInETH: value,
ethPrice: tokenInfo.latestPrice,
round: round,
leaders: leaders,
percentages: percentages,
roundPrice: roundPrice,
nftAmounts: nftAmounts
});
}
/// @notice Purchases NFT with any token
/// @param token The purchase token
/// @param referenceTokenPrice The current price of token in 10 decimals
/// @param referenceNormalizationFactor The normalization factor
/// @param code The code is used to verify signature of the user
/// @param round The round in which user wants to purchase
/// @param leaders The indexes of leaders
/// @param percentages The indexes of leaders percentage
/// @param nftAmounts The nftAmounts is array of nfts selected
/// @param deadline The deadline is validity of the signature
/// @param indexes The indexes at which user has locked tokens
/// @param v The `v` signature parameter
/// @param r The `r` signature parameter
/// @param s The `s` signature parameter
function purchaseNFTWithToken(
IERC20 token,
uint256 referenceTokenPrice,
uint8 referenceNormalizationFactor,
string memory code,
uint32 round,
uint256[] calldata nftAmounts,
uint256 deadline,
uint256[] calldata indexes,
address[] calldata leaders,
uint256[] calldata percentages,
uint8 v,
bytes32 r,
bytes32 s
) external canBuy nonReentrant {
uint256[] memory nftPrices = nftPricing;
_validateArrays(nftAmounts.length, nftPrices.length);
// The input must have been signed by the presale signer
_validatePurchaseWithToken(
token,
round,
deadline,
code,
referenceTokenPrice,
referenceNormalizationFactor,
v,
r,
s
);
TokenInfo memory tokenInfo = getLatestPrice(token);
if (tokenInfo.latestPrice != 0) {
if (referenceTokenPrice != 0 || referenceNormalizationFactor != 0) {
revert CodeSyncIssue();
}
}
// If price feed isn't available,we fallback to the reference price
if (tokenInfo.latestPrice == 0) {
if (referenceTokenPrice == 0 || referenceNormalizationFactor == 0) {
revert ZeroValue();
}
tokenInfo.latestPrice = referenceTokenPrice;
tokenInfo.normalizationFactorForNFT = referenceNormalizationFactor;
}
(uint256 roundPrice, uint256 value) = _processPurchaseNFT(
token,
tokenInfo.latestPrice,
tokenInfo.normalizationFactorForNFT,
round,
indexes,
nftAmounts,
nftPrices
);
TransferInfo memory transferInfo = _calculateTransferAmounts(value, leaders, percentages);
_transferFundsToken(token, transferInfo);
_updateCommissions(leaders, percentages, value, round, token);
emit PurchasedWithTokenForNFT({
token: token,
tokenPrice: tokenInfo.latestPrice,
by: msg.sender,
code: code,
amountPurchased: value,
round: round,
leaders: leaders,
percentages: percentages,
roundPrice: roundPrice,
nftAmounts: nftAmounts
});
}
/// @inheritdoc IPreSale
function purchaseWithClaim(
IERC20 token,
uint256 referenceTokenPrice,
uint8 referenceNormalizationFactor,
uint256 amount,
uint256 minAmountToken,
uint256[] calldata indexes,
address recipient,
uint32 round
) external payable canBuy nonReentrant {
if (msg.sender != address(claimsContract)) {
revert OnlyClaims();
}
_checkBlacklist(recipient);
if (!allowedTokens[round][token].access) {
revert TokenDisallowed();
}
uint256 roundPrice = _getRoundPriceForToken(recipient, indexes, round, token);
(uint256 latestPrice, uint8 normalizationFactor) = _validatePrice(
token,
referenceTokenPrice,
referenceNormalizationFactor
);
uint256 toReturn = _calculateAndUpdateTokenAmount(amount, latestPrice, normalizationFactor, roundPrice);
if (toReturn < minAmountToken) {
revert UnexpectedPriceDifference();
}
claims[recipient][round] += toReturn;
uint256 platformAmount = (amount * PLATFORM_PERCENTAGE_PPM) / PPM;
if (token == ETH) {
payable(platformWallet).sendValue(platformAmount);
payable(projectWallet).sendValue(amount - platformAmount);
} else {
token.safeTransferFrom(msg.sender, platformWallet, platformAmount);
token.safeTransferFrom(msg.sender, projectWallet, amount - platformAmount);
}
emit PurchasedWithClaimAmount({
by: recipient,
amount: amount,
token: token,
round: round,
tokenPrice: latestPrice,
tokenPurchased: toReturn
});
}
/// @notice The Chainlink inherited function, give us tokens live price
function getLatestPrice(IERC20 token) public view returns (TokenInfo memory) {
PriceFeedData memory data = tokenData[token];
TokenInfo memory tokenInfo;
if (address(data.priceFeed) == address(0)) {
return tokenInfo;
}
(
uint80 roundId,
/*uint80 roundID*/ int price /*uint256 startedAt*/ /*uint80 answeredInRound*/,
,
uint256 updatedAt,
) = /*uint256 timeStamp*/ data.priceFeed.latestRoundData();
if (roundId == 0) {
revert RoundIdNotUpdated();
}
if (updatedAt == 0 || block.timestamp - updatedAt > data.tolerance) {
revert PriceNotUpdated();
}
return
TokenInfo({
latestPrice: uint256(price),
normalizationFactorForToken: data.normalizationFactorForToken,
normalizationFactorForNFT: data.normalizationFactorForNFT
});
}
/// @dev Checks value, if zero then reverts
function _checkValue(uint256 value) private pure {
if (value == 0) {
revert ZeroValue();
}
}
/// @dev Validates blacklist address, round and deadline
function _validatePurchase(uint32 round, uint256 deadline, IERC20 token) private view {
if (block.timestamp > deadline) {
revert DeadlineExpired();
}
_checkBlacklist(msg.sender);
if (!allowedTokens[round][token].access) {
revert TokenDisallowed();
}
_verifyInRound(round);
}
/// @dev The helper function which verifies signature, signed by signerWallet, reverts if Invalid
function _verifyCode(string memory code, uint256 deadline, uint8 v, bytes32 r, bytes32 s) private view {
bytes32 encodedMessageHash = keccak256(abi.encodePacked(msg.sender, code, deadline));
_verifyMessage(encodedMessageHash, v, r, s);
}
/// @dev The helper function which verifies signature, signed by signerWallet, reverts if Invalid
function _verifyCodeWithPrice(
string memory code,
uint256 deadline,
uint256 referenceTokenPrice,
IERC20 token,
uint256 normalizationFactor,
uint8 v,
bytes32 r,
bytes32 s
) private view {
bytes32 encodedMessageHash = keccak256(
abi.encodePacked(msg.sender, code, referenceTokenPrice, deadline, token, normalizationFactor)
);
_verifyMessage(encodedMessageHash, v, r, s);
}
/// @dev Verifies the address that signed a hashed message (`hash`) with
/// `signature`
function _verifyMessage(bytes32 encodedMessageHash, uint8 v, bytes32 r, bytes32 s) private view {
if (signerWallet != ECDSA.recover(MessageHashUtils.toEthSignedMessageHash(encodedMessageHash), v, r, s)) {
revert InvalidSignature();
}
}
/// @dev Process nft purchase by calculating nft prices and purchase amount
function _processPurchaseNFT(
IERC20 token,
uint256 price,
uint256 normalizationFactor,
uint32 round,
uint256[] calldata indexes,
uint256[] calldata nftAmounts,
uint256[] memory nftPrices
) private returns (uint256, uint256) {
uint256 value;
uint256 totalNFTPrices = 0;
for (uint256 i = 0; i < nftPrices.length; ++i) {
uint256 nfts = nftAmounts[i];
uint256 prices = nftPrices[i];
// (10**0 * 10**6 +10**10) -10**10 = 6 decimals
value += (nfts * prices * (10 ** (normalizationFactor))) / price;
totalNFTPrices += nfts * prices;
}
uint256 roundPrice = _getRoundPriceForToken(msg.sender, indexes, round, token);
_updateTokenPurchases((totalNFTPrices * NORMALIZARION_FACTOR) / roundPrice);
claimNFT[msg.sender][round].push(ClaimNFT({ nftAmounts: nftAmounts, roundPrice: roundPrice }));
return (roundPrice, value);
}
/// @dev Checks that address is blacklisted or not
function _checkBlacklist(address which) private view {
if (blacklistAddress[which]) {
revert Blacklisted();
}
}
/// @dev Checks max cap and updates total purchases
function _updateTokenPurchases(uint256 newPurchase) private {
if (newPurchase + totalPurchases > maxCap) {
revert MaxCapReached();
}
totalPurchases += newPurchase;
}
/// @dev Validates round, deadline and signature
function _validatePurchaseWithETH(
uint256 amount,
uint32 round,
uint256 deadline,
string memory code,
uint8 v,
bytes32 r,
bytes32 s
) private view {
_checkValue(amount);
_validatePurchase(round, deadline, ETH);
_verifyCode(code, deadline, v, r, s);
}
/// @dev Validates round, deadline and signature
function _validatePurchaseWithToken(
IERC20 token,
uint32 round,
uint256 deadline,
string memory code,
uint256 referenceTokenPrice,
uint256 normalizationFactor,
uint8 v,
bytes32 r,
bytes32 s
) private view {
_validatePurchase(round, deadline, token);
_verifyCodeWithPrice(code, deadline, referenceTokenPrice, token, normalizationFactor, v, r, s);
}
/// @dev Checks discounted round price if eligible else returns round price
function _getRoundPriceForToken(
address user,
uint256[] memory indexes,
uint32 round,
IERC20 token
) private view returns (uint256) {
uint256 customPrice = allowedTokens[round][token].customPrice;
uint256 roundPrice = customPrice > 0 ? customPrice : rounds[round].price;
uint256 lockedAmount;
uint256 indexLength = indexes.length;
if (indexLength == 0) {
return roundPrice;
}
for (uint256 i; i < indexLength; ++i) {
if (indexLength != i + 1) {
if (indexes[i] >= indexes[i + 1]) {
revert ArrayNotSorted();
}
}
(uint256 amount, ) = lockup.stakes(user, indexes[i]);
lockedAmount += amount;
if (lockedAmount >= lockup.minStakeAmount()) {
if (round == 1) {
roundPrice -= ((roundPrice * FIRST_ROUND_PPM) / PPM);
} else {
roundPrice -= ((roundPrice * OTHER_ROUND_PPM) / PPM);
}
break;
}
}
return roundPrice;
}
/// @dev Calculates and update the token amount
function _calculateAndUpdateTokenAmount(
uint256 purchaseAmount,
uint256 referenceTokenPrice,
uint256 normalizationFactor,
uint256 roundPrice
) private returns (uint256) {
// toReturn= (10**11 * 10**10 +10**15) -10**18 = 18 decimals
uint256 toReturn = (purchaseAmount * referenceTokenPrice * (10 ** normalizationFactor)) / roundPrice;
_updateTokenPurchases(toReturn);
return toReturn;
}
/// @dev Provides us live price of token from price feed or returns reference price and reverts if price is zero
function _validatePrice(
IERC20 token,
uint256 referenceTokenPrice,
uint8 referenceNormalizationFactor
) private view returns (uint256, uint8) {
TokenInfo memory tokenInfo = getLatestPrice(token);
if (tokenInfo.latestPrice != 0) {
if (referenceTokenPrice != 0 || referenceNormalizationFactor != 0) {
revert CodeSyncIssue();
}
}
// If price feed isn't available,we fallback to the reference price
if (tokenInfo.latestPrice == 0) {
if (referenceTokenPrice == 0 || referenceNormalizationFactor == 0) {
revert ZeroValue();
}
tokenInfo.latestPrice = referenceTokenPrice;
tokenInfo.normalizationFactorForToken = referenceNormalizationFactor;
}
return (tokenInfo.latestPrice, tokenInfo.normalizationFactorForToken);
}
/// @dev Distribute ETH to multiple recipients
function _transferFundsETH(TransferInfo memory transferInfo) private {
payable(projectWallet).sendValue(transferInfo.projectAmount);
payable(platformWallet).sendValue(transferInfo.platformAmount);
payable(burnWallet).sendValue(transferInfo.burnAmount);
payable(address(claimsContract)).sendValue(transferInfo.equivalence);
}
/// @dev Distribute token to multiple recipients
function _transferFundsToken(IERC20 token, TransferInfo memory transferInfo) private {
token.safeTransferFrom(msg.sender, projectWallet, transferInfo.projectAmount);
token.safeTransferFrom(msg.sender, platformWallet, transferInfo.platformAmount);
token.safeTransferFrom(msg.sender, burnWallet, transferInfo.burnAmount);
token.safeTransferFrom(msg.sender, address(claimsContract), transferInfo.equivalence);
}
/// @dev Checks zero address, if zero then reverts
/// @param which The `which` address to check for zero address
function _checkAddressZero(address which) private pure {
if (which == address(0)) {
revert ZeroAddress();
}
}
/// @dev Checks buyEnabled, if not then reverts
function _canBuy() private view {
if (!buyEnabled) {
revert BuyNotEnabled();
}
}
/// @dev Calculates transfer amounts
function _calculateTransferAmounts(
uint256 amount,
address[] memory leaders,
uint256[] memory percentages
) private pure returns (TransferInfo memory transferInfo) {
_checkValue(amount);
transferInfo.burnAmount = (amount * BURN_PERCENTAGE_PPM) / PPM;
transferInfo.platformAmount = (amount * PLATFORM_PERCENTAGE_PPM) / PPM;
transferInfo.projectAmount = (amount * PROJECT_PERCENTAGE_PPM) / PPM;
uint256 toLength = leaders.length;
uint256 sumPercentage;
if (toLength == 0) {
revert InvalidData();
}
if (toLength > LEADERS_LENGTH) {
revert InvalidArrayLength();
}
if (toLength != percentages.length) {
revert ArrayLengthMismatch();
}
for (uint256 j; j < toLength; ++j) {
sumPercentage += percentages[j];
}
if (sumPercentage == 0) {
revert ZeroValue();
}
if (sumPercentage > CLAIMS_PERCENTAGE_PPM) {
revert InvalidPercentage();
}
transferInfo.equivalence = (amount * sumPercentage) / PPM;
if (sumPercentage < CLAIMS_PERCENTAGE_PPM) {
transferInfo.platformAmount += (((amount * CLAIMS_PERCENTAGE_PPM) / PPM) - transferInfo.equivalence);
}
}
/// @dev Updates the amounts of agents
/// @param leaders The indexes of leaders
/// @param percentages The indexes of leaders percentage
/// @param amount The amount used to calculate leaders comission
/// @param round The round in which user wants to purchase
/// @param token The token address in which comissions will be set
function _updateCommissions(
address[] memory leaders,
uint256[] memory percentages,
uint256 amount,
uint32 round,
IERC20 token
) private {
uint256 toLength = leaders.length;
ClaimInfo[] memory claimInfo = new ClaimInfo[](toLength);
for (uint256 i = 0; i < toLength; ++i) {
claimInfo[i] = ClaimInfo({ token: token, amount: (amount * percentages[i]) / PPM });
}
claimsContract.addClaimInfo(leaders, round, claimInfo);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuardTransient.sol)
pragma solidity ^0.8.24;
import {TransientSlot} from "./TransientSlot.sol";
/**
* @dev Variant of {ReentrancyGuard} that uses transient storage.
*
* NOTE: This variant only works on networks where EIP-1153 is available.
*
* _Available since v5.1._
*/
abstract contract ReentrancyGuardTransient {
using TransientSlot for *;
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant REENTRANCY_GUARD_STORAGE =
0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_reentrancyGuardEntered()) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
REENTRANCY_GUARD_STORAGE.asBoolean().tstore(true);
}
function _nonReentrantAfter() private {
REENTRANCY_GUARD_STORAGE.asBoolean().tstore(false);
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return REENTRANCY_GUARD_STORAGE.asBoolean().tload();
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { Ownable, Ownable2Step } from "@openzeppelin/contracts/access/Ownable2Step.sol";
import { TokenRegistry } from "./TokenRegistry.sol";
import { IRounds } from "./IRounds.sol";
import { ZeroAddress, ArrayLengthMismatch, ZeroLengthArray } from "./Common.sol";
/// @title Rounds contract
/// @notice Implements the round creation and updating of presale
/// @dev The rounds contract allows you to create a round, update a round
abstract contract Rounds is IRounds, TokenRegistry {
/// @member access The access of the token
/// @member customPrice The customPrice price in the round for the token
struct AllowedToken {
bool access;
uint256 customPrice;
}
/// @member startTime The start time of round
/// @member endTime The end time of round
/// @member price The price in usd per token
struct RoundData {
uint256 startTime;
uint256 endTime;
uint256 price;
}
/// @dev The round index of last round created
uint32 internal immutable _startRound;
/// @dev The count of rounds created
uint32 internal _roundIndex;
/// @notice mapping gives us access info of the token in a given round
mapping(uint32 => mapping(IERC20 => AllowedToken)) public allowedTokens;
/// @inheritdoc IRounds
mapping(uint32 => RoundData) public rounds;
/// @dev Emitted when creating a new round
event RoundCreated(uint32 indexed newRound, RoundData roundData);
/// @dev Emitted when round is updated
event RoundUpdated(uint32 indexed round, RoundData roundData);
/// @dev Emitted when token access is updated
event TokensAccessUpdated(uint32 indexed round, IERC20 indexed token, bool indexed access, uint256 customPrice);
/// @notice Thrown when round time is not started
error RoundNotStarted();
/// @notice Thrown when round time is ended
error RoundEnded();
/// @notice Thrown when Round is not created
error IncorrectRound();
/// @notice Thrown when new round price is less than previous round price
error PriceLessThanOldRound();
/// @notice Thrown when round start time is invalid
error InvalidStartTime();
/// @notice Thrown when round end time is invalid
error InvalidEndTime();
/// @notice Thrown when new price is invalid
error PriceInvalid();
/// @notice Thrown when startTime is incorrect when updating round
error IncorrectStartTime();
/// @notice Thrown when endTime is incorrect when updating round
error IncorrectEndTime();
/// @notice Thrown when round price is greater than next round while updating
error PriceGreaterThanNextRound();
/// @notice Thrown when Token is restricted in given round
error TokenDisallowed();
/// @dev Constructor.
/// @param lastRound The last round created
constructor(uint32 lastRound) {
_startRound = lastRound;
_roundIndex = lastRound;
}
/// @notice Creates a new round
/// @param startTime The startTime of the round
/// @param endTime The endTime of the round
/// @param price The presale token price in 18 decimals, because our calculations returns a value in 36 decimals and to get returning value in 18 decimals we divide by round price
function createNewRound(uint256 startTime, uint256 endTime, uint256 price) external onlyOwner {
RoundData memory prevRoundData = rounds[_roundIndex];
uint32 newRound = ++_roundIndex;
if (price < prevRoundData.price) {
revert PriceLessThanOldRound();
}
if (startTime < prevRoundData.endTime) {
revert InvalidStartTime();
}
_verifyRound(startTime, endTime, price);
prevRoundData = RoundData({ startTime: startTime, endTime: endTime, price: price });
rounds[newRound] = prevRoundData;
emit RoundCreated({ newRound: newRound, roundData: prevRoundData });
}
/// @notice Updates the access of tokens in a given round
/// @param round The round in which you want to update
/// @param tokens addresses of the tokens
/// @param accesses The access for the tokens
/// @param customPrices The customPrice prices if any for the tokens
function updateAllowedTokens(
uint32 round,
IERC20[] calldata tokens,
bool[] calldata accesses,
uint256[] calldata customPrices
) external onlyOwner {
uint256 tokensLength = tokens.length;
if (tokensLength == 0) {
revert ZeroLengthArray();
}
if (tokensLength != accesses.length || accesses.length != customPrices.length) {
revert ArrayLengthMismatch();
}
mapping(IERC20 => AllowedToken) storage selectedRound = allowedTokens[round];
for (uint256 i = 0; i < tokensLength; ++i) {
IERC20 token = tokens[i];
if (address(token) == address(0)) {
revert ZeroAddress();
}
AllowedToken memory allowedToken = AllowedToken({ access: accesses[i], customPrice: customPrices[i] });
selectedRound[token] = allowedToken;
emit TokensAccessUpdated({
round: round,
token: token,
access: allowedToken.access,
customPrice: allowedToken.customPrice
});
}
}
/// @notice Updates round data
/// @param round The Round that will be updated
/// @param startTime The StartTime of the round
/// @param endTime The EndTime of the round
/// @param price The price of the round in 18 decimals
function updateRound(uint32 round, uint256 startTime, uint256 endTime, uint256 price) external onlyOwner {
if (round <= _startRound || round > _roundIndex) {
revert IncorrectRound();
}
RoundData memory previousRound = rounds[round - 1];
RoundData memory nextRound = rounds[round + 1];
if (startTime < previousRound.endTime) {
revert IncorrectStartTime();
}
if (round != _roundIndex && endTime > nextRound.startTime) {
revert IncorrectEndTime();
}
if (price < previousRound.price) {
revert PriceLessThanOldRound();
}
if (round != _roundIndex && price > nextRound.price) {
revert PriceGreaterThanNextRound();
}
_verifyRound(startTime, endTime, price);
rounds[round] = RoundData({ startTime: startTime, endTime: endTime, price: price });
emit RoundUpdated({ round: round, roundData: rounds[round] });
}
/// @notice Returns total rounds created
/// @return The Round count
function getRoundCount() external view returns (uint32) {
return _roundIndex;
}
/// @dev Validates array length and values
function _validateArrays(uint256 firstLength, uint256 secondLength) internal pure {
if (firstLength == 0) {
revert ZeroLengthArray();
}
if (firstLength != secondLength) {
revert ArrayLengthMismatch();
}
}
/// @dev Checks round start and end time, reverts if Invalid
function _verifyInRound(uint32 round) internal view {
RoundData memory dataRound = rounds[round];
if (block.timestamp < dataRound.startTime) {
revert RoundNotStarted();
}
if (block.timestamp >= dataRound.endTime) {
revert RoundEnded();
}
}
/// @dev Checks the validity of startTime, endTime and price
function _verifyRound(uint256 startTime, uint256 endTime, uint256 price) internal view {
if (startTime < block.timestamp) {
revert InvalidStartTime();
}
if (endTime <= startTime) {
revert InvalidEndTime();
}
if (price == 0) {
revert PriceInvalid();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { Ownable, Ownable2Step } from "@openzeppelin/contracts/access/Ownable2Step.sol";
import { AggregatorV3Interface } from "@chainlink/contracts/src/v0.8/shared/interfaces/AggregatorV3Interface.sol";
import { ZeroAddress, ArrayLengthMismatch, ZeroLengthArray, IdenticalValue } from "./Common.sol";
/// @title Tokens Registry contract
/// @notice Implements the price feed of the tokens
abstract contract TokenRegistry is Ownable2Step {
/// @member priceFeed The Chainlink price feed address
/// @member normalizationFactorForToken The normalization factor to achieve return value of 18 decimals, while calculating presale token purchases and always with different token decimals
/// @member normalizationFactorForNFT The normalization factor is the value which helps us to convert decimals of USDT to purchase token decimals and always with different token decimals
/// @member tolerance The pricefeed live price should be updated in tolerance time to get better price
struct PriceFeedData {
AggregatorV3Interface priceFeed;
uint8 normalizationFactorForToken;
uint8 normalizationFactorForNFT;
uint256 tolerance;
}
/// @notice Gives us onchain price oracle address of the token
mapping(IERC20 => PriceFeedData) public tokenData;
/// @dev Emitted when address of Chainlink price feed contract is added for the token
event TokenDataAdded(IERC20 token, PriceFeedData data);
/// @notice Sets token price feeds and normalization factors
/// @param tokens The addresses of the tokens
/// @param priceFeedData Contains the price feed of the tokens, tolerance and the normalization factor
function setTokenPriceFeed(IERC20[] calldata tokens, PriceFeedData[] calldata priceFeedData) external onlyOwner {
uint256 tokensLength = tokens.length;
if (tokensLength == 0) {
revert ZeroLengthArray();
}
if (tokensLength != priceFeedData.length) {
revert ArrayLengthMismatch();
}
for (uint256 i = 0; i < tokensLength; ++i) {
PriceFeedData calldata data = priceFeedData[i];
IERC20 token = tokens[i];
PriceFeedData memory currentPriceFeedData = tokenData[token];
if (address(token) == address(0) || address(data.priceFeed) == address(0)) {
revert ZeroAddress();
}
if (
currentPriceFeedData.priceFeed == data.priceFeed &&
currentPriceFeedData.normalizationFactorForToken == data.normalizationFactorForToken &&
currentPriceFeedData.normalizationFactorForNFT == data.normalizationFactorForNFT &&
currentPriceFeedData.tolerance == data.tolerance
) {
revert IdenticalValue();
}
emit TokenDataAdded({ token: token, data: data });
tokenData[token] = data;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/TransientSlot.sol)
// This file was procedurally generated from scripts/generate/templates/TransientSlot.js.
pragma solidity ^0.8.24;
/**
* @dev Library for reading and writing value-types to specific transient storage slots.
*
* Transient slots are often used to store temporary values that are removed after the current transaction.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* * Example reading and writing values using transient storage:
* ```solidity
* contract Lock {
* using TransientSlot for *;
*
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _LOCK_SLOT = 0xf4678858b2b588224636b8522b729e7722d32fc491da849ed75b3fdf3c84f542;
*
* modifier locked() {
* require(!_LOCK_SLOT.asBoolean().tload());
*
* _LOCK_SLOT.asBoolean().tstore(true);
* _;
* _LOCK_SLOT.asBoolean().tstore(false);
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library TransientSlot {
/**
* @dev UDVT that represent a slot holding a address.
*/
type AddressSlot is bytes32;
/**
* @dev Cast an arbitrary slot to a AddressSlot.
*/
function asAddress(bytes32 slot) internal pure returns (AddressSlot) {
return AddressSlot.wrap(slot);
}
/**
* @dev UDVT that represent a slot holding a bool.
*/
type BooleanSlot is bytes32;
/**
* @dev Cast an arbitrary slot to a BooleanSlot.
*/
function asBoolean(bytes32 slot) internal pure returns (BooleanSlot) {
return BooleanSlot.wrap(slot);
}
/**
* @dev UDVT that represent a slot holding a bytes32.
*/
type Bytes32Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Bytes32Slot.
*/
function asBytes32(bytes32 slot) internal pure returns (Bytes32Slot) {
return Bytes32Slot.wrap(slot);
}
/**
* @dev UDVT that represent a slot holding a uint256.
*/
type Uint256Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Uint256Slot.
*/
function asUint256(bytes32 slot) internal pure returns (Uint256Slot) {
return Uint256Slot.wrap(slot);
}
/**
* @dev UDVT that represent a slot holding a int256.
*/
type Int256Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Int256Slot.
*/
function asInt256(bytes32 slot) internal pure returns (Int256Slot) {
return Int256Slot.wrap(slot);
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(AddressSlot slot) internal view returns (address value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(AddressSlot slot, address value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(BooleanSlot slot) internal view returns (bool value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(BooleanSlot slot, bool value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Bytes32Slot slot) internal view returns (bytes32 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Bytes32Slot slot, bytes32 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Uint256Slot slot) internal view returns (uint256 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Uint256Slot slot, uint256 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Int256Slot slot) internal view returns (int256 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Int256Slot slot, int256 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
}
{
"compilationTarget": {
"contracts/PreSale.sol": "PreSale"
},
"evmVersion": "cancun",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 1000000
},
"remappings": [],
"viaIR": true
}
[{"inputs":[{"internalType":"address","name":"projectWalletAddress","type":"address"},{"internalType":"address","name":"platformWalletAddress","type":"address"},{"internalType":"address","name":"burnWalletAddress","type":"address"},{"internalType":"address","name":"signerAddress","type":"address"},{"internalType":"contract IClaims","name":"claimsContractAddress","type":"address"},{"internalType":"contract ILockup","name":"lockupContractAddress","type":"address"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint32","name":"lastRound","type":"uint32"},{"internalType":"uint256[]","name":"nftPrices","type":"uint256[]"},{"internalType":"uint256","name":"initMaxCap","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ArrayLengthMismatch","type":"error"},{"inputs":[],"name":"ArrayNotSorted","type":"error"},{"inputs":[],"name":"Blacklisted","type":"error"},{"inputs":[],"name":"BuyNotEnabled","type":"error"},{"inputs":[],"name":"CodeSyncIssue","type":"error"},{"inputs":[],"name":"DeadlineExpired","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[],"name":"IdenticalValue","type":"error"},{"inputs":[],"name":"IncorrectEndTime","type":"error"},{"inputs":[],"name":"IncorrectRound","type":"error"},{"inputs":[],"name":"IncorrectStartTime","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidArrayLength","type":"error"},{"inputs":[],"name":"InvalidData","type":"error"},{"inputs":[],"name":"InvalidEndTime","type":"error"},{"inputs":[],"name":"InvalidPercentage","type":"error"},{"inputs":[],"name":"InvalidPurchase","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"InvalidStartTime","type":"error"},{"inputs":[],"name":"MaxCapReached","type":"error"},{"inputs":[],"name":"OnlyClaims","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"PriceGreaterThanNextRound","type":"error"},{"inputs":[],"name":"PriceInvalid","type":"error"},{"inputs":[],"name":"PriceLessThanOldRound","type":"error"},{"inputs":[],"name":"PriceNotFound","type":"error"},{"inputs":[],"name":"PriceNotUpdated","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"RoundEnded","type":"error"},{"inputs":[],"name":"RoundIdNotUpdated","type":"error"},{"inputs":[],"name":"RoundNotStarted","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"TokenDisallowed","type":"error"},{"inputs":[],"name":"UnexpectedPriceDifference","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"inputs":[],"name":"ZeroLengthArray","type":"error"},{"inputs":[],"name":"ZeroValue","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"which","type":"address"},{"indexed":false,"internalType":"bool","name":"accessNow","type":"bool"}],"name":"BlacklistUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldBurnWallet","type":"address"},{"indexed":false,"internalType":"address","name":"newBurnWallet","type":"address"}],"name":"BurnWalletUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"oldAccess","type":"bool"},{"indexed":false,"internalType":"bool","name":"newAccess","type":"bool"}],"name":"BuyEnableUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldPlatformWallet","type":"address"},{"indexed":false,"internalType":"address","name":"newPlatformWallet","type":"address"}],"name":"PlatformWalletUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256[]","name":"oldPrices","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"newPrices","type":"uint256[]"}],"name":"PricingUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldProjectWallet","type":"address"},{"indexed":false,"internalType":"address","name":"newProjectWallet","type":"address"}],"name":"ProjectWalletUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"by","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":true,"internalType":"uint32","name":"round","type":"uint32"},{"indexed":true,"internalType":"uint256","name":"tokenPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenPurchased","type":"uint256"}],"name":"PurchasedWithClaimAmount","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"by","type":"address"},{"indexed":false,"internalType":"string","name":"code","type":"string"},{"indexed":false,"internalType":"uint256","name":"amountPurchasedETH","type":"uint256"},{"indexed":true,"internalType":"uint32","name":"round","type":"uint32"},{"indexed":false,"internalType":"address[]","name":"leaders","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"percentages","type":"uint256[]"},{"indexed":true,"internalType":"uint256","name":"roundPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenPurchased","type":"uint256"}],"name":"PurchasedWithETH","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"by","type":"address"},{"indexed":false,"internalType":"string","name":"code","type":"string"},{"indexed":false,"internalType":"uint256","name":"amountInETH","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"ethPrice","type":"uint256"},{"indexed":true,"internalType":"uint32","name":"round","type":"uint32"},{"indexed":false,"internalType":"address[]","name":"leaders","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"percentages","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"roundPrice","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"nftAmounts","type":"uint256[]"}],"name":"PurchasedWithETHForNFT","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenPrice","type":"uint256"},{"indexed":true,"internalType":"address","name":"by","type":"address"},{"indexed":false,"internalType":"string","name":"code","type":"string"},{"indexed":false,"internalType":"uint256","name":"amountPurchased","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenPurchased","type":"uint256"},{"indexed":true,"internalType":"uint32","name":"round","type":"uint32"},{"indexed":false,"internalType":"address[]","name":"leaders","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"percentages","type":"uint256[]"}],"name":"PurchasedWithToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenPrice","type":"uint256"},{"indexed":true,"internalType":"address","name":"by","type":"address"},{"indexed":false,"internalType":"string","name":"code","type":"string"},{"indexed":false,"internalType":"uint256","name":"amountPurchased","type":"uint256"},{"indexed":true,"internalType":"uint32","name":"round","type":"uint32"},{"indexed":false,"internalType":"address[]","name":"leaders","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"percentages","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"roundPrice","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"nftAmounts","type":"uint256[]"}],"name":"PurchasedWithTokenForNFT","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint32","name":"newRound","type":"uint32"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"price","type":"uint256"}],"indexed":false,"internalType":"struct Rounds.RoundData","name":"roundData","type":"tuple"}],"name":"RoundCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint32","name":"round","type":"uint32"},{"components":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"price","type":"uint256"}],"indexed":false,"internalType":"struct Rounds.RoundData","name":"roundData","type":"tuple"}],"name":"RoundUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldSigner","type":"address"},{"indexed":false,"internalType":"address","name":"newSigner","type":"address"}],"name":"SignerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IERC20","name":"token","type":"address"},{"components":[{"internalType":"contract AggregatorV3Interface","name":"priceFeed","type":"address"},{"internalType":"uint8","name":"normalizationFactorForToken","type":"uint8"},{"internalType":"uint8","name":"normalizationFactorForNFT","type":"uint8"},{"internalType":"uint256","name":"tolerance","type":"uint256"}],"indexed":false,"internalType":"struct TokenRegistry.PriceFeedData","name":"data","type":"tuple"}],"name":"TokenDataAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint32","name":"round","type":"uint32"},{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":true,"internalType":"bool","name":"access","type":"bool"},{"indexed":false,"internalType":"uint256","name":"customPrice","type":"uint256"}],"name":"TokensAccessUpdated","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"","type":"uint32"},{"internalType":"contract IERC20","name":"","type":"address"}],"name":"allowedTokens","outputs":[{"internalType":"bool","name":"access","type":"bool"},{"internalType":"uint256","name":"customPrice","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"blacklistAddress","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"burnWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"buyEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newSigner","type":"address"}],"name":"changeSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint32","name":"","type":"uint32"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"claimNFT","outputs":[{"internalType":"uint256","name":"roundPrice","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint32","name":"","type":"uint32"}],"name":"claims","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimsContract","outputs":[{"internalType":"contract IClaims","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"price","type":"uint256"}],"name":"createNewRound","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"enabled","type":"bool"}],"name":"enableBuy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getLatestPrice","outputs":[{"components":[{"internalType":"uint256","name":"latestPrice","type":"uint256"},{"internalType":"uint8","name":"normalizationFactorForToken","type":"uint8"},{"internalType":"uint8","name":"normalizationFactorForNFT","type":"uint8"}],"internalType":"struct PreSale.TokenInfo","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRoundCount","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lockup","outputs":[{"internalType":"contract ILockup","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"nftPricing","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"platformWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"projectWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"code","type":"string"},{"internalType":"uint32","name":"round","type":"uint32"},{"internalType":"uint256[]","name":"nftAmounts","type":"uint256[]"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256[]","name":"indexes","type":"uint256[]"},{"internalType":"address[]","name":"leaders","type":"address[]"},{"internalType":"uint256[]","name":"percentages","type":"uint256[]"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"purchaseNFTWithETH","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"referenceTokenPrice","type":"uint256"},{"internalType":"uint8","name":"referenceNormalizationFactor","type":"uint8"},{"internalType":"string","name":"code","type":"string"},{"internalType":"uint32","name":"round","type":"uint32"},{"internalType":"uint256[]","name":"nftAmounts","type":"uint256[]"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256[]","name":"indexes","type":"uint256[]"},{"internalType":"address[]","name":"leaders","type":"address[]"},{"internalType":"uint256[]","name":"percentages","type":"uint256[]"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"purchaseNFTWithToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"code","type":"string"},{"internalType":"uint32","name":"round","type":"uint32"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"minAmountToken","type":"uint256"},{"internalType":"uint256[]","name":"indexes","type":"uint256[]"},{"internalType":"address[]","name":"leaders","type":"address[]"},{"internalType":"uint256[]","name":"percentages","type":"uint256[]"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"purchaseTokenWithETH","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint8","name":"referenceNormalizationFactor","type":"uint8"},{"internalType":"uint256","name":"referenceTokenPrice","type":"uint256"},{"internalType":"uint256","name":"purchaseAmount","type":"uint256"},{"internalType":"uint256","name":"minAmountToken","type":"uint256"},{"internalType":"uint256[]","name":"indexes","type":"uint256[]"},{"internalType":"address[]","name":"leaders","type":"address[]"},{"internalType":"uint256[]","name":"percentages","type":"uint256[]"},{"internalType":"string","name":"code","type":"string"},{"internalType":"uint32","name":"round","type":"uint32"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"purchaseTokenWithToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"referenceTokenPrice","type":"uint256"},{"internalType":"uint8","name":"referenceNormalizationFactor","type":"uint8"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"minAmountToken","type":"uint256"},{"internalType":"uint256[]","name":"indexes","type":"uint256[]"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint32","name":"round","type":"uint32"}],"name":"purchaseWithClaim","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"","type":"uint32"}],"name":"rounds","outputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"price","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"components":[{"internalType":"contract AggregatorV3Interface","name":"priceFeed","type":"address"},{"internalType":"uint8","name":"normalizationFactorForToken","type":"uint8"},{"internalType":"uint8","name":"normalizationFactorForNFT","type":"uint8"},{"internalType":"uint256","name":"tolerance","type":"uint256"}],"internalType":"struct TokenRegistry.PriceFeedData[]","name":"priceFeedData","type":"tuple[]"}],"name":"setTokenPriceFeed","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signerWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"name":"tokenData","outputs":[{"internalType":"contract AggregatorV3Interface","name":"priceFeed","type":"address"},{"internalType":"uint8","name":"normalizationFactorForToken","type":"uint8"},{"internalType":"uint8","name":"normalizationFactorForNFT","type":"uint8"},{"internalType":"uint256","name":"tolerance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalPurchases","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"round","type":"uint32"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"bool[]","name":"accesses","type":"bool[]"},{"internalType":"uint256[]","name":"customPrices","type":"uint256[]"}],"name":"updateAllowedTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"which","type":"address"},{"internalType":"bool","name":"access","type":"bool"}],"name":"updateBlackListedUser","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newBurnWallet","type":"address"}],"name":"updateBurnWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newPlatformWallet","type":"address"}],"name":"updatePlatformWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"newPrices","type":"uint256[]"}],"name":"updatePricing","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newProjectWallet","type":"address"}],"name":"updateProjectWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"round","type":"uint32"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"price","type":"uint256"}],"name":"updateRound","outputs":[],"stateMutability":"nonpayable","type":"function"}]